Skip to main content
Log in

Differentiation of Gut and Hepatic First-Pass Effect of Drugs: 1. Studies of Verapamil in Ported Dogs

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To investigate the relative contributions of the gut and liver to the first-pass loss of verapamil (VL) using anin vivo intestinal-vascular access port (IVAP) dog model.

Methods. Basic pharmacokinetics of VL were determined after intravenous (IV: 0.5 mg/kg), portal venous (PV: 2 mg/kg), and duodenal (ID: 2 mg/kg) administration in IVAP dogs. Serial blood samples were collected for 8 h after dosing, and plasma was analyzed for unchanged drug by a high-performance liquid chromatography-fluorescence method. Extraction ratios in the liver and intestinal tract were determined from the area under the concentration-time curves for ID, PV, and IV administration. The functional role of CYP450 or secretory transporters such as P-gp on the gut and liver first-pass loss of VL was further studied using ritonavir, a known substrate or inhibitor of these processes.

Results. The liver had a high intrinsic capacity for clearing VL because the absolute bioavailability (BA) of VL was 21.7% after PV administration. The BA of VL after ID administration was 23.5%; therefore, intestinal absorption was complete and intestinal extraction was negligible (ERGI ∼ 0). The BA of VL increased from 23.5% to 66.2% in the presence of ritonavir primarily due to a reduction in hepatic extraction.

Conclusions. Although the liver had a high intrinsic capacity for extracting VL, the contribution of gut to the first-pass loss of VL was negligible. Because of the additive effects of intestinal CYP3A-mediated metabolism and secretory transport, a significant gut first-pass effect was expected, but not observed in dogs. These studies demonstrate the utility of the in vivo IVAP dog model for evaluating the relative contribution of the gut and liver to the first-pass loss of drugs and for characterizing the functional role that CYP450 metabolism and/or secretory transporters play in drug-drug interactions and reduced oral bioavailability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. J. C. Kolars, W. M. Awni, R. M. Merion, and P. B. Watkins. First-pass metabolism of cyclosporine by the gut. Lancet 338:1488-1490 (1991).

    Google Scholar 

  2. K. E. Thummel, D.O'Shea, M. F. Paine, D. D. Shen, K. L. Kunze, J. D. Perkins, and G. R. Wilkinson. Oral first-pass elimination of midazolam involves both gastrointestinal and hepatic CYP3A-mediated metabolism. Clin. Pharmacol. Ther. 59:491-502 (1996).

    Google Scholar 

  3. I. D. Waziers, P. H. Cugnenc, C. S. Yang, J.-P. Leroux, and P. H. Beaune. Cytochrome P450 isoenzymes, epoxide hydrolase and glutathione transferases in rat and human hepatic and extrahepatic tissues. J. Pharmcol. Exp. Ther. 253:387-394 (1990).

    Google Scholar 

  4. C.-Y. Wu, L. Z. Benet, M. F. Hebert, S. K. Gupta, M. Rowland, D. Y. Gomez, and V. J. Wacher. Differentiation of absorption and first-pass gut and hepatic metabolism in humans: Studies with cyclosporine. Clin. Pharmacol. Ther. 58:492-497 (1995).

    Google Scholar 

  5. M. F. Paine, D. D. Shen, K. L. Kunze, J. D. Perkins, C. L. Marsh, J. P. McVicar, D. M. Barr, B. S. Gillies, and K. E. Thummel. First-pass metabolism of midazolam by the human intestine. Clin. Pharmacol. Ther. 60:14-24 (1996).

    Google Scholar 

  6. H. Saitoh and B. J. Aungst. Possible involvement of multiple P-glycoprotein-mediated efflux systems in the transport of verapamil and other organic cations across rat intestine. Pharm. Res. 12:1304-1310 (1995).

    Google Scholar 

  7. M. F. Fromm, D. Busse, H. K. Kroemer, and M. Eichelbaum. Differential induction of prehepatic and hepatic metabolism of verapamil by rifampin. Hepatology 24:796-801 (1996).

