Skip to main content
Log in

Hormonal regulation of gluconeogenic gene transcription in the liver

  • Review
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Glucose homeostasis in mammals is achieved by the actions of counterregulatory hormones, namely insulin, glucagon and glucocorticoids. Glucose levels in the circulation are regulated by the liver, the metabolic centre which produces glucose when it is scarce in the blood. This process is catalysed by two rate-limiting enzymes, phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) whose gene expression is regulated by hormones. Hormone response units (HRUs) present in the two genes integrate signals from various signalling pathways triggered by hormones. How such domains are arranged in the regulatory region of these two genes, how this complex regulation is accomplished and the latest advancements in the field are discussed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AF:

accessory factor element

C/EBP:

CAAT-enhancer binding protein

cAMP:

cyclic AMP

CBP:

CREB-binding protein

CEBPβ :

CAAT-enhancer binding protein β

COUP-TF:

chicken ovalbumin upstream transcription factor

CRE:

cyclic AMP response element

CREB:

cyclic AMP response element binding protein

dAF:

distant accessory factor element

G6Pase:

glucose-6-phosphatase

GRE:

glucocorticoid response element

GR-G:

glucocorticoid receptor — glucocorticoid

HNF-1:

hepatic nuclear factor 1

HNF-3 β :

hepatic nuclear factor 3β

HNF-4α :

hepatic nuclear factor 4α

HRU:

hormone response unit

NF-1:

nuclear factor 1

PEPCK:

phosphoenolpyruvate carboxykinase

PGC-1α :

peroxisome proliferator-activated receptor —γ coactivator-1α

PPARα :

peroxisome proliferator activated receptor α

RARE:

retinoic acid response element

RAR-RXR:

retinoic acid receptor-retinoid receptor

SRE:

SREBP response element

SREBP:

sterol response element-binding protein

TORC2:

transducer of regulated CREB activity 2

TRE:

thyroid response element

TR-T3:

thyroid receptor-thyroid hormone

TSS:

transcription start site

References

  • Andreelli F, Foretz M, Knauf C, Cani P D, Perrin C, Iglesias M A, Pillot B, Bado A, et al. 2006 Liver adenosine monophosphate-activated kinase-alpha2 catalytic subunit is a key target for the control of hepatic glucose production by adiponectin and leptin but not insulin; Endocrinology 147 2432–2441

    Article  PubMed  CAS  Google Scholar 

  • Barthel A, Schmoll D, Kruger K D, Bahrenberg G, Walther R, Roth R A and Joost H G 2001 Differential regulation of endogenous glucose-6-phosphatase and phosphoenolpyruvate carboxykinase gene expression by the forkhead transcription factor, FKHR in H4IIE-hepatoma cells; Biochem. Biophys. Res. Commun. 285 897–902

    Article  PubMed  CAS  Google Scholar 

  • Beaudry J B, Pierreux C E, Hayhurst G P, Plumb-Rudewiez N, Weiss M C, Rousseau G G and Lemaigre F P 2006 Threshold levels of hepatocyte nuclear factor 6 (HNF-6) acting in synergy with HNF-4 and PGC-1α are required for time-specific gene expression during liver development; Mol. Cell. Biol. 26 6037–6046

    Article  PubMed  CAS  Google Scholar 

  • Brunet A, Sweeney L B, Sturgill J F, Chua K F, Greer P L, Lin Y, Tran H, Ross S E, et al. 2004 Stress-dependent regulation of Foxo transcription factors by the SIRT1 deacetylase; Science 303 2011–2015

    Article  PubMed  CAS  Google Scholar 

  • Canto C and Auwerx J 2009 Caloric restriction, SIRT1 and longevity; Trends Endocrinol. Metab. 20 325–331

    Article  PubMed  CAS  Google Scholar 

  • Cassuto H, Kochan K, Chakravarty K, Cohen H, Blum B, Olswang Y, Hakimi P, Xu C, et al. 2005 Glucocorticoids regulate transcription of the gene for phosphoenolpyruvate carboxykinase in the liver via an extended glucocorticoid regulatory unit; J. Biol. Chem. 280 33873–33884

    Article  PubMed  CAS  Google Scholar 

  • Chakravarty K, Cassuto H, Reshef L and Hanson R W 2005 Factors that control the tissue-specific transcription of the gene for phosphoenolpyruvate carboxykinase-c; Crit. Rev. Biochem. Mol. Biol. 40 129–154

