Skip to main content
Log in

Thiomorpholine and morpholine oxidation by a cytochrome P450 in Mycobacterium aurum MO1. Evidence of the intermediates by in situ 1H NMR

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Spectrophotometric assays of Mycobacterium aurum MO1 cells extracts gave evidence of a soluble cytochrome P450, involved in the degradative pathway of morpholine, a waste product from the chemical industry. In order to get further information, the kinetics of the biodegradation of the sulfur analogue thiomorpholine was monitored by using in situ nuclear magnetic resonance (NMR). This technique allowed the identification of two intermediates: the sulfoxide of thiomorpholine resulting from S-oxidation and thiodiglycolic acid owing to ring cleavage. The S-oxidation (S → SO) represents one of the well-known reactions catalyzed by cytochromes P450. The inhibitory effect of metyrapone, a cytochrome P450 inhibitor, on the thiomorpholine and morpholine degradative abilities of M. aurum MO1 confirmed the involvement of a cytochrome P450. These results and the decrease of the rate of formation of the first intermediate during the morpholine degradation, 2-(2-aminoethoxy) acetate, proved the key role of the cytochrome P450 in the early events of the biodegradation, i.e, in the C–-N bond cleavage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anon (1989) Final report on the safety assessment of morpholine. J. Amer. Coll. Toxicol. 8: 707–748

    Google Scholar 

  • Asperger O, Wirkner K & Kleber HP (1990) Occurrence of cytochrome P-450 in Rhodococci. Biocatalysis 4: 59–65

    Google Scholar 

  • Asperger O & Kleber HP (1991) Distribution and diversity of bacterial cytochrome P450. In: Ruckpaul K & Rein H (Ed) Frontiers in Biotransformation, Vol. 4 (pp 1–53)

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254

    Google Scholar 

  • Cech JS, Hartman P, Slosarek M & Chudoba J (1988) Isolation and identification of a morpholine-degrading bacterium. Appl. Environ. Microbiol. 54: 619–621

    Google Scholar 

  • Combourieu B, Besse P, Sancelme M, Veschambre H, Delort AM, Poupin P & Truffaut N (1998) Morpholine degradation pathway of Mycobacterium aurum MO1: direct evidence of intermediates by in situ 1H nuclear magnetic resonance. Appl. Environ. Microbiol. 64: 153–158

    Google Scholar 

  • Dmitrenko GN, Gvozdyak PI & Udod VM (1987) Selection of destructor microorganisms for heterocyclic xenobiotics. Khimiya i Teknologiya Vody 9: 442–445

    Google Scholar 

  • Dmitrenko GN & Gvozdyak PI (1988) Destruction of morpholine by mycobacteria. In: Proceedings of Conference on Microbiological Methods for Protecting the Environment. Puschino, USSR: Centre for Biological Research

    Google Scholar 

  • Enzmann H, Zerban H, Kopp-Schnelder A, Loser E & Bannasch P (1995) Effects of low doses of N-nitrosomorpholine on the development of early stages of hepatocarcinogenesis. Carcinogenesis 16: 1513–1518

    Google Scholar 

  • Fulco AJ (1991) P-450BM−3 and other inducible bacterial P-450 cytochromes: biochemistry and regulation. Annu. Rev. Pharmacol. Toxicol. 31: 177–203

    Google Scholar 

  • Gallego MT, Brunet E & Ruano JLG (1993) Conformational analysis of methylthiazanes: the problem of the Me-C-Me gauche interaction. J. Org. Chem. 58: 3905–3911

    Google Scholar 

  • Guengerich FP (1990a) Enzymatic oxidation of xenobiotic chemicals. Biochem. Mol. Biol. 25: 97–153

    Google Scholar 

  • Guengerich FP (1990b) Chemical mechanisms of cytochromes P-450 catalysis. Asia Pacific J. Pharmacol. 5: 253–268

    Google Scholar 

  • Horii M, Ishizaki T, Paik SY, Manome T & Murooka Y (1990) An operon containing the genes for cholesterol oxidase and a cytochrome P450 like protein from Streptomyces sp. J. Bacteriol. 172: 3644–3653

    Google Scholar 

  • Jefcoate CR (1986) Cytochrome P-450 enzymes in sterol biosynthesis and metabolism. In: Ortiz de Montellano PR (Ed) Cytochromes P-450, Structure, Mechanism and Biochemistry. Plenum Press, New York (pp 387–428)

    Google Scholar 

  • Karlson U, Dwyer DF, Hooper SW, Moore ERB, Timmis KN & Eltis LD (1993) Two independently regulated cytochromes P-450 in a Rhodococcus rhodochrous strain that degrades 2-ethoxyethanol and 4-methoxybenzoate. J. Bacteriol. 175: 1467–1474

    Google Scholar 

  • Knapp JS, Callely AG & Mainprize J (1982) The microbial degradation of morpholine. J. Appl. Bacteriol. 52: 5–13

    Google Scholar 

  • Knapp JS & Brown VR (1988) Morpholine biodegradation. Int. Biode. 25: 299–306

    Google Scholar 

  • Knapp JS, Emtiazi G, Yusoff S & Heron ST (1996) The utilization of morpholine as a sole nitrogen source by Gram-negative bacteria. Lett. Appl. Microbiol. 23: 334–338

