Skip to main content
Log in

Clinical Pharmacokinetics and Pharmacodynamics of Prednisolone and Prednisone in Solid Organ Transplantation

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Prednisolone and prednisone are integral components of induction and maintenance immunosuppressive regimens in solid organ transplantation. The pharmacokinetics of these agents are extremely complex. Prednisolone is the active drug moiety while prednisone is both a pro-drug and inactive metabolite of prednisolone. Within the dosage range used in transplantation, prednisolone and prednisone exhibit concentration-dependent non-linear pharmacokinetics when parameters are measured with reference to total drug concentration. Dose dependency disappears when free (unbound) prednisolone is measured. Altered organ function, changing biochemistry and use of a number of concomitant medicines in transplantation appear to lead to pharmacokinetic differences in transplant recipients compared with other patient groups. Greater than threefold variability in dose-adjusted exposure to total prednisolone in transplant recipients is evident. Time post-transplant, hepatic and renal dysfunction, patient age, sex, bodyweight, serum albumin concentration, concomitant medication exposure, various disease states and genetic polymorphisms in metabolic enzymes and drug transporters have sometimes been associated with prednisolone pharmacokinetic variability. The clinical impact of corticosteroid therapy on the disposition of ciclosporin, tacrolimus and sirolimus and the impact of different immunosuppressant therapy combinations on prednisolone exposure needs to be further elucidated. Patient response patterns to prednisolone are consistent with delayed and indirect mechanisms of corticosteroid action involving modification of nuclear transcription and protein synthesis. Many adverse effects have been linked with prednisolone and prednisone therapy, but not all of these have been investigated thoroughly in transplant populations. Dyslipidaemia, growth restriction, diabetogenesis, hypertension and cataracts are well studied toxicities. Evidence is less clear for prednisolone-induced osteonecrosis, obesity and hypertriglyceridaemia. There have been some reports of a relationship between prednisolone pharmacokinetics and incidence of acute rejection, Cushing’s syndrome and adverse cardiovascular and metabolic events. Dosing of prednisolone and prednisone in transplantation is typically empirical and varies significantly across transplant centres. Currently, authoritative guidelines are conflicting in their opinions regarding corticosteroid avoidance and early discontinuation in adult kidney transplantation. Overall, data suggest the promise of corticosteroid-free immunosuppression in paediatric patients. Further investigation of the pharmacokinetics and pharmacodynamics of prednisolone and prednisone in transplant recipients based on new chromatography assay techniques and free drug measurement, population pharmacokinetic/pharmacodynamic modelling approaches, genetic testing and larger studies in patients on modern day immunosuppressant protocols may lead to better individualization of corticosteroid therapy in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Annual Report of the US Organ Procurement and Transplantation Network and the Scientific Registry of Transplant Recipients: Transplant Data 1999–2009. Rockville, MD: U.S. Department of Health and Human Services, Health Resources and Services Administration, Healthcare Systems Bureau, Division of Transplantation, Rockville, MD; United Network for Organ Sharing, Richmond, VA; University Renal Research and Education Association, Ann Arbor, MI; 2010. http://optn.transplant.hrsa.gov/ar2009/. Accessed 22 Feb 2012.

  2. Pickup ME. Clinical pharmacokinetics of prednisone and prednisolone. Clin Pharmacokinet. 1979;4(2):111–28.

    Google Scholar 

  3. Czock D, Keller F, Rasche FM, et al. Pharmacokinetics and pharmacodynamics of systemically administered glucocorticoids. Clin Pharmacokinet. 2005;44(1):61–98.

    Article  PubMed  CAS  Google Scholar 

  4. Diederich S, Eigendorff E, Burkhardt P, et al. 11Beta-hydroxysteroid dehydrogenase types 1 and 2: an important pharmacokinetic determinant for the activity of synthetic mineralo- and glucocorticoids. J Clin Endocrinol Metab. 2002;87(12):5695–701.

    Article  PubMed  CAS  Google Scholar 

  5. Lexi-Comp Online, Hudson, Ohio. In: Basow D (ed). UpToDate. Waltham: UpToDate; 2012. http://www.uptodate.com. Accessed 20 Feb 2012.

  6. MIMS Online [Internet database]. MIMS Australia; 2012. http://www.mims.com.au/index.php. Accessed 20 Feb 2012.

  7. Gambertoglio JG, Frey FJ, Holford NH, et al. Prednisone and prednisolone bioavailability in renal transplant patients. Kidney Int. 1982;21(4):621–6.

    Article  PubMed  CAS  Google Scholar 

  8. Gambertoglio JG, Vincenti F, Feduska NJ, et al. Prednisolone disposition in cushingoid and noncushingoid kidney transplant patients. J Clin Endocrinol Metab. 1980;51(3):561–5.

    Article  PubMed  CAS  Google Scholar 

  9. Frey FJ, Schnetzer A, Horber FF, et al. Evidence that cyclosporine does not affect the metabolism of prednisolone after renal transplantation. Transplantation. 1987;43(4):494–8.

    Article  PubMed  CAS  Google Scholar 

  10. Garg V, Jusko WJ. Bioavailability and reversible metabolism of prednisone and prednisolone in man. Biopharm Drug Dispos. 1994;15(2):163–72.

    Article  PubMed  CAS  Google Scholar 

  11. Madsbad S, Bjerregaard B, Henriksen JH, et al. Impaired conversion of prednisone to prednisolone in patients with liver cirrhosis. Gut. 1980;21(1):52–6.

    Article  PubMed  CAS  Google Scholar 

  12. Renner E, Horber FF, Jost G, et al. Effect of liver function on the metabolism of prednisone and prednisolone in humans. Gastroenterology. 1986;90(4):819–28.

    PubMed  CAS  Google Scholar 

  13. Frey BM, Frey FJ. Clinical pharmacokinetics of prednisone and prednisolone. Clin Pharmacokinet. 1990;19(2):126–46.

    Article  PubMed  CAS  Google Scholar 

  14. Karssen AM, Meijer OC, van der Sandt IC, et al. The role of the efflux transporter P-glycoprotein in brain penetration of prednisolone. J Endocrinol. 2002;175(1):251–60.

    Article  PubMed  CAS  Google Scholar 

  15. van Runnard Heimel PJ, Schobben AF, Huisjes AJ, et al. The transplacental passage of prednisolone in pregnancies complicated by early-onset HELLP syndrome. Placenta. 2005;26 (10):842–5.

  16. Murphy VE, Fittock RJ, Zarzycki PK, et al. Metabolism of synthetic steroids by the human placenta. Placenta. 2007;28(1):39–46.

    Article  PubMed  CAS  Google Scholar 

  17. Beitins IZ, Bayard F, Ances IG, et al. The transplacental passage of prednisone and prednisolone in pregnancy near term. J Pediatr. 1972;81(5):936–45.

    Article  PubMed  CAS  Google Scholar 

  18. Ost L, Wettrell G, Bjorkhem I, et al. Prednisolone excretion in human milk. J Pediatr. 1985;106(6):1008–11.

    Article  PubMed  CAS  Google Scholar 

  19. Wald JA, Law RM, Ludwig EA, et al. Evaluation of dose-related pharmacokinetics and pharmacodynamics of prednisolone in man. J Pharmacokinet Biopharm. 1992;20(6):567–89.

    Article  PubMed  CAS  Google Scholar 

  20. Barth J, Damoiseaux M, Mollmann H, et al. Pharmacokinetics and pharmacodynamics of prednisolone after intravenous and oral administration. Int J Clin Pharmacol Ther Toxicol. 1992;30(9):317–24.

    PubMed  CAS  Google Scholar 

  21. Xu J, Winkler J, Derendorf H. A pharmacokinetic/pharmacodynamic approach to predict total prednisolone concentrations in human plasma. J Pharmacokinet Pharmacodyn. 2007;34(3):355–72.

    Article  PubMed  CAS  Google Scholar 

  22. Vogt M, Derendorf H, Kramer J, et al. Biowaiver monographs for immediate release solid oral dosage forms: prednisolone. J Pharm Sci. 2007;96(1):27–37.

    Article  PubMed  CAS  Google Scholar 

  23. Rose JQ, Yurchak AM, Jusko WJ. Dose dependent pharmacokinetics of prednisone and prednisolone in man. J Pharmacokinet Biopharm. 1981;9(4):389–417.

    Article  PubMed  CAS  Google Scholar 

  24. Rohatagi S, Barth J, Mollmann H, et al. Pharmacokinetics of methylprednisolone and prednisolone after single and multiple oral administration. J Clin Pharmacol. 1997;37(10):916–25.

    Article  PubMed  CAS  Google Scholar 

  25. Rocci ML Jr, Szefler SJ, Acara M, et al. Prednisolone metabolism and excretion in the isolated perfused rat kidney. Drug Metab Dispos. 1981;9(3):177–82.