    Article  PubMed  CAS  Google Scholar 

  • Chakravarty K, Wu S Y, Chiang C M, Samols D and Hanson R W 2004 SREBP-1c and Sp1 interact to regulate transcription of the gene for phosphoenolpyruvate carboxykinase (GTP) in the liver; J. Biol. Chem. 279 15385–15395

    Article  PubMed  CAS  Google Scholar 

  • Chrivia J C, Kwok R P S, Lamb N, Hagiwara M, Montminy M R and Goodman R H 1993 Phosphorylated CREB binds specifically to the nuclear protein CBP; Nature (London) 365 855–859

    Article  CAS  Google Scholar 

  • Dentin R, Hedrick S, Xie J, Yates J 3rd and Montminy M 2008 Hepatic glucose sensing via the CREB coactivator CRTC2; Science 319 1402–1405

    Article  PubMed  CAS  Google Scholar 

  • Dentin R, Liu Y, Koo S H, Hedrick S, Vargas T, Heredia J, Yates J 3rd and Montminy M 2007 Insulin modulates gluconeogenesis by inhibition of the coactivator TORC2; Nature (London) 449 366–369

    Article  CAS  Google Scholar 

  • Duong D T, Waltner-Law M E, Sears R, Sealy L and Granner D K 2002 Insulin inhibits hepatocellular glucose production by utilizing liver-enriched transcriptional inhibitory protein to disrupt the association of CREB-binding protein and RNA polymerase II with the phosphoenolpyruvate carboxykinase gene promoter; J. Biol. Chem. 277 32234–32242

    Article  PubMed  CAS  Google Scholar 

  • Foretz M, Ancellin N, Andreelli F, Saintillan Y, Grondin P, Kahn A, Thorens B, Vaulont S, et al. 2005 Short-term overexpression of a constitutively active form of AMP-activated protein kinase in the liver leads to mild hypoglycemia and fatty liver; Diabetes 54 1331–1339

    Article  PubMed  CAS  Google Scholar 

  • Foufelle F, Gouhot B, Perdereau D, Girard J and Ferre P 1994 Regulation of lipogenic enzyme and phosphoenolpyruvate carboxykinase gene expression in cultured white adipose tissue; Eur. J. Biochem. 223 893–900

    Article  PubMed  CAS  Google Scholar 

  • Frescas D, Valenti L and Accili D 2005 Nuclear trapping of the forkhead transcription factor FoxO1 via Sirt-dependent deacetylation promotes expression of glucogenetic genes; J. Biol. Chem. 280 20589–20595

    Article  PubMed  CAS  Google Scholar 

  • Gaultier-Stein A, Mithieux G and Rajas F 2005 A distal region involving hepatocyte nuclear factor 4α and CAAT/enhancer binding protein markedly potentiates the protein kinase A stimulation of the glucose-6-phosphatase promoter; Mol. Endocrinol. 19 163–174

    Article  CAS  Google Scholar 

  • Greer E L and Brunet A 2005 Foxo transcription factors at the interface between longevity and tumor suppression; Oncogene 24 7410–7425

    Article  PubMed  CAS  Google Scholar 

  • Hall R K, Wang X L, George L, Koch S R and Granner D K 2007 Insulin represses phosphoenolpyruvate carboxykinase gene transcription by causing the rapid disruption of an active transcription complex: a potential epigenetic effect; Mol. Endocrinol. 21 550–563

    Article  PubMed  CAS  Google Scholar 

  • Hall R K, Scott D K, Noisin E L, Lucas P C and Granner D K 1992 Activation of the phosphoenolpyruvate carboxykinase gene: retinoic acid response element is dependent on a retinoic acid receptor/coregulator complex; Mol. Cell Biol. 12 5527–5535

    PubMed  CAS  Google Scholar 

  • Hanson R W and Patel Y M 1994 Phosphoenolpyruvate carboxykinase (GTP) gene; Adv. Enzymol. Rel. Areas Mol. Biol. 69 203–281

    CAS  Google Scholar 

  • Hanson R W and Reshef L 1997 Regulation of phosphoenolpyruvate carboxykinase (GTP): the gene and the enzyme; Annu. Rev. Biochem. 66 581–611

    Article  PubMed  CAS  Google Scholar 

  • Herzig S, Long F, Jhala U, Hedrick S, Quinn R, Bauer A, Rudolph D, Shutz G, et al. 2001 CREB regulates hepatic gluconeogenesis through the coactivator PGC-1; Nature (London) 413 179–183

