Skip to main content
Log in

A Re-evaluation and Validation of Ontogeny Functions for Cytochrome P450 1A2 and 3A4 Based on In Vivo Data

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

An Erratum to this article was published on 13 May 2015

Abstract

Background and Objectives

Current cytochrome P450 (CYP) 1A2 and 3A4 ontogeny profiles, which are derived mainly from in vitro studies and incorporated in paediatric physiologically based pharmacokinetic models, have been reported to under-predict the in vivo clearances of some model substrates in neonates and infants.

Method

We report ontogeny functions for these enzymes as paediatric to adult relative intrinsic clearance per mg of hepatic microsomal protein, based on the deconvolution of in vivo pharmacokinetic data and by accounting for the impact of known clinical condition on hepatic unbound intrinsic clearance for caffeine and theophylline as markers of CYP1A2 activity and for midazolam as a marker of CYP3A4 activity.

Results

The function for CYP1A2 describes an increase in relative intrinsic metabolic clearance from birth to 3 years followed by a decrease to adult values. The function for CYP3A4 describes a continuous rise in relative intrinsic metabolic clearance, reaching the adult value at about 1.3 years of age. The new models were validated by showing improved predictions of the systemic clearances of ropivacaine (major CYP1A2 substrate; minor CYP3A4 substrate) and alfentanil (major CYP3A4 substrate) compared with those using a previous ontogeny function based on in vitro data (alfentanil: mean squared prediction error 3.0 vs. 6.8; ropivacaine: mean squared prediction error 2.3 vs.14.2).

Conclusions

When implementing enzyme ontogeny functions, it is important to consider potential confounding factors (e.g. disease) that may affect the physiological conditions of the patient and, hence, the prediction of net in vivo clearance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Barrett JS, Della Casa Alberighi O, Laer S, Meibohm B. Physiologically based pharmacokinetic (PBPK) modeling in children. Clin Pharmacol Ther. 2012;92(1):40–9.

    Article  CAS  PubMed  Google Scholar 

  2. Huang SM, Abernethy DR, Wang Y, Zhao P, Zineh I. The utility of modeling and simulation in drug development and regulatory review. J Pharm Sci. 2013;102(9):2912–23.

    Article  CAS  PubMed  Google Scholar 

  3. Leong R, Vieira ML, Zhao P, Mulugeta Y, Lee CS, Huang SM, et al. Regulatory experience with physiologically based pharmacokinetic modeling for pediatric drug trials. Clin Pharmacol Ther. 2012;91(5):926–31.

    Article  CAS  PubMed  Google Scholar 

  4. Johnson TN, Rostami-Hodjegan A, Tucker GT. Prediction of the clearance of eleven drugs and associated variability in neonates, infants and children. Clin Pharmacokinet. 2006;45(9):931–56.

    Article  CAS  PubMed  Google Scholar 

  5. Bjorkman S. Prediction of drug disposition in infants and children by means of physiologically based pharmacokinetic (PBPK) modelling: theophylline and midazolam as model drugs. Br J Clin Pharmacol. 2005;59(6):691–704.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Edginton AN, Schmitt W, Voith B, Willmann S. A mechanistic approach for the scaling of clearance in children. Clin Pharmacokinet. 2006;45(7):683–704.

    Article  CAS  PubMed  Google Scholar 

  7. Tsamandouras N, Rostami-Hodjegan A, Aarons L. Combining the “bottom-up” and “top-down” approaches in pharmacokinetic modelling: fitting PBPK models to observed clinical data. Br J Clin Pharmacol. Epub 2013 Sep 3.

  8. Anderson B, Holford N. Evaluation of a morphine maturation model for the prediction of morphine clearance in children [letter]. Br J Clin Pharmacol. 2011;72(3):518–20 (author reply 21–3).

    Google Scholar 

  9. Anderson BJ, Holford NH. Mechanistic basis of using body size and maturation to predict clearance in humans. Drug Metab Pharmacokinet. 2009;24(1):25–36.

    Article  CAS  PubMed  Google Scholar 

  10. Anderson BJ, Larsson P. A maturation model for midazolam clearance. Paediatr Anaesth. 2011;21(3):302–8.

    Article  PubMed  Google Scholar 

  11. Ince I, de Wildt SN, Wang C, Peeters MY, Burggraaf J, Jacqz-Aigrain E, et al. A novel maturation function for clearance of the cytochrome P450 3A substrate midazolam from preterm neonates to adults. Clin Pharmacokinet. 2013;52(7):555–65.

    Google Scholar 

  12. Anderson BJ, Woollard GA, Holford NH. A model for size and age changes in the pharmacokinetics of paracetamol in neonates, infants and children. Br J Clin Pharmacol. 2000;50(2):125–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Ha HR, Chen J, Freiburghaus AU, Follath F. Metabolism of theophylline by cDNA-expressed human cytochromes P-450. Br J Clin Pharmacol. 1995;39(3):321–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Ha HR, Chen J, Krahenbuhl S, Follath F. Biotransformation of caffeine by cDNA-expressed human cytochromes P-450. Eur J Clin Pharmacol. 1996;49(4):309–15.