    PubMed  CAS  Google Scholar 

  26. Pichard L, Fabre I, Daujat M, et al. Effect of corticosteroids on the expression of cytochromes P450 and on cyclosporin A oxidase activity in primary cultures of human hepatocytes. Mol Pharmacol. 1992;41(6):1047–55.

    PubMed  CAS  Google Scholar 

  27. Ged C, Rouillon JM, Pichard L, et al. The increase in urinary excretion of 6 beta-hydroxycortisol as a marker of human hepatic cytochrome P450IIIA induction. Br J Clin Pharmacol. 1989;28(4):373–87.

    Article  PubMed  CAS  Google Scholar 

  28. Wrighton SA, Brian WR, Sari MA, et al. Studies on the expression and metabolic capabilities of human liver cytochrome P450IIIA5 (HLp3). Mol Pharmacol. 1990;38(2):207–13.

    PubMed  CAS  Google Scholar 

  29. Penzak SR, Formentini E, Alfaro RM, et al. Prednisolone pharmacokinetics in the presence and absence of ritonavir after oral prednisone administration to healthy volunteers. J Acquir Immune Defic Syndr. 2005;40(5):573–80.

    Article  PubMed  CAS  Google Scholar 

  30. Garg V, Jusko WJ. Simultaneous analysis of prednisone, prednisolone and their major hydroxylated metabolites in urine by high-performance liquid chromatography. J Chromatogr. 1991;567(1):39–47.

    PubMed  CAS  Google Scholar 

  31. Jusko WJ, Rose JQ. Monitoring prednisone and prednisolone. Ther Drug Monit. 1980;2(2):169–76.

    Article  PubMed  CAS  Google Scholar 

  32. Frey FJ, Ruegsegger MK, Frey BM. The dose-dependent systemic availability of prednisone: one reason for the reduced biological effect of alternate-day prednisone. Br J Clin Pharmacol. 1986;21(2):183–9.

    Article  PubMed  CAS  Google Scholar 

  33. Frey FJ, Gambertoglio JG, Frey BM, et al. Nonlinear plasma protein binding and haemodialysis clearance of prednisolone. Eur J Clin Pharmacol. 1982;23(1):65–74.

    Article  PubMed  CAS  Google Scholar 

  34. Jones J, Narwal S, Rosenbaum F, et al. Population pharmacokinetics of prednisolone in heart and lung transplant patients [abstract]. American Association of Pharmaceutical Scientists Annual Meeting. 2006. AASP Journal Vol 8(S2). http://www.aapsj.org/abstracts/AM_2006/AAPS2006-002918.pdf. Accessed 20 Aug 2012.

  35. Jeng S, Chanchairujira T, Jusko W, et al. Prednisone metabolism in recipients of kidney or liver transplants and in lung recipients receiving ketoconazole. Transplantation. 2003;75(6):792–5.

    Article  PubMed  CAS  Google Scholar 

  36. Potter JM, McWhinney BC, Sampson L, et al. Area-under-the-curve monitoring of prednisolone for dose optimization in a stable renal transplant population. Ther Drug Monit. 2004;26(4):408–14.

    Article  PubMed  CAS  Google Scholar 

  37. Ost L. Impairment of prednisolone metabolism by cyclosporine treatment in renal graft recipients. Transplantation. 1987;44(4):533–5.

    Article  PubMed  CAS  Google Scholar 

  38. Ost L, Bjorkhem I, von Bahr C. Clinical value of assessing prednisolone pharmacokinetics before and after renal transplantation. Eur J Clin Pharmacol. 1984;26(3):363–9.

    Article  PubMed  CAS  Google Scholar 

  39. Uribe M, Schalm SW, Summerskill WH, et al. Oral prednisone for chronic active liver disease: dose responses and bioavailability studies. Gut. 1978;19(12):1131–5.

    Article  PubMed  CAS  Google Scholar 

  40. Schalm SW, Summerskill WH, Go VL. Prednisone for chronic active liver disease: pharmacokinetics, including conversion to prednisolone. Gastroenterology. 1977;72(5 Pt 1):910–3.

    PubMed  CAS  Google Scholar 

  41. Kozower M, Veatch L, Kaplan MM. Decreased clearance of prednisolone, a factor in the development of corticosteroid side effects. J Clin Endocrinol Metab. 1974;38(3):407–12.

    Article  PubMed  CAS  Google Scholar 

  42. Davis M, Williams R, Chakraborty J, et al. Prednisone or prednisolone for the treatment of chronic active hepatitis? A comparison of plasma availability. Br J Clin Pharmacol. 1978;5(6):501–5.

    Article  PubMed  CAS  Google Scholar 

  43. Powell LW, Axelsen E. Corticosteroids in liver disease: studies on the biological conversion of prednisone to prednisolone and plasma protein binding. Gut. 1972;13(9):690–6.

    Article  PubMed  CAS  Google Scholar 

  44. Bergrem H. Pharmacokinetics and protein binding of prednisolone in patients with nephrotic syndrome and patients undergoing hemodialysis. Kidney Int. 1983;23(6):876–81.

    Article  PubMed  CAS  Google Scholar 

  45. Bergrem H. The influence of uremia on pharmacokinetics and protein binding of prednisolone. Acta Med Scand. 1983;213(5):333–7.

    Article  PubMed  CAS  Google Scholar 

  46. Kawai S, Ichikawa Y, Homma M. Differences in metabolic properties among cortisol, prednisolone, and dexamethasone in liver and renal diseases: accelerated metabolism of dexamethasone in renal failure. J Clin Endocrinol Metab. 1985;60(5):848–54.

    Article  PubMed  CAS  Google Scholar 

  47. Reece PA, Disney AP, Stafford I, et al. Prednisolone protein binding in renal transplant patients. Br J Clin Pharmacol. 1985;20(2):159–62.

    Article  PubMed  CAS  Google Scholar 

  48. Frey FJ. Pharmacokinetic determinants of cyclosporine and prednisone in renal transplant patients. Kidney Int. 1991;39(5):1034–50.

    Article  PubMed  CAS  Google Scholar 

  49. Leblond F, Guevin C, Demers C, et al. Downregulation of hepatic cytochrome P450 in chronic renal failure. J Am Soc Nephrol. 2001;12(2):326–32.

    PubMed  CAS  Google Scholar 

  50. Benet LZ, Hoener BA. Changes in plasma protein binding have little clinical relevance. Clin Pharmacol Ther. 2002;71(3):115–21.

    Article  PubMed  CAS  Google Scholar 

  51. Gatti G, Perucca E, Frigo GM, et al. Pharmacokinetics of prednisone and its metabolite prednisolone in children with nephrotic syndrome during the active phase and in remission. Br J Clin Pharmacol. 1984;17(4):423–31.

    Article  PubMed  CAS  Google Scholar 

  52. Lewis GP, Jusko WJ, Graves L, et al. Prednisone side-effects and serum-protein levels: a collaborative study. Lancet. 1971;2(7728):778–80.

    Article  PubMed  CAS  Google Scholar 

  53. Uribe M, Summerskill W, Go V. Why hyperbilirubinemia and hypoalbuminemia pre-disposes to steroid side effects during treatment of chronic active liver disease. Gastroenterology. 1977;72:1143.

    Google Scholar 

  54. Stuck AE, Frey BM, Frey FJ. Kinetics of prednisolone and endogenous cortisol suppression in the elderly. Clin Pharmacol Ther. 1988;43(4):354–62.

    Article  PubMed  CAS  Google Scholar 

  55. Green OC, Winter RJ, Kawahara FS, et al. Plasma levels, half-life values, and correlation with physiologic assays for growth and immunity. J Pediatr. 1978;93(2):299–303.

    Article  PubMed  CAS  Google Scholar 

  56. Rose JQ, Nickelsen JA, Ellis EF, et al. Prednisolone disposition in steroid-dependent asthmatic children. J Allergy Clin Immunol. 1981;67(3):188–93.

    Article  PubMed  CAS  Google Scholar 

  57. Boekenoogen SJ, Szefler SJ, Jusko WJ. Prednisolone disposition and protein binding in oral contraceptive users. J Clin Endocrinol Metab. 1983;56(4):702.

    Article  PubMed  CAS  Google Scholar 

  58. Magee MH, Blum RA, Lates CD, et al. Prednisolone pharmacokinetics and pharmacodynamics in relation to sex and race. J Clin Pharmacol. 2001;41(11):1180–94.

    Article  PubMed  CAS  Google Scholar 

  59. Morton JM, Williamson S, Kear LM, et al. Therapeutic drug monitoring of prednisolone after lung transplantation. J Heart Lung Transplant. 2006;25(5):557–63.

    Article  PubMed  Google Scholar 

  60. Frey FJ, Frey BM. Urinary 6 beta-hydroxyprednisolone excretion indicates enhanced prednisolone catabolism. J Lab Clin Med. 1983;101(4):593–604.