    Article  CAS  Google Scholar 

  • Herzog B, Hall R K, Wang X L, Waltner-Law M and Granner D K 2004 Peroxisome proliferator-activated receptor γ coactivator-1α as a transcription amplifier, is not essential for basal and hormone-induced phosphoenolpyruvate carboxykinase gene expression; Mol. Endocrinol. 18 807–819

    Article  PubMed  CAS  Google Scholar 

  • Housley M P, Udeshi N D, Rodgers J T, Shabanowitz J, Puigserver P, Hunt D F, and Hart G W 2009 A PGC-1alpha-O-GlcNAc transferase complex regulates FoxO transcription factor activity in response to glucose; J. Biol. Chem. 284 5148–5157

    Article  PubMed  CAS  Google Scholar 

  • Hutton J C and O’Brien R M 2009 Glucose-6-phosphatase catalytic subunit gene family; J. Biol. Chem. 284 29241–29245

    Article  PubMed  CAS  Google Scholar 

  • Imai E, Stromstedt P E, Quinn P G, Carlstedt-Duke J, Gustafsson J A and Granner D K 1990 Characterization of a complex glucocorticoids response unit in the phosphoenolpyruvate carboxykinase gene; Mol. Cell. Biol. 10 4712–4719

    PubMed  CAS  Google Scholar 

  • Jurado L A, Song S, Roesler W J and Park E A 2002 Conserved aminoacids within CCAAT enhancer binding proteins (C/EBPα and β) regulate phosphoenolpyruvate carboxykinase (PEPCK) gene expression; J. Biol. Chem. 277 27606–27612

    Article  PubMed  CAS  Google Scholar 

  • Kato S, Ding J, Pisck E, Jhala U S and Du K 2008 COP1 functions as a FoxO1 ubiquitin E3 ligase to regulate FoxO1-mediated gene expression; J. Biol. Chem. 283 35464–35473

    Article  PubMed  CAS  Google Scholar 

  • Koo S H, Flechner L, Qi L, Zhang X, Screaton R A, Jeffries S, Hedrick S, Xu W, et al. 2005 The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism; Nature (London) 437 1109–1114

    Article  CAS  Google Scholar 

  • Leahy P, Crawford D R, Grossman G, Gronostajski R M and Hanson R W 1999 CREB binding protein coordinates the function of multiple transcription factors including nuclear factor I to regulate phosphoenolpyruvate carboxykinase gene transcription; J. Biol. Chem. 274 8813–8822

    Article  PubMed  CAS  Google Scholar 

  • Li X, Monks B, Ge O and Birbaum J M 2007 Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1alpha transcription coactivator; Nature (London) 447 1012–1016

    Article  CAS  Google Scholar 

  • Liu J, Park E A, Gurney A L, Roesler W J and Hanson R W 1991 Cyclic AMP induction of phosphoenolpyruvate carboxykinase (GTP) gene transcription is mediated by multiple promoter elements; J. Biol. Chem. 266 19095–190102

    PubMed  CAS  Google Scholar 

  • Liu Y, Dentin R, Chen D, Hedrick S, Ravnskjaer K, Schenk S, Milne J, Meyers D J, et al. 2008 A fasting inducible switch modulates gluconeogenesis via activator/coactivator switch; Nature (London) 456 269–273

    Article  CAS  Google Scholar 

  • Massillon D 2001 Regulation of the glucose-6-phosphatase gene by glucose occurs by transcriptional and post-transcriptional mechanisms; J. Biol. Chem. 276 4055–4062

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto M, Pocai A, Rossetti L, Depinho R A and Accili D 2007 Impaired regulation of hepatic glucose production in mice lacking the forkhead transcription factor Foxo1 in liver; Cell Metab. 6 208–216

    Article  PubMed  CAS  Google Scholar 

  • O’Brien R M, Lucas P C, Forest C D, Magnuson M A and Granner D R 1990 Identification of a sequence in the PEPCK gene that mediates a negative effect of insulin on transcription; Science 249 533–537

    Article  PubMed  Google Scholar 

  • Park E A, Jerden D C and Bahouth S W 1995 Regulation of phosphoenolpyruvate carboxykinase gene transcription by thyroid hormone involves two distinct binding sites in the promoter; Biochem. J. 309 913–919

    PubMed  CAS  Google Scholar 

  • Puigserver P, Rhee J, Donovan J, Walkey C J, Yoon J C, Oriente F, Kitamura Y, Altomonte J, et al. 2003 Insulin-regulated hepatic gluconeogenesis through Foxo1-PGC-1α interaction; Nature (London) 423 550–555