    Google Scholar 

  8. T. Terao, E. Hisanaga, Y. Sai, I. Tamai, and A. Tsuji. Active secretion of drugs from the small intestinal epithelium in rats by P-glycoprotein functioning as an absorption barrier. J. Pharm. Pharmacol. 48:1083-1089 (1996).

    Google Scholar 

  9. Y. Zhang, X. Guo, E. T. Lin, and L. Z. Benet. Overlapping substrate specificities of cytochrome P450 3A and P-glycoprotein for a novel cysteine protease inhibitor. Drug Metab. Dispos. 26:360-366 (1998).

    Google Scholar 

  10. K. S. Lown, R. R. Mayo, A. B. Leichtman, H. L. Hsiao, D. K. Turgeon, P. Schmiedlin-Ren, M. B. Brown, W. Guo, S. J. Rossi, L. Z. Benet, and P. B. Watkins. Role of intestinal P-glycoprotein (mdr1) in interpatient variation in the oral bioavailability of cyclosporine. Clin. Pharmacol. Ther. 62:248-260 (1997).

    Google Scholar 

  11. P. J. Sinko, J. P. Sutyak, G. D. Leesman, P. Hu, V. Makhey, H. Yu, and C. L. Smith. Oral absorption of anti-AIDS nucleotide analogues: 3. Regional absorption and in vivo permeability of 2′,3′-dideoxyinosine in an intestinal-vascular access port (IVAP) dog model. Biopharm. Drug Dispos. 18:697-710 (1997).

    Google Scholar 

  12. P. J. Sinko, Y. H. Lee, V. Makhey, G. D. Leesman, J. P. Sutyak, H. Yu, B. Perry, C. L. Smith, P. Hu, E. J. Wagner, L. M. Falzone, L. T. McWhorter, J. P. Gilligan, and W. Stern. Biopharmaceutical approaches for developing and assessing oral peptide delivery strategies and systems: In vitro permeability and in vivo oral absorption of salmon calcitonin (sCT). Pharm. Res. 16:527-533 (1999).

    Google Scholar 

  13. H. Echizen and M. Eichelbaum. Clinical pharmacokinetics of verapamil, nifedipine and diltiazem. Clin. Pharmacokinet. 11:425-449 (1986).

    Google Scholar 

  14. V. D. Makhey, A. Guo, D. A. Norris, P. Hu, J. Yan, and P. J. Sinko. Characterization of the regional intestinal kinetics of drug efflux in rat and human intestine and in Caco-2 cells. Pharm. Res. 15:1160-1167 (1998).

    Google Scholar 

  15. J. P. Sutyak, Y. H. Lee, B. A. Perry, W. Stern, V. Makhey, and P. J. Sinko. Improved longevity and functionality of a canine model providing portal vein and multi-site intestinal access. Lab. Animal Sci. 50:68-75 (2000).

    Google Scholar 

  16. T. H. Arnold, R. L. Tackett, and J. J. Vallner. Pharmacodynamics of acute intranasal administration of verapamil: comparison with iv and oral administration. Biopharm. Drug Dispos. 6:447-454 (1985).

    Google Scholar 

  17. D. J. Kempf, K. C. Marsh, G. Kumar, A. D. Rodrigues, J. F. Denissen, E. McDonald, M. J. Kukulka, A. Hsu, G. R. Granneman, P. A. Baroldi, E. Sun, D. Pizzuti, J. J. Plattner, D. W. Norbeck, and J. M. Leonard. Pharmacokinetic enhancement of inhibitors of the human immunodeficiency virus protease by coadministration with ritonavir. Antimicrob. Agents Chemother. 41:654-660 (1997).

    Google Scholar 

  18. G. N. Kumar, A. D. Rodrigues, A. M. Buko, and J. F. Denissen. Cytochrome P450-mediated metabolism of the HIV-1 protease inhibitor ritonavir (ABT-538) in human liver microsomes. J. Pharmacol. Exp. Ther. 277:423-431 (1996).