    PubMed  CAS  Google Scholar 

  61. Meffin PJ, Brooks PM, Sallustio BC. Alterations in prednisolone disposition as a result of time of administration, gender and dose. Br J Clin Pharmacol. 1984;17(4):395–404.

    Article  PubMed  CAS  Google Scholar 

  62. Milsap RL, Plaisance KI, Jusko WJ. Prednisolone disposition in obese men. Clin Pharmacol Ther. 1984;36(6):824–31.

    Article  PubMed  CAS  Google Scholar 

  63. Petersen KB, Jusko WJ, Rasmussen M, et al. Population pharmacokinetics of prednisolone in children with acute lymphoblastic leukemia. Cancer Chemother Pharmacol. 2003;51(6):465–73.

    PubMed  CAS  Google Scholar 

  64. Dove AM, Szefler SJ, Hill MR, et al. Altered prednisolone pharmacokinetics in patients with cystic fibrosis. J Pediatr. 1992;120(5):789–94.

    Article  PubMed  CAS  Google Scholar 

  65. Bergrem H, Opedal I. Bioavailability of prednisolone in patients with intestinal malabsorption: the importance of measuring serum protein-binding. Scand J Gastroenterol. 1983;18(4):545–9.

    Article  PubMed  CAS  Google Scholar 

  66. Elliott PR, Powell-Tuck J, Gillespie PE, et al. Prednisolone absorption in acute colitis. Gut. 1980;21(1):49–51.

    Article  PubMed  CAS  Google Scholar 

  67. Shaffer JA, Williams SE, Turnberg LA, et al. Absorption of prednisolone in patients with Crohn’s disease. Gut. 1983;24(3):182–6.

    Article  PubMed  CAS  Google Scholar 

  68. Milsap RL, George DE, Szefler SJ, et al. Effect of inflammatory bowel disease on absorption and disposition of prednisolone. Dig Dis Sci. 1983;28(2):161–8.

    Article  PubMed  CAS  Google Scholar 

  69. Pickup E, Record C, Farah F. Prednisolone absorption in patients with gastrointestinal disease. Ann Rheum Dis. 1978;37(6):566–76.

    Article  Google Scholar 

  70. Pickup ME, Farah F, Lowe JR, et al. Prednisolone absorption in coeliac disease. Eur J Drug Metab Pharmacokinet. 1979;4(2):87–9.

    Article  PubMed  CAS  Google Scholar 

  71. Tanner AR, Halliday JW, Powell LW. Serum prednisolone levels in Crohn’s disease and coeliac disease following oral prednisolone administration. Digestion. 1981;21(6):310–5.

    Article  PubMed  CAS  Google Scholar 

  72. Frey FJ, Horber FF, Frey BM. Altered metabolism and decreased efficacy of prednisolone and prednisone in patients with hyperthyroidism. Clin Pharmacol Ther. 1988;44(5):510–21.

    Article  PubMed  CAS  Google Scholar 

  73. Bergamaschi S, Rusconi R, Gervasoni M, et al. Pharmacokinetics of prednisone and prednisolone in a case of hypothyroidism: effect of replacement therapy. Steroids. 2005;70(11):787–9.

    Article  PubMed  CAS  Google Scholar 

  74. Pichard L, Fabre I, Fabre G, et al. Cyclosporin A drug interactions: screening for inducers and inhibitors of cytochrome P-450 (cyclosporin A oxidase) in primary cultures of human hepatocytes and in liver microsomes. Drug Metab Dispos. 1990;18(5):595–606.

    PubMed  CAS  Google Scholar 

  75. Yates CR, Chang C, Kearbey JD, et al. Structural determinants of P-glycoprotein-mediated transport of glucocorticoids. Pharm Res. 2003;20(11):1794–803.

    Article  PubMed  CAS  Google Scholar 

  76. Konishi H, Sumi M, Shibata N, et al. Decrease in oral bioavailability of ciclosporin by intravenous pulse of methylprednisolone succinate in rats. J Pharm Pharmacol. 2004;56(10):1259–66.

    Article  PubMed  CAS  Google Scholar 

  77. Lam S, Partovi N, Ting LS, et al. Corticosteroid interactions with cyclosporine, tacrolimus, mycophenolate, and sirolimus: fact or fiction? Ann Pharmacother. 2008;42(7):1037–47 (Epub 2008 Jul 1).

    Google Scholar 

  78. Griffin PJ, Da Costa CA, Salaman JR. A controlled trial of steroids in cyclosporine-treated renal transplant recipients. Transplantation. 1987;43(4):505–8.

    Article  PubMed  CAS  Google Scholar 

  79. Thiel G, Harder F, Loertscher R, et al. Cyclosporine alone or in combination with prednisone in cadaveric renal transplantation. Transplant Proc. 1984;16(5):1187–90.

    PubMed  CAS  Google Scholar 

  80. Hricik DE, Moritz C, Mayes JT, et al. Association of the absence of steroid therapy with increased cyclosporine blood levels in renal transplant recipients. Transplantation. 1990;49(1):221–3.

    Article  PubMed  CAS  Google Scholar 

  81. Arnold JC, O’Grady JG, Tredger JM, et al. Effects of low-dose prednisolone on cyclosporine pharmacokinetics in liver transplant recipients: radioimmunoassay with specific and non-specific monoclonal antibodies. Eur J Clin Pharmacol. 1990;39(3):257–60.

    Article  PubMed  CAS  Google Scholar 

  82. Langhoff E, Madsen S, Olgaard K, et al. Clinical results and cyclosporine effect on prednisolone metabolism of cadaver kidney transplanted patients. Proc Eur Dial Transplant Assoc Eur Ren Assoc. 1984;21:963–8.

    Google Scholar 

  83. Ost L. Effects of cyclosporin on prednisolone metabolism. Lancet. 1984;1(8374):451.

    Article  PubMed  CAS  Google Scholar 

  84. Langhoff E, Madsen S, Flachs H, et al. Inhibition of prednisolone metabolism by cyclosporine in kidney-transplanted patients. Transplantation. 1985;39(1):107–9.

    Article  PubMed  CAS  Google Scholar 

  85. Undre NA, Schafer A. Factors affecting the pharmacokinetics of tacrolimus in the first year after renal transplantation: European Tacrolimus Multicentre Renal Study Group. Transplant Proc. 1998;30(4):1261–3.

    Article  PubMed  CAS  Google Scholar 

  86. van Duijnhoven EM, Boots JM, Christiaans MH, et al. Increase in tacrolimus trough levels after steroid withdrawal. Transpl Int. 2003;16(10):721–5.

    Article  PubMed  Google Scholar 

  87. Kim JS, Aviles DH, Silverstein DM, et al. Effect of age, ethnicity, and glucocorticoid use on tacrolimus pharmacokinetics in pediatric renal transplant patients. Pediatr Transplant. 2005;9(2):162–9.

    Article  PubMed  CAS  Google Scholar 

  88. Anglicheau D, Flamant M, Schlageter MH, et al. Pharmacokinetic interaction between corticosteroids and tacrolimus after renal transplantation. Nephrol Dial Transplant. 2003;18(11):2409–14.

    Article  PubMed  CAS  Google Scholar 

  89. Hesselink DA, Ngyuen H, Wabbijn M, et al. Tacrolimus dose requirement in renal transplant recipients is significantly higher when used in combination with corticosteroids. Br J Clin Pharmacol. 2003;56(3):327–30.

    Article  PubMed  CAS  Google Scholar 

  90. Park SI, Felipe CR, Pinheiro-Machado PG, et al. Tacrolimus pharmacokinetic drug interactions: effect of prednisone, mycophenolic acid or sirolimus. Fundam Clin Pharmacol. 2009;23(1):137–45.

    Article  PubMed  CAS  Google Scholar 

  91. Mourad M, Mourad G, Wallemacq P, et al. Sirolimus and tacrolimus trough concentrations and dose requirements after kidney transplantation in relation to CYP3A5 and MDR1 polymorphisms and steroids. Transplantation. 2005;80(7):977–84.

    Article  PubMed  CAS  Google Scholar 

  92. Cattaneo D, Merlini S, Pellegrino M, et al. Therapeutic drug monitoring of sirolimus: effect of concomitant immunosuppressive therapy and optimization of drug dosing. Am J Transplant. 2004;4(8):1345–51.

    Article  PubMed  CAS  Google Scholar 

  93. Jusko WJ, Ferron GM, Mis SM, et al. Pharmacokinetics of prednisolone during administration of sirolimus in patients with renal transplants. J Clin Pharmacol. 1996;36(12):1100–6.

    Article  PubMed  CAS  Google Scholar 

  94. Cattaneo D, Perico N, Gaspari F, et al. Glucocorticoids interfere with mycophenolate mofetil bioavailability in kidney transplantation. Kidney Int. 2002;62(3):1060–7.