    Article  CAS  Google Scholar 

  • Qiao L, Mac Lean P S, You H, Schaack J and Shao J 2006 Knocking down liver CCAAT/enhancer-binding protein a by adenovirus-transduced silent interfering ribonucleic acid improves hepatic gluconeogenesis and lipid homeostasis in db/db mice; Endocrinology 147 3060–3069

    Article  PubMed  CAS  Google Scholar 

  • Ravnskjaer K, Kester H, Liu Y, Zhang X, Lee D, Yates J R 3rd and Montminy M 2007 Cooperative interactions between CBP and TORC2 confer selectivity to CREB target gene expression; EMBO J. 26 2880–2889

    Article  PubMed  CAS  Google Scholar 

  • Rodgers J T, Lerin C, Haas W, Gygi S P, Spiegelman B M and Puigserver P 2005 Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1; Nature (London) 434 113–118

    Article  CAS  Google Scholar 

  • Roesler W J, Park E A and McFie P J 1998 Characterization of CCATT/enhancer-binding protein alpha as a cyclic AMP-responsive nuclear regulator; J. Biol. Chem. 273 14950–14957

    Article  PubMed  CAS  Google Scholar 

  • Roesler W J 2000 At the cutting edge: what is a cAMP response unit; Mol.Cell. Endocrinol. 162 1–7

    Article  PubMed  CAS  Google Scholar 

  • Samuel V T, Choi C S, Phillips T G, Romanelli A J, Geisler J G, Bhanot S, McKay R, Monia B, et al. 2006 Targeting Foxo1 in mice using antisense oligonucleotide improves hepatic and peripheral insulin action; Diabetes 55 2042–2050

    Article  PubMed  CAS  Google Scholar 

  • Scott D K, Stromstedt P E, Wang J C and Granner D K 1996 The orphan receptor COUP-TF binds to a third glucocorticoids accessory factor element within the phosphoenolpyruvate carboxykinase gene promoter; J. Biol. Chem. 271 31909–31914

    Article  PubMed  CAS  Google Scholar 

  • Sekine K, Chen Y R, Kojima N, Ogata K, Fukamizu A and Miyajima A 2007 Foxo1 links insulin signaling to C/EBPalpha and regulates gluconeogenesis during liver development; EMBO J. 26 3607–3615

    Article  PubMed  CAS  Google Scholar 

  • Stafford J M, Wilkinson J C, Beechem J M and Granner D K 2001 Accessory factors facilitate the binding of glucocorticoid response unit in the phosphoenolpyruvate carboxykinase gene promoter; J. Biol. Chem. 276 39885–39891

    Article  PubMed  CAS  Google Scholar 

  • Streeper R S, Eaton E M, Ebert D H, Chapman S C, Svitek C A and O’Brien R M 1998 Hepatocyte nuclear factor-1 acts as an accessory factor to enhance the inhibitory action of insulin on mouse glucose-6-phosphatase gene transcription; Proc. Natl. Acad. Sci. USA 95 9208–9213

    Article  PubMed  CAS  Google Scholar 

  • Streeper R S, Hornbuckle L A, Svitek C A, Goldman J K, Oeser J K and O’Brien R M 2001 Protein kinase A phosphorylates hepatocyte nuclear factor-6 and stimulates glucose-6-phosphatase catalytic subunit gene transcription; J. Biol. Chem. 276 19111–19118

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama T, Scott D F, Wang J C and Granner D K 1998 Structural requirements of the glucocorticoid and retinoic acid response units in the phosphoenolpyruvate carboxykinase gene promoter; Mol. Endocrinol. 12 1487–1498

    Article  PubMed  CAS  Google Scholar 

  • Tang B L and Chua C E L 2010 Is systemic activation of Sirt1 beneficial for ageing-associated metabolic disorders?; Biochem. Biophys. Res. Commun. 391 6–10

    Article  PubMed  CAS  Google Scholar 

  • Thiel G, Al Sarraj J and Stefano L 2005 cAMP response element binding protein (CREB) activates transcription via two distinct genetic elements of the human glucose-6-phosphatase gene; BMC Mol. Biol. 6 2

    Article  PubMed  CAS  Google Scholar 

  • Vander Kooi B T, Onuma H, Oeser J K, Sitek C A, Allen S R, Vander Kooi C W, Chazin W J, and O’Brien R M 2005 The glucose-6-phosphatase catalytic subunit gene promoter contains both positive and megative glucocorticoids response elements; Mol. Endocrinol. 19 3001–3022

