Skip to main content
Log in

The Use of Human Hepatocytes to Select Compounds Based on Their Expected Hepatic Extraction Ratios in Humans

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The present investigation retrospectively evaluates the use of human hepatocytes to classify compounds into low, intermediate or high hepatic extraction ratio in man.

Methods. A simple approach was used to correlate the in vivo hepatic extraction ratio of a number of compounds in man (literature and in-house data) with the corresponding in vitro clearance which was determined in human hepatocytes. The present approach assumes that, for compounds eliminated mainly through liver metabolism, intrinsic clearance is the major determinant for their in vivo hepatic extraction ratio and subsequently their bioavailability in man. The test compounds were selected to represent a broad range of extraction ratios and a variety of metabolic pathways.

Results. The present data show that in vitro clearances in human hepatocytes are predictive for the hepatic extraction ratios in vivo in man. Most of the test compounds (n = 19) were successfully classified based upon human hepatocyte data into low, intermediate or high hepatic extraction compounds, i.e. compounds with potential for high, intermediate or low bioavailabilities in humans.

Conclusions. The present approach, validated so far with 19 test compounds, appears to be a valuable tool to screen for compounds with respect to liver first-pass metabolism at an early phase of drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. G. Desousa, N. Florence, B. Valles, P. Coassolo, and R. Rahmani. Cell Biol. Toxicol. 11:147–153 (1995).

    Google Scholar 

  2. J. B. Houston. Biochem. Pharmacol. 47:1469–1479 (1994).

    Google Scholar 

  3. K. Zomorodi, D. J. Carlile, and J. B. Houston. Xenobiotica 25:907–916 (1995).

    Google Scholar 

  4. K. A. Hayes, B. Brennan, R. Chenery, and J. B. Houston. Drug Metab. Dispos. 23:349–353 (1995).

    Google Scholar 

  5. B. A. Hoener. Biopharm. Drug Dispos. 15:295–304 (1994).

    Google Scholar 

  6. T. Seddon, I. Michelle, and R. J. Chenery. Biochem. Pharmacol. 38:1657–1665 (1989).

    Google Scholar 

  7. G. Fabre, R. Rahmani, M. Placidi, J. Combalbert, J. Covo, J. P. Cano, C. Coulange, M. Ducros, and M. Rampal. Biochem. Pharmacol. 37:4389–4397 (1988).

    Google Scholar 

  8. M. Rowland, and T. Tozer. Lea and Febiger, Philadelphia, London, (1989).

  9. P. Skett, C. Tyson, A. Guillouzo, and P. Maier. Biochem. Pharmacol. 50:280–5 (1995).

    Google Scholar 

  10. M. Spatzenegger, and W. Jaeger. Drug Metab. Rev. 27:397–417 (1995).

    Google Scholar 

  11. S. Kawasaki, Y. Sugiyama, T. Iga, M. Hanano, T. Beppu, M. Sugiura, K. Sanjo, and Y. Idezuki. Clin. Pharmacol. Ther. 44:217–224 (1988).

    Google Scholar 

  12. M. Bonati, R. Latini, G. Tognoni, J. F. Young, and S. Garattini. Drug Metab. Rev. 15:1355–83 (1984).

    Google Scholar 

  13. U. Klotz, K. H. Antonin, and P. R. Bieck. J. Pharmacol. Exp. Ther. 199:67–73 (1976).

    Google Scholar 

  14. P. Hoglund, and L. G. Nilsson. Ther. Drug Monit. 10:401–409 (1988).

    Google Scholar 

  15. H. Boxenbaum. J. Pharmacokinet. Biopharm. 10:411–426 (1982).

    Google Scholar 

  16. H. Allonen, G. Ziegler, and U. Klotz. Clin. Pharmacol. Ther. 30:653–661 (1981).

    Google Scholar 

  17. M. T. Smith, M. J. Eadie, and T. O. Brophy. Eur. J. Clin. Pharmacol. 19:271–278 (1981).

    Google Scholar 

  18. P. Heizmann, M. Eckert, and W. H. Ziegler. Br. J. Clin. Pharmacol. 16:43S–49S (1983).

    Google Scholar 

  19. J. P. Labaune. Masson, Paris, (1991).

  20. J. Sonne, S. Loft, M. Dossing, A. Vollmer-Larsen, K. L. Olesen, M. Victor, F. Andreasen, and P. B. Andreasen. Eur. J. Clin. Pharmacol. 35:385–389 (1988).

    Google Scholar 

  21. L. S. Olanoff, T. Walle, K. Walle, T. D. Cowart, and T. E. Gaffney. Clin. Pharmacol. Ther. 35:755–761 (1984).

    Google Scholar 

  22. G. A. Rongen, J. W. M. Lenders, P. Smits, and T. Thien. Clin. Pharmacokinet. 29:6–14 (1995).

    Google Scholar 

  23. F. Gaspari, and M. Bonati. Drug Metab. Rev. 22:179–207 (1990).

    Google Scholar 

  24. N. H. G. Holford. Clin. Pharmacokinet. 11:483–504 (1986).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lavé, T., Dupin, S., Schmitt, C. et al. The Use of Human Hepatocytes to Select Compounds Based on Their Expected Hepatic Extraction Ratios in Humans. Pharm Res 14, 152–155 (1997). https://doi.org/10.1023/A:1012036324237

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012036324237

Navigation