    Article  CAS  PubMed  Google Scholar 

  15. Shimada T, Yamazaki H, Mimura M, Inui Y, Guengerich FP. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther. 1994;270(1):414–23.

    CAS  PubMed  Google Scholar 

  16. Sonnier M, Cresteil T. Delayed ontogenesis of CYP1A2 in the human liver. Eur J Biochem. 1998;251(3):893–8.

    Article  CAS  PubMed  Google Scholar 

  17. Tateishi T, Nakura H, Asoh M, Watanabe M, Tanaka M, Kumai T, et al. A comparison of hepatic cytochrome P450 protein expression between infancy and postinfancy. Life Sci. 1997;61(26):2567–74.

    Article  CAS  PubMed  Google Scholar 

  18. Treluyer JM, Bowers G, Cazali N, Sonnier M, Rey E, Pons G, et al. Oxidative metabolism of amprenavir in the human liver. Effect of the CYP3A maturation. Drug Metab Dispos. 2003;31(3):275–81.

    Article  CAS  PubMed  Google Scholar 

  19. Hines RN. Ontogeny of human hepatic cytochromes P450. J Biochem Mol Toxicol. 2007;21(4):169–75.

    Article  CAS  PubMed  Google Scholar 

  20. Lacroix D, Sonnier M, Moncion A, Cheron G, Cresteil T. Expression of CYP3A in the human liver-evidence that the shift between CYP3A7 and CYP3A4 occurs immediately after birth. Eur J Biochem. 1997;247(2):625–34.

    Article  CAS  PubMed  Google Scholar 

  21. Stevens JC, Hines RN, Gu C, Koukouritaki SB, Manro JR, Tandler PJ, et al. Developmental expression of the major human hepatic CYP3A enzymes. J Pharmacol Exp Ther. 2003;307(2):573–82.

    Article  CAS  PubMed  Google Scholar 

  22. Morse M, Cassels D, Schlutz F. Blood volumes of normal children. Am J Physiol. 1947;151:448–58.

    CAS  PubMed  Google Scholar 

  23. Rhodin MM, Anderson BJ, Peters AM, Coulthard MG, Wilkins B, Cole M, et al. Human renal function maturation: a quantitative description using weight and postmenstrual age. Pediatr Nephrol. 2009;24(1):67–76.

    Article  PubMed  Google Scholar 

  24. Alcorn J, McNamara PJ. Ontogeny of hepatic and renal systemic clearance pathways in infants: part II. Clin Pharmacokinet. 2002;41(13):1077–94.

    Article  CAS  PubMed  Google Scholar 

  25. Cartlidge PH, Rutter N. Serum albumin concentrations and oedema in the newborn. Arch Dis Child. 1986;61(7):657–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Reading RF, Ellis R, Fleetwood A. Plasma albumin and total protein in preterm babies from birth to eight weeks. Early Hum Dev. 1990;22(2):81–7.

    Article  CAS  PubMed  Google Scholar 

  27. Laudy JA, Janssen MM, Struyk PC, Stijnen T, Wallenburg HC, Wladimiroff JW. Fetal liver volume measurement by three-dimensional ultrasonography: a preliminary study. Ultrasound Obstet Gynecol. 1998;12(2):93–6.

    Article  CAS  PubMed  Google Scholar 

  28. Barter ZE, Chowdry JE, Harlow JR, Snawder JE, Lipscomb JC, Rostami-Hodjegan A. Covariation of human microsomal protein per gram of liver with age: absence of influence of operator and sample storage may justify interlaboratory data pooling. Drug Metab Dispos. 2008;36(12):2405–9.

    Article  CAS  PubMed  Google Scholar 

  29. Arlander E, Ekstrom G, Alm C, Carrillo JA, Bielenstein M, Bottiger Y, et al. Metabolism of ropivacaine in humans is mediated by CYP1A2 and to a minor extent by CYP3A4: an interaction study with fluvoxamine and ketoconazole as in vivo inhibitors. Clin Pharmacol Ther. 1998;64(5):484–91.

    Article  CAS  PubMed  Google Scholar 

  30. Kharasch ED, Russell M, Mautz D, Thummel KE, Kunze KL, Bowdle A, et al. The role of cytochrome P450 3A4 in alfentanil clearance. Implications for interindividual variability in disposition and perioperative drug interactions. Anesthesiology. 1997;87(1):36–50.

    Article  CAS  PubMed  Google Scholar 

  31. Durward A, Mayer A, Skellett S, Taylor D, Hanna S, Tibby SM, et al. Hypoalbuminaemia in critically ill children: incidence, prognosis, and influence on the anion gap. Arch Dis Child. 2003;88(5):419–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Horowitz IN, Tai K. Hypoalbuminemia in critically ill children. Arch Pediatr Adolesc Med. 2007;161(11):1048–52.

    Article  PubMed  Google Scholar 

  33. Ulldemolins M, Roberts JA, Rello J, Paterson DL, Lipman J. The effects of hypoalbuminaemia on optimizing antibacterial dosing in critically ill patients. Clin Pharmacokinet. 2011;50(2):99–110.