    Google Scholar 

  19. J. Alsenz, H. Steffan, and R. Alex. Active apical secretary efflux of the HIV protease inhibitors saquinavir and ritonavir in Caco-2 monolayers. Pharm. Res. 15:423-428 (1998).

    Google Scholar 

  20. M. Gibaldi and D. Perrier. Pharmacokinetics, 2nd edn, Marcel Dekker, New York, 1982.

    Google Scholar 

  21. W. L. Chiou. Critical evaluation of potential error in pharmacokinetic studies using the linear trapezoidal rule method for the calculation of the area under the plasma level-time curve. J. Pharmacokin. Biopharm. 6:539-546 (1978).

    Google Scholar 

  22. G. M. Grass and P. J. Sinko. Effect of diverse datasets on the predictive capability of ADME models in drug discovery. Drug Discovery Today 6(HTS Suppl):158-165 (2001).

    Google Scholar 

  23. N. Zaman, S. Tawfik, D. Kwok, J. E. Axelson, H. Wiltshire, and Y. K. Tarn. Pharmacokinetics of saquinavir in the instrumented dogs. Pharm. Res. 1:S670 (1998).

    Google Scholar 

  24. S. R. Hamann, R. A. Blouin, and R. G. McAllister Jr. Clinical pharmacokinetics of verapamil. Clin. Pharmacokinet. 9:26-41 (1984).

    Google Scholar 

  25. M. F. Hebert. Contributions of hepatic and intestinal metabolism and P-glycoprotein to cyclosporine and tacrolimus oral drug delivery. Adv. Drug Deliv. Rev. 27:201-214 (1997).

    Google Scholar 

  26. N. Holtbecker, M. F. Fromm, H. K. Kroemer, E. F. Ohnhms, and H. Heidemann. The nifedipine-rifampin interaction: Evidence for induction of gut wall metabolism. Drug Metab. Dispos. 24:121-1123 (1996).

    Google Scholar 

  27. V. J. Wacher, J. A. Silverman, Y. Zhang, and L. Z. Benet. Role of P-glycoprotein and cytochrome P450 3A in limiting oral absorption of peptides and peptidomemetics. J. Pharm. Sci. 87:1322-1330 (1998).

    Google Scholar 

  28. S. D. Hall, K. E. Thummel, P. B. Watkins, K. S. Lown, L. Z. Benet, M. F. Paine, R. R. Mayo, D. K. Turgeon, D. G. Bailey, R. J. Fontana, and S. A. Wrighton. Molecular and physical mechanisms of first pass extraction. Drug Metab. Dispos. 27:161-166 (1999).

    Google Scholar 

  29. J. Hunter, B. H. Hirst, and N. L. Simmons. Drug absorption limited by P-glycoprotein-mediated secretary drug transport in human intestinal epithelial Caco-2 cell layers. Pharm. Res. 10:743-749 (1993).

    Google Scholar 

  30. J. Zacherl, G. Hamilton, T. Thalhammer, M. Riegler, E. P. Cosentini, A. Ellinger, G. Bischof, M. Schweitzer, B. Teleky, T. Koperna, and E. Wenzl. Inhibition of P-glycoprotein-mediated vinblastine transport across HCT-8 intestinal carcinoma monolayers by verapamil, cyclosporin A, and SDZ PSC833, in dependence on extracellular pH. Cancer Chemother. Pharmacol. 34:125-132 (1994).

    Google Scholar 

  31. M. F. Fromm, K. Dilger, D. Busse, H. K. Kroemer, M. Eichebaum, and U. Klotz. Gut wall metabolism of verapamil in older people: effects of rifampin-mediated enzyme induction. Br. J. Clin. Pharmacol. 45:247-255 (1998).

    Google Scholar 

  32. R. Sandstrom, A. Karlsson, L. Knutson, and H. Lennernas. Jejunal absorption and metabolism of R/S-verapamil in humans. Pharm. Res. 15:856-862 (1998).

    Google Scholar 

  33. W. L. Chiou, S. M. Chung, and T. C. Wu. Apparent lack of effect of P-glycoprotein on the gastrointestinal absorption of a substrate, tacrolimus, in normal mice. Pharm. Res. 17:205-208 (2000).