    Article  PubMed  CAS  Google Scholar 

  95. Gregoor PJ, de Sevaux RG, Hene RJ, et al. Effect of cyclosporine on mycophenolic acid trough levels in kidney transplant recipients. Transplantation. 1999;68(10):1603–6.

    Article  PubMed  CAS  Google Scholar 

  96. van Hest RM, Mathot RA, Pescovitz MD, et al. Explaining variability in mycophenolic acid exposure to optimize mycophenolate mofetil dosing: a population pharmacokinetic meta-analysis of mycophenolic acid in renal transplant recipients. J Am Soc Nephrol. 2006;17(3):871–80.

    Article  PubMed  CAS  Google Scholar 

  97. Gambertoglio JG, Holford HG, Lizak PS, et al. The absence of effect of azathioprine on prednisolone pharmacokinetics following maintenance prednisone doses in kidney transplant patients. Am J Kidney Dis. 1984;3(6):425–9.

    PubMed  CAS  Google Scholar 

  98. Coutinho AE, Chapman KE. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol Cell Endocrinol. 2011;335(1):2–13.

    Article  PubMed  CAS  Google Scholar 

  99. Baxter JD, Forsham PH. Tissue effects of glucocorticoids. Am J Med. 1972;53(5):573–89.

    Article  PubMed  CAS  Google Scholar 

  100. Parrillo JE, Fauci AS. Mechanisms of glucocorticoid action on immune processes. Annu Rev Pharmacol Toxicol. 1979;19(1):179–201.

    Article  PubMed  CAS  Google Scholar 

  101. Newton R. Molecular mechanisms of glucocorticoid action: what is important? Thorax. 2000;55(7):603–13.

    Article  PubMed  CAS  Google Scholar 

  102. Falkenstein E, Wehling M. Nongenomically initiated steroid actions. Eur J Clin Invest. 2000;30(Suppl 3):51–4.

    Article  PubMed  CAS  Google Scholar 

  103. Ferron GM, Jusko WJ. Species- and gender-related differences in cyclosporine/prednisolone/sirolimus interactions in whole blood lymphocyte proliferation assays. J Pharmacol Exp Ther. 1998;286(1):191–200.

    PubMed  CAS  Google Scholar 

  104. Hong Y, Mager DE, Blum RA, et al. Population pharmacokinetic/pharmacodynamic modeling of systemic corticosteroid inhibition of whole blood lymphocytes: modeling interoccasion pharmacodynamic variability. Pharm Res. 2007;24(6):1088–97.

    Article  PubMed  CAS  Google Scholar 

  105. Wald JA, Jusko WJ. Prednisolone pharmacodynamics: leukocyte trafficking in the rat. Life Sci. 1994;55(19):PL371–8.

    Google Scholar 

  106. Morris HG. Factors that influence clinical responses to administered corticosteroids. J Allergy Clin Immunol. 1980;66(5):343–6.

    Article  PubMed  CAS  Google Scholar 

  107. Nouri-Majalan N, Sanadgol H, Rahimian M, et al. Bone mineral density in kidney transplant recipients and patients on hemodialysis: a comparison with healthy individuals. Iran J Kidney Dis. 2008;2(3):154–9.

    PubMed  Google Scholar 

  108. Patel S, Kwan JT, McCloskey E, et al. Prevalence and causes of low bone density and fractures in kidney transplant patients. J Bone Miner Res. 2001;16(10):1863–70.

    Article  PubMed  CAS  Google Scholar 

  109. Goffin E, Devogelaer JP, Lalaoui A, et al. Tacrolimus and low-dose steroid immunosuppression preserves bone mass after renal transplantation. Transpl Int. 2002;15(2–3):73–80.

    Article  PubMed  CAS  Google Scholar 

  110. Yun YS, Kim BJ, Hong SP, et al. Changes of bone metabolism indices in patients receiving immunosuppressive therapy including low doses of steroids after renal transplantation. Transplant Proc. 1996;28(3):1561–4.

    PubMed  CAS  Google Scholar 

  111. Martinez Diaz-Guerra G, Gomez R, Jodar E, et al. Long-term follow-up of bone mass after orthotopic liver transplantation: effect of steroid withdrawal from the immunosuppressive regimen. Osteoporos Int. 2002;13(2):147–50.

  112. Gomez R, Moreno E, Colina F, et al. Steroid withdrawal is safe and beneficial in stable cyclosporine-treated liver transplant patients. J Hepatol. 1998;28(1):150–6.

    Article  PubMed  CAS  Google Scholar 

  113. Matas AJ, Kandaswamy R, Gillingham KJ, et al. Prednisone-free maintenance immunosuppression-a 5-year experience. Am J Transplant. 2005;5(10):2473–8.

    Article  PubMed  Google Scholar 

  114. Woodle ES, First MR, Pirsch J, et al. A prospective, randomized, double-blind, placebo-controlled multicenter trial comparing early (7 day) corticosteroid cessation versus long-term, low-dose corticosteroid therapy. Ann Surg. 2008;248(4):564–77.

    PubMed  Google Scholar 

  115. Vincenti F, Schena FP, Paraskevas S, et al. A randomized, multicenter study of steroid avoidance, early steroid withdrawal or standard steroid therapy in kidney transplant recipients. Am J Transplant. 2008;8(2):307–16.

    Article  PubMed  CAS  Google Scholar 

  116. Kasiske BL, Vazquez MA, Harmon WE, et al. Recommendations for the outpatient surveillance of renal transplant recipients: American Society of Transplantation. J Am Soc Nephrol. 2000;11(Suppl 15):S1–86.

    PubMed  Google Scholar 

  117. Selby PL, Halsey JP, Adams KR, et al. Corticosteroids do not alter the threshold for vertebral fracture. J Bone Miner Res. 2000;15(5):952–6.

    Article  PubMed  CAS  Google Scholar 

  118. Weinstein RS. Clinical practice: glucocorticoid-induced bone disease. N Engl J Med. 2011;365(1):62–70.

    Article  PubMed  CAS  Google Scholar 

  119. Stein EM, Ortiz D, Jin Z, et al. Prevention of fractures after solid organ transplantation: a meta-analysis. J Clin Endocrinol Metab. 2011;96(11):3457–65.

    Article  PubMed  CAS  Google Scholar 

  120. Palmer SC, McGregor DO, Strippoli GF. Interventions for preventing bone disease in kidney transplant recipients. Cochrane Database Syst Rev 2007;(3):CD005015.

  121. Lausten GS, Lemser T, Jensen PK, et al. Necrosis of the femoral head after kidney transplantation. Clin Transplant. 1998;12(6):572–4.

    PubMed  CAS  Google Scholar 

  122. Kubo T, Fujioka M, Yamazoe S, et al. Relationship between steroid dosage and osteonecrosis of the femoral head after renal transplantation as measured by magnetic resonance imaging. Transplant Proc. 1998;30(7):3039–40.

    Article  PubMed  CAS  Google Scholar 

  123. Fryer JP, Benedetti E, Gillingham K, et al. Steroid-related complications in pediatric kidney transplant recipients in the cyclosporine era. Transplant Proc. 1994;26(1):91–2.

    PubMed  CAS  Google Scholar 

  124. Inoue S, Horii M, Asano T, et al. Risk factors for nontraumatic osteonecrosis of the femoral head after renal transplantation. J Orthop Sci. 2003;8(6):751–6.

    Article  PubMed  Google Scholar 

  125. Salaman JR, Gomes Da Costa CA, Griffin PJ. Renal transplantation without steroids. J Pediatr. 1987;111(6 Pt 2):1026–8.

    Google Scholar 

  126. Dolgos S, Hartmann A, Jenssen T, et al. Determinants of short-term changes in body composition following renal transplantation. Scand J Urol Nephrol. 2009;43(1):76–83.

    Article  PubMed  Google Scholar 

  127. Hoy WE, Sargent JA, Freeman RB, et al. The influence of glucocorticoid dose on protein catabolism after renal transplantation. Am J Med Sci. 1986;291(4):241–7.

    Article  PubMed  CAS  Google Scholar 

  128. Nematalla AH, Bakr MA, Gheith OA, et al. Steroid-avoidance immunosuppression regimen in live-donor renal allotransplant recipients: a prospective, randomized, controlled study. Exp Clin Transplant. 2007;5(2):673–9.

    PubMed  Google Scholar 

  129. Fabrega AJ, Cohan J, Meslar P, et al. Effects of steroid withdrawal on long-term renal allograft recipients with posttransplantation diabetes mellitus. Surgery. 1994;116(4):792–7.

    PubMed  CAS  Google Scholar 

  130. Ko TY, Haddy JA, Marcus RJ, et al. Steroid avoidance in renal transplant patients maintained on a cyclosporine-based protocol. Exp Clin Transplant. 2007;5(2):664–9.

