Skip to main content
Log in

Vesicle-associated urokinase plasminogen activator promotes invasion in prostate cancer cell lines

  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

The ability of a cell to modify the extracellular matrix is important in several pathophysiological alterations including tumorigenesis. Cell transformation is accompanied by changes in the surrounding stroma as a result of the action of specific proteases such as the urokinase plasminogen activator (uPA), which has been associated with invasive potential in many tumor types. In this study, we analyzed the release of vesicle-associated uPA by the aggressive prostatic carcinoma cell line PC3 and the implications of this release for the invasive behaviour of prostatic tumor cells. Zymography and Western blot analysis revealed the presence of vesicle-associated uPA in the high-molecular weight form. Vesicles adhered to and degraded both collagen IV and reconstituted basal membrane (Matrigel), and plasminogen enhanced the degradation in a dose-dependent manner. Addition of membrane vesicles shed by PC3 cells to cultures of the poorly invasive prostate cancer cell line LnCaP enhanced the adhesive and invasive capabilities of the latter, suggesting a mechanism involving substrate recognition and degradation. Together, these findings indicate that membrane vesicles can promote tumor invasion and point to the important role of vesicle-associated uPA in the extracellular compartment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Reich E. Activation of plasminogen: a general mechanism for producing localized extracellular proteolysis. In Berlin RD, Hermann H, Lepow IH, Tanzer JM (eds): Molecular Basis of Biological Degradative Processes. New York: Academic Press 1978; 155–69.

    Google Scholar 

  2. Mignatti P, Rifkin DB. Biology and biochemistry of proteinases in tumor invasion. Physiol Rev 1993; 7: 161–95.

    Google Scholar 

  3. Basbaum CB, Werb Z. Focalized proteolysis: spatial and temporal regulation of extracellular matrix degradation at the cell surface. Curr Opin Cell Biol 1996; 8: 731–8.

    Article  PubMed  CAS  Google Scholar 

  4. Ciambrone GJ, McKeown-Longo PJ. Plasminogen activator inhibitor type I stabilized vitronectin-dependent adhesion in HT1080 cells. J Cell Biol 1990; 111: 2183–95.

    Article  PubMed  CAS  Google Scholar 

  5. Waltz DA, Chapman HA. Reversible cellular adhesion to vitronectin linked to urokinase receptor occupancy. J Biol Chem 1994; 269: 14746–50.

    PubMed  CAS  Google Scholar 

  6. Cubellis MV, Andreasen P, Ragno P, Mayer M, Dano K, Blasi F. Accessibility of receptor-bound urokinase to type-1 plasminogen activator inhibitor. Proc Natl Acad Sci USA 1989; 86: 4828–32.

    Article  PubMed  CAS  Google Scholar 

  7. Pollanen J, Vaheri A, Tapiovaara H et al. Prourokinase activation on the surface of human rhabdomyosarcoma cells: Localization and inactivation of newly formed urokinase-type plasminogen activator by recombinant class 2 plasminogen activator inhibitor. Proc Natl Acad Sci USA 1990; 87: 2230–4.

    Article  PubMed  CAS  Google Scholar 

  8. Danø K, Andreasen IA, GrØndal-Hansen J et al. Plasminogen activators tissue degradation and cancer. Adv Cancer Res 1985; 44: 139–266.

    Article  PubMed  Google Scholar 

  9. Mackay AR, Hartlzer JL, Pelina M, Thorgeirsson UP. Studies on the ability of 65 kDa and 92 kDa tumor cell gelatinases to degrade type IV collagen. J Biol Chem 1990; 265: 21929–34.

    PubMed  CAS  Google Scholar 

  10. Hoosein NM, Boyd DD, Hollas WJ et al. Involvement of urokinase and its receptor in the invasiveness of human prostatic carcinoma cell lines. Cancer Comm 1991; 3: 255–64.

    CAS  Google Scholar 

  11. Mackay AR, Ballin M, Pelina MD et al. Effect of phorbol ester and cytokines on matrix metalloproteinases and tissue inhibitor of metalloproteinase expression in tumor and normal cell lines. Invas Metast 1992; 12: 168–84.

    CAS  Google Scholar 

  12. Festuccia C, Dolo V, Guerra F et al. Plasminogen activator system modulates invasive capacity and proliferation in prostatic tumor cells. Clin Exp Metastasis 1998; 16: 513–28.

    Article  PubMed  CAS  Google Scholar 

  13. Taylor DD, Black PH. Shedding of plasma membrane fragments. Neoplastic and developmental importance. In Steinberg M (ed): Developmental Biology. New York: Plenum Press 1986; 33–57.