    Google Scholar 

  34. A. Sparreboom, J. van Asperen, U. Mayer, A. H. Schinkel, J. W. Smit, D. K.F. Meijer, P. Borst, W. J. Nooijen, J. H. Beijen, and O. van Tellingen. Limited oral bioavailability and active excretion of paclitaxel (Taxol) caused by P-glycoprotein in the intestine. Proc. Natl. Acad. Sci. USA 94:2031-2035 (1997).

    Google Scholar 

  35. U. Mayer, E. Wagenaar, J. H. Beijnen, J. W. Smit, D. K.W. Meijer, J. van Asperen, P. Borst, and A. H. Schinkel. Substantial excretion of digoxin via the intestinal mucosa and prevention of long-term digoxin accumulation in the brain by the mdr1a P-glycoprotein. Br. J. Pharmacol. 119:1038-1044 (1996).

    Google Scholar 

  36. M. T. Smith, M. J. Eadie, and T. O. Brophy. The pharmacokinetics of midazolam in man. Eur. J. Clin. Pharmacol. 19:271-278 (1981).

    Google Scholar 

  37. N. N. Vachharajani, W. C. Shyu, V. R. Shah, and R. H. Barbhaiya. Pharmacokinetic assessment of the sites of first-pass metabolism of BMS-181101, an antidepressant, in rats. J. Pharm. Pharmacol. 50:275-278 (1997).

    Google Scholar 

  38. S. Kumar, K. W. Riggs, and D. W. Rurak. Role of the liver and gut in systemic diphenhydramine clearance in adult nonpregnant sheep. Drug Metab. Dispos. 27:297-302 (1999).

    Google Scholar 

  39. C. H. Kleinbloesem, J. Van Hartan, J. P.H. Wilson, M. Danhof, P. Van Brummek, and D. D. Breimer. Nifedipine: Kinetics and hemodynamics effects in patients with liver cirrhosis after intravenous and oral administration. Clin. Pharmacol. Ther. 40:21-28 (1986).

    Google Scholar 

  40. M. Eichelbaum, M. Albrecht, G. Kliems, K. Schafer, and A. Somogyi. Influence of meso-caval shunt surgery on verapamil kinetics, bioavailability and response. Br. J. Clin. Pharmacol. 10:527-530 (1980).

    Google Scholar 

  41. J. H. Lin, M. Chiba, and T. Baillie. Is the role of the small intestine in first-pass metabolism overemphasized? Pharmacol. Rev. 51:135-157 (1999).

    Google Scholar 

  42. W. D. Stern. Kinetics of the multidrug transporter (P-glycoprotein) and its reversal. Physiol. Rev. 77:545-590 (1997).

    Google Scholar 

  43. Y. H. Lee, M. H. Lee, and C. K. Shim. Decreased systemic clearance of diltiazem with increased hepatic metabolism in rats with uranyl nitrate-induced acute renal failure. Pharm. Res. 9:1599-1606 (1992).

    Google Scholar 

  44. H. K. Kroemer, J. C. Gautier, P. Beaune, C. Henderson, C. R. Wolf, and M. Eichelbaum. Identification of P450 enzymes involved in metabolism of verapamil in humans. Naunyn-Schmiedeberg's Arch. Pharmacol. 348:332-337 (1993).

    Google Scholar 

  45. M. T. Huisman, J. W. Smit, H. R. Wiltshire, R. M. Hoetelmans, J. H. Beijnen, and A. H. Achinkel. P-glycoprotein limits oral availability, brain, and fetal penetration of saquinavir even with high doses of ritonavir. Mol. Pharmacol. 59:806-813 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, YH., Perry, B.A., Lee, HS. et al. Differentiation of Gut and Hepatic First-Pass Effect of Drugs: 1. Studies of Verapamil in Ported Dogs. Pharm Res 18, 1721–1728 (2001). https://doi.org/10.1023/A:1013374630274

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013374630274

Navigation