    PubMed  Google Scholar 

  131. Gavela E, Avila A, Sancho A, et al. Benefits derivated from late steroid withdrawal in renal transplant recipients. Transplant Proc. 2007;39(7):2173–5.

    Article  PubMed  CAS  Google Scholar 

  132. Laube GF, Falger J, Kemper MJ, et al. Selective late steroid withdrawal after renal transplantation. Pediatr Nephrol. 2007;22(11):1947–52.

    Article  PubMed  Google Scholar 

  133. van den Ham EC, Kooman JP, Christiaans MH, et al. Relation between steroid dose, body composition and physical activity in renal transplant patients. Transplantation. 2000;69(8):1591–8.

    PubMed  Google Scholar 

  134. Fabrega AJ, Meslar P, Cohan J, et al. Long-term (24-month) follow-up of steroid withdrawal in renal allograft recipients with posttransplant diabetes mellitus. Transplantation. 1995;60(12):1612–4.

    PubMed  CAS  Google Scholar 

  135. Tisone G, Angelico M, Vennarecci G, et al. Metabolic findings after liver transplantation within a randomised trial with or without steroids. Transplant Proc. 1998;30(4):1447–8.

    Article  PubMed  CAS  Google Scholar 

  136. Singh A, Tejani A. Hyperlipidemia in children: the role of uremia, steroids and cyclosporine therapy. Nephron. 1996;74(3):529–35.

    Article  PubMed  CAS  Google Scholar 

  137. Ahsan N, Hricik D, Matas A, et al. Prednisone withdrawal in kidney transplant recipients on cyclosporine and mycophenolate mofetil: a prospective randomized study. Steroid Withdrawal Study Group. Transplantation. 1999;68(12):1865–74.

    Article  PubMed  CAS  Google Scholar 

  138. Vaziri ND, Risk C, Martin DC, et al. Comparison of hyperlipidemia in dialysis patients, renal transplant recipients, and steroid treated nonrenal patients. J Dial. 1980;4(2–3):63–71.

    PubMed  CAS  Google Scholar 

  139. Ratcliffe PJ, Dudley CR, Higgins RM, et al. Randomised controlled trial of steroid withdrawal in renal transplant recipients receiving triple immunosuppression. Lancet. 1996;348(9028):643–8.

    Article  PubMed  CAS  Google Scholar 

  140. Laftavi MR, Stephan R, Stefanick B, et al. Randomized prospective trial of early steroid withdrawal compared with low-dose steroids in renal transplant recipients using serial protocol biopsies to assess efficacy and safety. Surgery. 2005;137(3):364–71.

    Article  PubMed  Google Scholar 

  141. Gulanikar AC, Belitsky P, MacDonald AS, et al. Randomized controlled trial of steroids versus no steroids in stable cyclosporine-treated renal graft recipients. Transplant Proc. 1991;23(1 Pt 2):990–1.

    PubMed  CAS  Google Scholar 

  142. Capell HA, Madhok R, Hunter JA, et al. Lack of radiological and clinical benefit over two years of low dose prednisolone for rheumatoid arthritis: results of a randomised controlled trial. Ann Rheum Dis. 2004;63(7):797–803.

    Article  PubMed  CAS  Google Scholar 

  143. Pascual J, Galeano C, Royuela A, et al. A systematic review on steroid withdrawal between 3 and 6 months after kidney transplantation. Transplantation. 2010;90(4):343–9.

    Article  PubMed  CAS  Google Scholar 

  144. Pascual J, Quereda C, Zamora J, et al. Steroid withdrawal in renal transplant patients on triple therapy with a calcineurin inhibitor and mycophenolate mofetil: a meta-analysis of randomized, controlled trials. Transplantation. 2004;78(10):1548–56.

    Article  PubMed  CAS  Google Scholar 

  145. Li L, Chang A, Naesens M, et al. Steroid-free immunosuppression since 1999: 129 pediatric renal transplants with sustained graft and patient benefits. Am J Transplant. 2009;9(6):1362–72.

    Article  PubMed  CAS  Google Scholar 

  146. Vanrenterghem Y, Lebranchu Y, Hene R, et al. Double-blind comparison of two corticosteroid regimens plus mycophenolate mofetil and cyclosporine for prevention of acute renal allograft rejection. Transplantation. 2000;70(9):1352–9.

    Article  PubMed  CAS  Google Scholar 

  147. Arner P, Gunnarsson R, Blomdahl S, et al. Some characteristics of steroid diabetes: a study in renal-transplant recipients receiving high-dose corticosteroid therapy. Diabetes Care. 1983;6(1):23–5.

    Google Scholar 

  148. Boots JM, Christiaans MH, Van Duijnhoven EM, et al. Early steroid withdrawal in renal transplantation with tacrolimus dual therapy: a pilot study. Transplantation. 2002;74(12):1703–9.

    Article  PubMed  CAS  Google Scholar 

  149. Gurwitz JH, Bohn RL, Glynn RJ, et al. Glucocorticoids and the risk for initiation of hypoglycemic therapy. Arch Intern Med. 1994;154(1):97–101.

    Article  PubMed  CAS  Google Scholar 

  150. Hjelmesaeth J, Midtvedt K, Jenssen T, et al. Insulin resistance after renal transplantation: impact of immunosuppressive and antihypertensive therapy. Diabetes Care. 2001;24(12):2121–6.

    Article  PubMed  CAS  Google Scholar 

  151. Luan FL, Steffick DE, Ojo AO. New-onset diabetes mellitus in kidney transplant recipients discharged on steroid-free immunosuppression. Transplantation. 2011;91(3):334–41.

    Article  PubMed  CAS  Google Scholar 

  152. Bergrem HA, Valderhaug TG, Hartmann A, et al. Glucose tolerance before and after renal transplantation. Nephrol Dial Transplant. 2010;25(3):985–92.

    Article  PubMed  CAS  Google Scholar 

  153. Hjelmesaeth J, Hartmann A, Kofstad J, et al. Tapering off prednisolone and cyclosporin the first year after renal transplantation: the effect on glucose tolerance. Nephrol Dial Transplant. 2001;16(4):829–35.

    Article  PubMed  CAS  Google Scholar 

  154. Taler SJ, Textor SC, Canzanello VJ, et al. Role of steroid dose in hypertension early after liver transplantation with tacrolimus (FK506) and cyclosporine. Transplantation. 1996;62(11):1588–92.

    Article  PubMed  CAS  Google Scholar 

  155. Fine RN, Korsch BM, Brennan LP, et al. Renal transplantation in young children. Am J Surg. 1973;125(5):559–69.

    Article  PubMed  CAS  Google Scholar 

  156. McHugh MI, Tanboga H, Wilkinson R. Alternate day steroids and blood pressure control after renal transplantation. Proc Eur Dial Transplant Assoc. 1980;17:496–501.

    PubMed  CAS  Google Scholar 

  157. Fellstrom B. Risk factors for and management of post-transplantation cardiovascular disease. BioDrugs. 2001;15(4):261–78.

    Article  PubMed  CAS  Google Scholar 

  158. Maxwell SR, Moots RJ, Kendall MJ. Corticosteroids: do they damage the cardiovascular system? Postgrad Med J. 1994;70(830):863–70.

    Article  PubMed  CAS  Google Scholar 

  159. Kramer BK, Klinger M, Wlodarczyk Z, et al. Tacrolimus combined with two different corticosteroid-free regimens compared with a standard triple regimen in renal transplantation: one year observational results. Clin Transplant 2010;24(1):E1–9.

    Google Scholar 

  160. Fryer AA, Ramsay HM, Lovatt TJ, et al. Polymorphisms in glutathione S-transferases and non-melanoma skin cancer risk in Australian renal transplant recipients. Carcinogenesis. 2005;26(1):185–91.

    Article  PubMed  CAS  Google Scholar 

  161. Urban RC, Jr., Cotlier E. Corticosteroid-induced cataracts. Surv Ophthalmol. 1986;31(2):102–10.

    Google Scholar 

  162. Fryer JP, Granger DK, Leventhal JR, et al. Steroid-related complications in the cyclosporine era. Clin Transplant. 1994;8(3 Pt 1):224–9.

    PubMed  CAS  Google Scholar 

  163. Matsunami C, Hilton AF, Dyer JA, et al. Ocular complications in renal transplant patients. Aust N Z J Ophthalmol. 1994;22(1):53–7.

    Article  PubMed  CAS  Google Scholar 

  164. Grenda R, Watson A, Trompeter R, et al. A randomized trial to assess the impact of early steroid withdrawal on growth in pediatric renal transplantation: the TWIST study. Am J Transplant. 2010;10(4):828–36.