    Google Scholar 

  14. Dolo V, D'Ascenzo S, Violini S et al. Matrix-degrading proteinases are shed in membrane vesicles by ovarian cancer cells in vivo and in vitro. Clin Exp Metastasis 1999; 17: 131–40.

    Article  PubMed  CAS  Google Scholar 

  15. Van Blitterswijk WJ, Dever G, Krol J, Emmelot P. Comparative lipid analysis of purified plasma membranes and shed extracellular membrane vesicles from normal murine thymocytes and leukemia GSRL cells. Biochem Biophys Acta 1986; 688: 495–504.

    Google Scholar 

  16. Dolo V, Ginestra A, Ghersi G et al. Human breast carcinoma cells cultured in the presence of serum shed membrane vesicles rich in gelatinolytic activities. J Submicrosc Cytol Pathol 1994; 26: 173–80.

    PubMed  CAS  Google Scholar 

  17. Ginestra A, Monea S, Seghezzi G et al. Urokinase plasminogen activator and gelatinases are associated with membrane vesicles shed by human HT1080 fibrosarcoma cells. J Biol Chem 1997; 272: 17216–21.

    Article  PubMed  CAS  Google Scholar 

  18. Dolo V, Ginestra A, Cassarà D et al. Selective localization of matrix metalloproteinase 9, βl integrins, and human lymphocyte antigen class I molecules on membrane vesicles shed by 8701-BC breast carcinoma cells. Cancer Res 1998; 58: 4468–74.

    PubMed  CAS  Google Scholar 

  19. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72: 248–54.

    Article  PubMed  CAS  Google Scholar 

  20. Nakajima M, Welch DR, Belloni PN et al. Degradation of basement membrane type IV collagen and lung subendothelial matrix by rat mammary adenocarcinoma cell clones of differing metastatic potentials. Cancer Res 1987; 47: 4869–76.

    PubMed  CAS  Google Scholar 

  21. Albini A, Iwamoto Y, Kleinman HK et al. A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res 1987; 47: 3239–45.

    PubMed  CAS  Google Scholar 

  22. Dolo V, Adobati E, Canevari S et al. Membrane vesicles shed into extracellular medium by human breast carcinoma cells carry tumorassociated surface antigens. Clin Exp Metastasis 1995; 13: 277–86.

    Article  PubMed  CAS  Google Scholar 

  23. Poste G, Nicolson GL. Arrest and metastasis of blood-borne tumor cells are modified by fusion of plasma membrane vesicles from highly metastatic cells. Proc Natl Acad Sci USA 1980; 77: 399–403.

    Article  PubMed  CAS  Google Scholar 

  24. Ginestra A, Miceli D, Dolo V et al. Membrane vesicles in ovarian cancer fluids: A new potential marker. Anticancer Res 1999; 19: 3439–45.

    PubMed  CAS  Google Scholar 

  25. Ellis V, Scully M, Kakkar VV. Plasminogen activation initiated by single chain urokinase type plasminogen activator. Potentiation by U937 monocytes. J Biol Chem 1989; 264: 2184–8.

    Google Scholar 

  26. Festuccia C, Vicentini C, di Pasquale AB et al. Plasminogen activator activities in short-term tissue cultures of benign prostatic hyperplasia and prostatic carcinoma. Oncol Res 1995; 7: 131–8.

    PubMed  CAS  Google Scholar 

  27. Murphy G, Stanton H, Cowell S et al. Mechanisms for pro-matrix metalloproteinase activation. APMIS 1999; 107: 38–44.

    Article  PubMed  CAS  Google Scholar 

  28. Yebra M, Parry GCN, Stromblad S et al. Requirement of receptorbound urokinase-type plasminogen activator for integrin alphavbeta5-directed cell migration. J Biol Chem 1996; 271: 29393–9.

    Article  PubMed  CAS  Google Scholar 

  29. Martin GR, Timpl R. Laminin and other basement membrane components. Annu Rev Cell Biol 1987; 3: 57–85.

    Article  PubMed  CAS  Google Scholar 

  30. Iwamoto Y, Graf J, Sasaki M et al. A synthetic pentapeptide from the B1 chain of laminin is chemotactic for B16F10 melanoma cells. J Cell Physiol 1988; 134: 287–91.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Angelucci, A., D'Ascenzo, S., Festuccia, C. et al. Vesicle-associated urokinase plasminogen activator promotes invasion in prostate cancer cell lines. Clin Exp Metastasis 18, 163–170 (2000). https://doi.org/10.1023/A:1006778000173

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006778000173

Navigation