    Article  CAS  Google Scholar 

  • Vander Kooi B T, Streeper R S, Svitek C A, Oeser J K, Powell D R and O’Brien R M 2003 The three insulin response sequences in the glucose-6-phosphatase catalytic subunit gene promoter are functionally distinct; J. Biol. Chem. 278 11782–11793

    Article  Google Scholar 

  • Van Schaftingen E V and Gerin I 2002 The glucose-6-phosphatase system; Biochem. J. 362 513–532

    Article  PubMed  Google Scholar 

  • Waltner-Law M, Duong D T, Daniels M C, Herzog B, Wang X L, Prasad R and Granner D K 2003 Elements of the glucocorticoids and retinoic acid response units are involved in cAMP-mediated expression of the PEPCK gene; J. Biol. Chem. 278 10427–10435

    Article  PubMed  CAS  Google Scholar 

  • Wang J C, Stromstedt P E, Sugiyama T and Granner D K 1999 The phosphoenolpyruvate carboxykinase gene glucocorticoids response unit: identification of the functional domains of accessory factors HNF3β (hepatic nuclear factor-3 β) and HNF4 and the necessity of proper alignment of their cognate binding sites; Mol. Endocrinol. 13 604–618

    Article  PubMed  CAS  Google Scholar 

  • Wang N D, Finegold M J, Bradley A, Ou C N, Abdelsayed S V, Wilde M D, Taylor L R, Wilson D R and Darlington G J 1995 Impaired energy homeostasis in C/EBP alpha knockout mice; Science 269 1108–1112

    Article  PubMed  CAS  Google Scholar 

  • Wang X L, Herzog B, Waltner-Law M, Hall R K, Shiota M and Granner D K 2004 The synergistic effect of dexamethasone and all-trans retinoic acid on hepatic phosphoenolpyruvate carboxykinase gene expression involving the coactivator p300; J. Biol. Chem. 279 34191–34200

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Kalhan S C and Hanson R W 2009a What is the metabolic role of phosphoenolpyruvate carboxykinase?; J. Biol. Chem. 284 27025–27029

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Kong X, Martins-Santos M E, Aleman G, Chaco E, Liu G E, Wu S Y, Samols D, et al. 2009c Activaton of SIRT1 by resveratrol represses transcription of the gene for the cytosolic form of phosphoenolpyruvate carboxykinase (GTP) by deacetylating hepatic nuclear factor 4alpha; J. Biol. Chem. 284 27042–27053

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Reshef L, Cassuto H, Aleman G and Hanson R W 2009b Aspects of the control of phosphoenolpyruvate carboxykinase gene transcription; J. Biol. Chem. 284 27031–27035

    Article  PubMed  CAS  Google Scholar 

  • Yeagley D, Guo S, Unterman T and Quinn P G 2001 Gene- and activation-specific mechanisms for insulin inhibition of basal and glucocorticoid-induced insulin-like growth factor binding protein-1 and phosphoenolpyruvate carboxykinase transcription; J. Biol. Chem. 276 33705–33710

    Article  PubMed  CAS  Google Scholar 

  • Yoon J C, Puigserver P, Chen G, Donovan J, Wu Z, Rhee J, Adelmant G, Stafford J, et al. 2001 Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1α; Nature (London) 413 131–138

    Article  CAS  Google Scholar 

  • Yubero P, Hondares E, Carmona C, Rossell M, Gonzalez F J, Iglesias R, Giralt M and Villarroya F 2004 The developmental regulation of peroxisome proliferator activated receptor-δ coactivator-1α expression in the liver is partially dissociated from the control of gluconeogenesis and lipid catabolism; Endocrinology 145 4268–4277

    Article  PubMed  CAS  Google Scholar 

  • Zhou X Y, Shibusawa N, Naik K, Porras D, Temple K, Ou H, Kaihara K, Roe M W, et al. 2004 Insulin regulation of hepatic gluconeogenesis through phosphorylation of CREB-binding protein; Nat. Med. 10 633–637

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nirmala Yabaluri or Murali D. Bashyam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yabaluri, N., Bashyam, M.D. Hormonal regulation of gluconeogenic gene transcription in the liver. J Biosci 35, 473–484 (2010). https://doi.org/10.1007/s12038-010-0052-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-010-0052-0

Keywords

Navigation