    Article  PubMed  CAS  Google Scholar 

  165. Hovland KR, Ellis PP. Ocular changes in renal transplant patients. Am J Ophthalmol. 1967;63(2):283–9.

    PubMed  CAS  Google Scholar 

  166. Kian-Ersi F, Taheri S, Akhlaghi MR. Ocular disorders in renal transplant patients. Saudi J Kidney Dis Transpl. 2008;19(5):751–5.

    PubMed  Google Scholar 

  167. Seydoux C, Berguer DG, Stumpe F, et al. Does early steroid withdrawal influence rejection and infection episodes during the first 2 years after heart transplantation? Transplant Proc. 1997;29(1–2):620–4.

    Article  PubMed  CAS  Google Scholar 

  168. Pelletier SJ, Vanderwall K, Debroy MA, et al. Preliminary analysis of early outcomes of a prospective, randomized trial of complete steroid avoidance in liver transplantation. Transplant Proc. 2005;37(2):1214–6.

    Article  PubMed  CAS  Google Scholar 

  169. Tan JY, Zhao N, Wu TX, et al. Steroid withdrawal increases risk of acute rejection but reduces infection: a meta-analysis of 1681 cases in renal transplantation. Transplant Proc. 2006;38(7):2054–6.

    Article  PubMed  CAS  Google Scholar 

  170. Tanchanco R, Krishnamurthi V, Winans C, et al. Beneficial outcomes of a steroid-free regimen with thymoglobulin induction in pancreas-kidney transplantation. Transplant Proc. 2008;40(5):1551–4.

    Article  PubMed  CAS  Google Scholar 

  171. Rees L, Chantler C. Growth and endocrine function in children receiving long-term steroid therapy for renal disease. Acta Paediatr Scand Suppl. 1990;366:93–6 (discussion 7).

    Google Scholar 

  172. Grenda R. Minimizing steroid use in pediatric kidney recipients. Pediatr Transplant. 2011;15(1):32–6.

    Article  PubMed  Google Scholar 

  173. Jabs K, Sullivan EK, Avner ED, et al. Alternate-day steroid dosing improves growth without adversely affecting graft survival or long-term graft function: a report of the North American Pediatric Renal Transplant Cooperative Study. Transplantation. 1996;61(1):31–6.

    Article  PubMed  CAS  Google Scholar 

  174. Potter DE, Holliday MA, Wilson CJ, et al. Alternate-day steroids in children after renal transplantation. Transplant Proc. 1975;7(1):79–82.

    PubMed  CAS  Google Scholar 

  175. Grenda R. Effects of steroid avoidance and novel protocols on growth in paediatric renal transplant patients. Pediatr Nephrol. 2010;25(4):747–52.

    Article  PubMed  Google Scholar 

  176. Vidhun JR, Sarwal MM. Corticosteroid avoidance in pediatric renal transplantation: can it be achieved? Paediatr Drugs. 2004;6(5):273–87.

    Article  PubMed  Google Scholar 

  177. KDIGO clinical practice guideline for the care of kidney transplant recipients. Am J Transplant. 2009;9(Suppl 3):S1–155.

    Google Scholar 

  178. Keller F, Hemmen T, Schoneshofer M, et al. Pharmacokinetics of methylprednisolone and rejection episodes in kidney transplant patients. Transplantation. 1995;60(4):330–3.

    Article  PubMed  CAS  Google Scholar 

  179. Bergrem H, Jervell J, Flatmark A. Prednisolone pharmacokinetics in cushingoid and non-cushingoid kidney transplant patients. Kidney Int. 1985;27(2):459–64.

    Article  PubMed  CAS  Google Scholar 

  180. Kang CM, Ahn JH, Kahng KW, et al. Pharmacokinetic characteristics of methylprednisolone in Korean renal transplant recipients. Transplant Proc. 1999;31(7):2759–60.

    Article  PubMed  CAS  Google Scholar 

  181. Frey FJ, Amend WJ, Lozada F, et al. Pharmacokinetics of prednisolone and endogenous hydrocortisone levels in cushingoid and non-cushingoid patients. Eur J Clin Pharmacol. 1981;21(3):235–42.

    Article  PubMed  CAS  Google Scholar 

  182. Benet LZ, Frey FJ, Amend WJ Jr, et al. Endogenous and exogenous glucocorticoids in cushingoid patients. Drug Intell Clin Pharm. 1982;16(11):863–8.

    PubMed  CAS  Google Scholar 

  183. Sugioka N, Kokuhu T, Okamoto M, et al. Effect of plasma lipid on pharmacokinetics of ciclosporin and its relationship with plasma prednisolone level in renal transplant patients. J Pharm Pharmacol. 2006;58(9):1193–200.

    Article  PubMed  CAS  Google Scholar 

  184. Bergrem HA, Bergrem H, Hartmann A, et al. Role of prednisolone pharmacokinetics in postchallenge glycemia after renal transplantation. Ther Drug Monit. 2008;30(5):583–90.

    Article  PubMed  CAS  Google Scholar 

  185. Pascussi JM, Gerbal-Chaloin S, Drocourt L, et al. The expression of CYP2B6, CYP2C9 and CYP3A4 genes: a tangle of networks of nuclear and steroid receptors. Biochim Biophys Acta. 2003;1619(3):243–53.

    Article  PubMed  CAS  Google Scholar 

  186. Rosenfeld JM, Vargas R Jr, Xie W, et al. Genetic profiling defines the xenobiotic gene network controlled by the nuclear receptor pregnane X receptor. Mol Endocrinol. 2003;17(7):1268–82.

    Article  PubMed  CAS  Google Scholar 

  187. Miura M, Satoh S, Inoue K, et al. Influence of CYP3A5, ABCB1 and NR1I2 polymorphisms on prednisolone pharmacokinetics in renal transplant recipients. Steroids. 2008;73(11):1052–9.

    Article  PubMed  CAS  Google Scholar 

  188. Miura M, Inoue K, Kagaya H, et al. Inter-individual difference determinant of prednisolone pharmacokinetics for Japanese renal transplant recipients in the maintenance stage. Xenobiotica. 2009;39(12):939–45.

    Article  PubMed  CAS  Google Scholar 

  189. Zheng H, Webber S, Zeevi A, et al. The MDR1 polymorphisms at exons 21 and 26 predict steroid weaning in pediatric heart transplant patients. Hum Immunol. 2002;63(9):765–70.

    Article  PubMed  CAS  Google Scholar 

  190. Hirata T, Fujioka M, Takahashi KA, et al. ApoB C7623T polymorphism predicts risk for steroid-induced osteonecrosis of the femoral head after renal transplantation. J Orthop Sci. 2007;12(3):199–206.

    Article  PubMed  Google Scholar 

  191. Asano T, Takahashi KA, Fujioka M, et al. ABCB1 C3435T and G2677T/A polymorphism decreased the risk for steroid-induced osteonecrosis of the femoral head after kidney transplantation. Pharmacogenetics. 2003;13(11):675–82.

    Article  PubMed  CAS  Google Scholar 

  192. Decker SO, Keller F, Mayer J, et al. Twice daily fractionated dose administration of prednisolone compared to standard once daily administration to patients with glomerulonephritis or with kidney transplants. Med Klin (Munich). 2009;104(6):429–33.

    Article  CAS  Google Scholar 

  193. Broyer M, Guest G, Gagnadoux MF. Growth rate in children receiving alternate-day corticosteroid treatment after kidney transplantation. J Pediatr. 1992;120(5):721–5.

    Article  PubMed  CAS  Google Scholar 

  194. Helal I, Chan L. Steroid and calcineurin inhibitor-sparing protocols in kidney transplantation. Transplant Proc. 2011;43(2):472–7.

    Article  PubMed  CAS  Google Scholar 

  195. Pascual J, Zamora J, Galeano C, et al. Steroid avoidance or withdrawal for kidney transplant recipients. Cochrane Database Syst Rev. 2009;(1):CD005632.

  196. Kumar MS, Xiao SG, Fyfe B, et al. Steroid avoidance in renal transplantation using basiliximab induction, cyclosporine-based immunosuppression and protocol biopsies. Clin Transplant. 2005;19(1):61–9.

    Article  PubMed  Google Scholar 

  197. Vincenti F, Monaco A, Grinyo J, et al. Multicenter randomized prospective trial of steroid withdrawal in renal transplant recipients receiving basiliximab, cyclosporine microemulsion and mycophenolate mofetil. Am J Transplant. 2003;3(3):306–11.

    Article  PubMed  CAS  Google Scholar 

  198. Montagnino G, Sandrini S, Casciani C, et al. A randomized trial of steroid avoidance in renal transplant patients treated with everolimus and cyclosporine. Transplant Proc. 2005;37(2):788–90.

    Article  PubMed  CAS  Google Scholar 

  199. Vitko S, Klinger M, Salmela K, et al. Two corticosteroid-free regimens-tacrolimus monotherapy after basiliximab administration and tacrolimus/mycophenolate mofetil-in comparison with a standard triple regimen in renal transplantation: results of the Atlas study. Transplantation. 2005;80(12):1734–41.