    Google Scholar 

  • Madesclaire M (1986) Synthesis of sulfoxides by oxidation of thioethers. Tetrahedron 42: 5459–5495

    Google Scholar 

  • Madesclaire M (1988) Reduction of sulfoxides to thioethers. Tetrahedron 44: 6537–6580

    Google Scholar 

  • Mazure N & Truffaut N (1994) Degradation of morpholine by Mycobacterium aurum MO1. Can. J. Microbiol. 40: 751–765

    Google Scholar 

  • Mjos K (1978) Cyclic amines. In: Kirk-Othmer Encyclopedia of Chemical Technology, Vol. 2, 3rd edn. (pp 298–308). Wiley Interscience, New York

    Google Scholar 

  • Nagy I, Schoofs G, Compernolle F, Proost P, Vanderleyden J & de Mot R (1995) Degradation of the thiocarbamate herbicide EPTC (S-ethyl dipropylcarbamothioate) and biosafening by Rhodococcus sp. strain NI86/21 involve an inducible cytochrome P-450 system and aldehyde dehydrogenase. J. Bacteriol. 177: 676–687

    Google Scholar 

  • Oldham HG (1989) Interactions of sulphur-containing xenobiotics with cytochrome(s) P-450 and glucuronyl transferases. In: Danami LA (Ed) Sulfur Containing Drugs and Related Organic Compounds. Chemistry, Biochemistry and Toxicology, Vol. 2, Part B (pp 9–45). Ellis Horwood Limited, Chichester

    Google Scholar 

  • Omer CA, Lenstra R, Little PJ, Dean C, Tepperman JM, Leto KJ, Romesser JA & O'Keefe DP (1990) Genes for two herbicide-inducible cytochromes P-450 from Streptomyces griseolus. J. Bacteriol. 172: 3335–3345

    Google Scholar 

  • Omura T & Sato R (1964) The carbon monoxide-binding pigment of liver microsomes. J. Biol. Chem. 239: 2379–2387

    Google Scholar 

  • Ortiz de Montellano PR (1986) Cytochromes P-450, Structure, Mechanism and Biochemistry. Plenum Press, New York

    Google Scholar 

  • Peterson JA & Lu JY (1991) Bacterial cytochromes P450: isolation and identification. Methods Enzymol. 206: 612–620

    Google Scholar 

  • Poupin P & Truffaut N (1996) Etude de la dégradation de la morpholine par Mycobacterium sp. RP1. Colloque de la Société Française de Microbiologie “Microbiologie industrielle et environnement” Avril 1996-Narbonne

  • Poupin P, Truffaut N, Combourieu B, Besse P, Sancelme M, Veschambre H & Delort AM (1998) Degradation of morpholine by an environmental Mycobacterium strain involves a cytochrome P450. Appl. Environ. Microbiol. 64: 159–165

    Google Scholar 

  • Renwick AG (1989) Sulphoxides and sulphones. In: Danami LA (Ed) Sulfur Containing Drugs and Related Organic Compounds. Chemistry, Biochemistry and Toxicology, Vol. 1, Part B (pp 133–153). Ellis Horwood Limited, Chichester

    Google Scholar 

  • Ruckpaul K & Rein H (1984) Cytochrome P-450, Akademie Verlag, Berlin

    Google Scholar 

  • Ruckpaul K & Rein H (1990) Frontiers in Biotransformation, Vol. 2. Akademie Verlag, Berlin

    Google Scholar 

  • Singer GM & Lijinsky W (1976) Naturally occuring nitrosable compounds. I. Secondary amines in foodstuffs. J. Agric. Food Chem. 24: 550–553

    Google Scholar 

  • Swain A, Waterhouse KV, Venables WA, Callely AG & Lowe SE (1991) Biochemical studies of morpholine catabolism by an environmental Mycobacterium. Appl. Microbiol. Biotechnol. 35: 110–114

    Google Scholar 

  • Testa B & Jenner P (1981) Inhibitors of cytochrome P450s and their mechanism of action. Drug Metab. Rev. 12: 1–117

    Google Scholar 

  • Waterman MR, John ME & Simpson ER (1986) Regulation of synthesis and activity of cytochrome P-450 enzymes in physiological pathways. In: Ortiz de Montellano PR (Ed) Cytochromes P-450, Structure, Mechanism and Biochemistry (pp 345–386). Plenum Press, New York

    Google Scholar 

  • White GF, Russell NJ & Tidswell E (1996) Bacterial scission of ether bond. Microbiol. Rev. 60: 216–232

    Google Scholar 

  • Wislocki PG, Miwa GT & Lu AYH (1980) Reactions catalyzed by the cytochrome P-450 system. In: Jakoby WB (Ed) Enzymatic Basis of Detoxification (pp 135–182)

  • Ziegler DM (1988) Flavin-containing monooxygenases: catalytic mechanism and substrate specificities. Drug Metab. Rev. 19: 1–32

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Combourieu, B., Poupin, P., Besse, P. et al. Thiomorpholine and morpholine oxidation by a cytochrome P450 in Mycobacterium aurum MO1. Evidence of the intermediates by in situ 1H NMR. Biodegradation 9, 433–442 (1998). https://doi.org/10.1023/A:1008321610465

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008321610465

Navigation