    Article  CAS  PubMed  Google Scholar 

  34. Salive ME, Cornoni-Huntley J, Phillips CL, Guralnik JM, Cohen HJ, Ostfeld AM, et al. Serum albumin in older persons: relationship with age and health status. J Clin Epidemiol. 1992;45(3):213–21.

    Article  CAS  PubMed  Google Scholar 

  35. Vincent JL, Dubois MJ, Navickis RJ, Wilkes MM. Hypoalbuminemia in acute illness: is there a rationale for intervention? A meta-analysis of cohort studies and controlled trials. Ann Surg. 2003;237(3):319–34.

    PubMed Central  PubMed  Google Scholar 

  36. Bonnet F, Richard C, Glaser P, Lafay M, Guesde R. Changes in hepatic flow induced by continuous positive pressure ventilation in critically ill patients. Crit Care Med. 1982;10(11):703–5.

    Article  CAS  PubMed  Google Scholar 

  37. Bamat N, Millar D, Suh S, Kirpalani H. Positive end expiratory pressure for preterm infants requiring conventional mechanical ventilation for respiratory distress syndrome or bronchopulmonary dysplasia. Cochrane Database Syst Rev. 2012;1:CD004500.

  38. Gabrielsson J, Weiner D. Pharmacokinetic & pharmacodynamic data analysis: concepts and applications. 4th ed. Sweden: Swedish Pharmaceutical Press; 2007.

    Google Scholar 

  39. Sheiner LB, Beal SL. Some suggestions for measuring predictive performance. J Pharmacokinet Biopharm. 1981;9(4):503–12.

    Article  CAS  PubMed  Google Scholar 

  40. Ekstrom G, Gunnarsson UB. Ropivacaine, a new amide-type local anesthetic agent, is metabolized by cytochromes P450 1A and 3A in human liver microsomes. Drug Metab Dispos. 1996;24(9):955–61.

    CAS  PubMed  Google Scholar 

  41. DrugBank. Ropivacaine. http://www.drugbank.ca/drugs/DB00296#properties. Accessed 19 Dec 2013.

  42. Machavaram KK, Almond LM, Rostami-Hodjegan A, Gardner I, Jamei M, Tay S, et al. A physiologically-based pharmacokinetic modelling approach to predict disease-drug interactions: suppression of CYP3A by IL-6. Clin Pharmacol Ther. 2013;94(2):260–8.

    Article  CAS  PubMed  Google Scholar 

  43. Azam YJ, Machavaram KK, Rostami-Hodjegan A. The modulating effect of endogenous substances on drug metabolising enzymes and implications for inter-individual variability and in vitro-in vivo extrapolation to predict disease-drug interactions. Curr Drug Metab. In Press.

  44. Williams JA, Ring BJ, Cantrell VE, Jones DR, Eckstein J, Ruterbories K, et al. Comparative metabolic capabilities of CYP3A4, CYP3A5, and CYP3A7. Drug Metab Dispos. 2002;30(8):883–91.

    Article  CAS  PubMed  Google Scholar 

  45. Le Guennec JC, Billon B. Delay in caffeine elimination in breast-fed infants. Pediatrics. 1987;79(2):264–8.

    PubMed  Google Scholar 

  46. Lambert GH, Schoeller DA, Kotake AN, Flores C, Hay D. The effect of age, gender, and sexual maturation on the caffeine breath test. Dev Pharmacol Ther. 1986;9(6):375–88.

    CAS  PubMed  Google Scholar 

  47. Levitsky LL, Schoeller DA, Lambert GH, Edidin DV. Effect of growth hormone therapy in growth hormone-deficient children on cytochrome P-450-dependent 3-N-demethylation of caffeine as measured by the caffeine 13CO2 breath test. Dev Pharmacol Ther. 1989;12(2):90–5.

    CAS  PubMed  Google Scholar 

  48. Peeters MY, Prins SA, Knibbe CA, Dejongh J, Mathot RA, Warris C, et al. Pharmacokinetics and pharmacodynamics of midazolam and metabolites in nonventilated infants after craniofacial surgery. Anesthesiology. 2006;105(6):1135–46.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors wish to thank Eleanor Savill for her assistance in preparing the manuscript for submission.

Conflict of interest

Farzaneh Salem, Khaled Abduljalil and Trevor Johnson are employees of Simcyp Limited (a Certara company). Geoffrey Tucker is an employee of Simcyp Limited (a Certara company) and an Emeritus Professor of the University of Sheffield. Amin Rostami-Hodjegan is an employee of the University of Manchester seconded part-time to Simcyp Limited (a Certara company). Simcyp’s research is funded by a consortium of pharma companies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin Rostami-Hodjegan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 319 kb)

Supplementary material 2 (TIFF 3397 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salem, F., Johnson, T.N., Abduljalil, K. et al. A Re-evaluation and Validation of Ontogeny Functions for Cytochrome P450 1A2 and 3A4 Based on In Vivo Data. Clin Pharmacokinet 53, 625–636 (2014). https://doi.org/10.1007/s40262-014-0140-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-014-0140-7

Keywords

Navigation