    Article  PubMed  CAS  Google Scholar 

  200. Chadban SJ, Barraclough KA, Campbell SB, et al. KHA-CARI guideline: KHA-CARI adaptation of the KDIGO Clinical Practice Guideline for the Care of Kidney Transplant Recipients. Nephrology (Carlton). 2012;17(3):204–14.

    Article  Google Scholar 

  201. US Organ Procurement and Transplantation Network and the Scientific Registry of Transplant Recipients. Table 1.9a: Immunosuppression Use by Organ in 2007 and 2008. http://www.ustransplant.org/annual_reports/current/109a_dh.htm. Accessed 20 Oct 2011.

  202. Clayton P, Excell L, Campbell S, McDonald S, Chadban S. Australia and New Zealand Dialysis and Transplant Registry 2010 Report. Transplantation, Chapter 8. http://www.anzdata.org.au/anzdata/AnzdataReport/33rdReport/Ch08.pdf. Accessed 20 Oct 2011.

  203. Miller LW, Wolford T, McBride LR, et al. Successful withdrawal of corticosteroids in heart transplantation. J Heart Lung Transplant. 1992;11(2 Pt 2):431–4.

    Google Scholar 

  204. Olivari MT, Jessen ME, Baldwin BJ, et al. Triple-drug immunosuppression with steroid discontinuation by six months after heart transplantation. J Heart Lung Transplant. 1995;14(1 Pt 1):127–35.

    Google Scholar 

  205. Kobashigawa JA, Stevenson LW, Brownfield ED, et al. Initial success of steroid weaning late after heart transplantation. J Heart Lung Transplant. 1992;11(2 Pt 2):428–30.

    Google Scholar 

  206. Teuteberg JJ, Shullo M, Zomak R, et al. Aggressive steroid weaning after cardiac transplantation is possible without the additional risk of significant rejection. Clin Transplant 2008; 22(6):730–7.

    Google Scholar 

  207. Yamani MH, Taylor DO, Czerr J, et al. Thymoglobulin induction and steroid avoidance in cardiac transplantation: results of a prospective, randomized, controlled study. Clin Transplant. 2008;22(1):76–81.

    Google Scholar 

  208. International Society of Heart and Lung Transplantation Guidelines for the Care of Heart Transplant Recipients 2010. http://www.ishlt.org/ContentDocuments/ISHLT_GL_TaskForce2_110810.pdf. Accessed 30 May 2012.

  209. Stehlik J, Edwards LB, Kucheryavaya AY, et al. The Registry of the International Society for Heart and Lung Transplantation: twenty-eighth adult heart transplant report–2011. J Heart Lung Transplant. 2011;30(10):1078–94.

    Article  PubMed  Google Scholar 

  210. Knoop C, Haverich A, Fischer S. Immunosuppressive therapy after human lung transplantation. Eur Respir J. 2004;23(1):159–71.

    Article  PubMed  CAS  Google Scholar 

  211. US Organ Procurement and Transplantation Network and the Scientific Registry of Transplant Recipients. Lung: recipients: immunosuppression use. http://www.ustransplant.org/annual_reports/current/iLU_Recipients_immuno.htm?o=6&g=2&c=16. Accessed 30 May 2012.

  212. Henry SD, Metselaar HJ, Van Dijck J, et al. Impact of steroids on hepatitis C virus replication in vivo and in vitro. Ann N Y Acad Sci. 2007;1110:439–47.

    Article  PubMed  CAS  Google Scholar 

  213. Moench C, Barreiros AP, Schuchmann M, et al. Tacrolimus monotherapy without steroids after liver transplantation: a prospective randomized double-blinded placebo-controlled trial. Am J Transplant. 2007;7(6):1616–23.

    Article  PubMed  CAS  Google Scholar 

  214. Weiler N, Thrun I, Hoppe-Lotichius M, et al. Early steroid-free immunosuppression with FK506 after liver transplantation: long-term results of a prospectively randomized double-blinded trial. Transplantation. 2010;90(12):1562–6.

    Article  PubMed  CAS  Google Scholar 

  215. The American Association for the Study of Liver Diseases. Practice guidelines. 2012. http://www.aasld.org/practiceguidelines/pages/default.aspx. Accessed 16 Jun 2012.

  216. Gastroenterology Society of Australia. GESA clinical updates and recommendations. http://www.gesa.org.au/professional.asp?cid=9&id=51. Accessed 16 Jun 2012.

  217. Vidhun JR, Sarwal MM. Corticosteroid avoidance in pediatric renal transplantation. Pediatr Nephrol. 2005;20(3):418–26.

    Article  PubMed  Google Scholar 

  218. Barletta GM, Kirk E, Gardner JJ, et al. Rapid discontinuation of corticosteroids in pediatric renal transplantation. Pediatr Transplant. 2009;13(5):571–8.

    Article  PubMed  CAS  Google Scholar 

  219. Lau KK, Berg GM, Schjoneman YG, et al. Extended experience with a steroid minimization immunosuppression protocol in pediatric renal transplant recipients. Pediatr Transplant. 2010;14(4):488–95.

    Article  PubMed  CAS  Google Scholar 

  220. Sarwal MM, Vidhun JR, Alexander SR, et al. Continued superior outcomes with modification and lengthened follow-up of a steroid-avoidance pilot with extended daclizumab induction in pediatric renal transplantation. Transplantation. 2003;76(9):1331–9.

    Article  PubMed  CAS  Google Scholar 

  221. Hocker B, Weber LT, Feneberg R, et al. Prospective, randomized trial on late steroid withdrawal in pediatric renal transplant recipients under cyclosporine microemulsion and mycophenolate mofetil. Transplantation. 2009;87(6):934–41.

    Article  PubMed  CAS  Google Scholar 

  222. Hocker B, Weber LT, Feneberg R, et al. Improved growth and cardiovascular risk after late steroid withdrawal: 2-year results of a prospective, randomised trial in paediatric renal transplantation. Nephrol Dial Transplant. 2010;25(2):617–24.

    Article  PubMed  Google Scholar 

  223. Leonard HC, O’Sullivan JJ, Dark JH. Long-term follow-up of pediatric cardiac transplant recipients on a steroid-free regime: the role of endomyocardial biopsy. J Heart Lung Transplant. 2000;19(5):469–72.

    Article  PubMed  CAS  Google Scholar 

  224. Leonard H, Hornung T, Parry G, et al. Pediatric cardiac transplant: results using a steroid-free maintenance regimen. Pediatr Transplant. 2003;7(1):59–63.

    Article  PubMed  CAS  Google Scholar 

  225. Singh TP, Faber C, Blume ED, et al. Safety and early outcomes using a corticosteroid-avoidance immunosuppression protocol in pediatric heart transplant recipients. J Heart Lung Transplant. 2010;29(5):517–22.

    Article  PubMed  Google Scholar 

  226. Janusinfo. Lakemedel och fosterskada. Prednisolone. http://www.janusinfo.se/v/Lakemedel-och-fosterpaverkan/?docid=2052. Accessed 2 Feb 2012.

  227. Briggs G, Freeman R, Yaffe S, editors. Drugs in pregnancy and lactation. 9th ed. Philadelphia: Lippincott Williams & Wilkins; 2011.

    Google Scholar 

  228. Park-Wyllie L, Mazzotta P, Pastuszak A, et al. Birth defects after maternal exposure to corticosteroids: prospective cohort study and meta-analysis of epidemiological studies. Teratology. 2000;62(6):385–92.

    Article  PubMed  CAS  Google Scholar 

  229. Saito J, Davis J, Wasnich R, et al. Users of low-dose glucocorticoids have increased bone loss rates: a longitudinal study. Calcif Tissue Int. 1995;57(2):115–9.

    Article  PubMed  CAS  Google Scholar 

  230. McWhinney BC, Briscoe SE, Ungerer JP, et al. Measurement of cortisol, cortisone, prednisolone, dexamethasone and 11-deoxycortisol with ultra high performance liquid chromatography-tandem mass spectrometry: application for plasma, plasma ultrafiltrate, urine and saliva in a routine laboratory. J Chromatogr B Analyt Technol Biomed Life Sci. 2010;878(28):2863–9.

    Article  PubMed  CAS  Google Scholar 

  231. Ionita IA, Fast DM, Akhlaghi F. Development of a sensitive and selective method for the quantitative analysis of cortisol, cortisone, prednisolone and prednisone in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci. 2009;877(8–9):765–72.

    PubMed  CAS  Google Scholar 

  232. Taylor RL, Grebe SK, Singh RJ. Quantitative, highly sensitive liquid chromatography-tandem mass spectrometry method for detection of synthetic corticosteroids. Clin Chem. 2004;50(12):2345–52.

    Article  PubMed  CAS  Google Scholar 

  233. Miura M, Satoh S, Kagaya H, et al. No impact of age on dose-adjusted pharmacokinetics of tacrolimus, mycophenolic acid and prednisolone 1 month after renal transplantation. Eur J Clin Pharmacol. 2009;65(10):1047–53.

    Article  PubMed  CAS  Google Scholar 

  234. Rocci ML Jr, Tietze KJ, Lee J, et al. The effect of cyclosporine on the pharmacokinetics of prednisolone in renal transplant patients. Transplantation. 1988;45(3):656–60.

    Article  PubMed  CAS  Google Scholar 

  235. Hollander AA, van Rooij J, Lentjes GW, et al. The effect of grapefruit juice on cyclosporine and prednisone metabolism in transplant patients. Clin Pharmacol Ther. 1995;57(3):318–24.

    Article  PubMed  CAS  Google Scholar 

  236. Frey BM, Seeberger M, Frey FJ. Pharmacokinetics of 3 prednisolone prodrugs: evidence of therapeutic inequivalence in renal transplant patients with rejection. Transplantation. 1985;39(3):270–4.

    Article  PubMed  CAS  Google Scholar 

  237. Chavatte C, Guest G, Proust V, et al. Glucocorticoid pharmacokinetics and growth retardation in children with renal transplants. Pediatr Nephrol. 2004;19(8):898–904.

    Article  PubMed  Google Scholar 

  238. Uribe M, Casian C, Rojas S, et al. Decreased bioavailability of prednisone due to antacids in patients with chronic active liver disease and in healthy volunteers. Gastroenterology. 1981;80(4):661–5.

    PubMed  CAS  Google Scholar 

  239. Tanner AR, Caffin JA, Halliday JW, et al. Concurrent administration of antacids and prednisone: effect on serum levels of prednisolone. Br J Clin Pharmacol. 1979;7(4):397–400.

    Article  PubMed  CAS  Google Scholar 

  240. Lee DA, Taylor GM, Walker JG, et al. The effect of concurrent administration of antacids on prednisolone absorption. Br J Clin Pharmacol. 1979;8(1):92–4.

    Article  PubMed  CAS  Google Scholar 

  241. Bartoszek M, Brenner AM, Szefler SJ. Prednisolone and methylprednisolone kinetics in children receiving anticonvulsant therapy. Clin Pharmacol Ther. 1987;42(4):424–32.

    Article  PubMed  CAS  Google Scholar 

  242. Olivesi A. Modified elimination of prednisolone in epileptic patients on carbamazepine monotherapy, and in women using low-dose oral contraceptives. Biomed Pharmacother. 1986;40(8):301–8.

    PubMed  CAS  Google Scholar 

  243. Zurcher RM, Frey BM, Frey FJ. Impact of ketoconazole on the metabolism of prednisolone. Clin Pharmacol Ther. 1989;45(4):366–72.

    Article  PubMed  CAS  Google Scholar 

  244. Varis T, Kivisto KT, Neuvonen PJ. The effect of itraconazole on the pharmacokinetics and pharmacodynamics of oral prednisolone. Eur J Clin Pharmacol. 2000;56(1):57–60.

    Article  PubMed  CAS  Google Scholar 

  245. Denning DW, Van Wye JE, Lewiston NJ, et al. Adjunctive therapy of allergic bronchopulmonary aspergillosis with itraconazole. Chest. 1991;100(3):813–9.

    Article  PubMed  CAS  Google Scholar 

  246. Legler UF. Impairment of prednisolone disposition in patients with Graves’ disease taking methimazole. J Clin Endocrinol Metab. 1988;66(1):221–3.

    Article  PubMed  CAS  Google Scholar 

  247. Sarma GR, Kailasam S, Nair NG, et al. Effect of prednisolone and rifampin on isoniazid metabolism in slow and rapid inactivators of isoniazid. Antimicrob Agents Chemother. 1980;18(5):661–6.

    Article  PubMed  CAS  Google Scholar 

  248. Klinenberg JR, Miller F. Effect of corticosteroids on blood salicylate concentration. JAMA. 1965;194(6):601–4.

    Article  PubMed  CAS  Google Scholar 

  249. Imani S, Jusko WJ, Steiner R. Diltiazem retards the metabolism of oral prednisone with effects on T-cell markers. Pediatr Transplant. 1999;3(2):126–30.

    Article  PubMed  CAS  Google Scholar 

  250. Finkenbine RD, Frye MD. Case of psychosis due to prednisone-clarithromycin interaction. Gen Hosp Psychiatry. 1998;20(5):325–6.

    Article  PubMed  CAS  Google Scholar 

  251. Finkenbine R, Gill HS. Case of mania due to prednisone-clarithromycin interaction. Can J Psychiatry. 1997;42(7):778.

    PubMed  CAS  Google Scholar 

  252. Widmer P, Maibach R, Kunzi UP, et al. Diuretic-related hypokalaemia: the role of diuretics, potassium supplements, glucocorticoids and beta 2-adrenoceptor agonists. Results from the comprehensive hospital drug monitoring programme, berne (CHDM). Eur J Clin Pharmacol. 1995;49(1–2):31–6.

    PubMed  CAS  Google Scholar 

  253. Ojima M, Satoh K, Gomibuchi T, et al. The inhibitory effects of glycyrrhizin and glycyrrhetinic acid on the metabolism of cortisol and prednisolone: in vivo and in vitro studies (in Japanese). Nihon Naibunpi Gakkai Zasshi. 1990;66(5):584–96.

    PubMed  CAS  Google Scholar 

  254. Chen MF, Shimada F, Kato H, et al. Effect of oral administration of glycyrrhizin on the pharmacokinetics of prednisolone. Endocrinol Jpn. 1991;38(2):167–74.

    Article  PubMed  CAS  Google Scholar 

  255. Frey BM, Schaad HJ, Frey FJ. Pharmacokinetic interaction of contraceptive steroids with prednisone and prednisolone. Eur J Clin Pharmacol. 1984;26(4):505–11.

    Article  PubMed  CAS  Google Scholar 

  256. Legler UF, Benet LZ. Marked alterations in dose-dependent prednisolone kinetics in women taking oral contraceptives. Clin Pharmacol Ther. 1986;39(4):425–9.

    Article  PubMed  CAS  Google Scholar 

  257. Seidegard J, Simonsson M, Edsbacker S. Effect of an oral contraceptive on the plasma levels of budesonide and prednisolone and the influence on plasma cortisol. Clin Pharmacol Ther. 2000;67(4):373–81.

    Article  PubMed  CAS  Google Scholar 

  258. Department of Health. Immunisation against infectious disease 2006. In: Salisbury D, Ramsay M, Noakes K, editors. London: The Stationery Office; 2012.

  259. Weil J, Langman MJ, Wainwright P, et al. Peptic ulcer bleeding: accessory risk factors and interactions with non-steroidal anti-inflammatory drugs. Gut. 2000;46(1):27–31.

    Article  PubMed  CAS  Google Scholar 

  260. Piper JM, Ray WA, Daugherty JR, et al. Corticosteroid use and peptic ulcer disease: role of nonsteroidal anti-inflammatory drugs. Ann Intern Med. 1991;114(9):735–40.

    Article  PubMed  CAS  Google Scholar 

  261. Carson JL, Strom BL, Schinnar R, et al. The low risk of upper gastrointestinal bleeding in patients dispensed corticosteroids. Am J Med. 1991;91(3):223–8.

    Article  PubMed  CAS  Google Scholar 

  262. Rae SA, Williams IA, English J, et al. Alteration of plasma prednisolone levels by indomethacin and naproxen. Br J Clin Pharmacol. 1982;14(3):459–61.

    Article  PubMed  CAS  Google Scholar 

  263. Patial RK, Bansal SK, Kashyap S, et al. Drug interaction-induced osteonecrosis of femoral head. J Assoc Physicians India. 1990;38(6):446–7.

    PubMed  CAS  Google Scholar 

  264. Busse KH, Formentini E, Alfaro RM, et al. Influence of antiretroviral drugs on the pharmacokinetics of prednisolone in HIV-infected individuals. J Acquir Immune Defic Syndr. 2008;48(5):561–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from a National Health and Medical Research Council (NHMRC) project grant #511109. K. Barraclough is currently supported by a NHMRC medical/dental postgraduate scholarship. C. Staatz is currently supported by a Lions Medical Research Fellowship. The authors have no conflicts of interest to declare that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Troels K. Bergmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergmann, T.K., Barraclough, K.A., Lee, K.J. et al. Clinical Pharmacokinetics and Pharmacodynamics of Prednisolone and Prednisone in Solid Organ Transplantation. Clin Pharmacokinet 51, 711–741 (2012). https://doi.org/10.1007/s40262-012-0007-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-012-0007-8

Keywords

Navigation