Skip to main content
Log in

Are MDCK Cells Transfected with the Human MDR1 Gene a Good Model of the Human Intestinal Mucosa?

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To investigate whether Madin-Darby canine kidney cells transfected with the human MDR1 gene (MDCK-MDR1) are a good model of the human intestinal mucosa.

Methods. P-glycoprotein (P-gp) expression in Caco-2 cells was compared with P-gp expression in MDCK wild- type (MDCK-WT) and MDCK-MDR1 cells using Western blotting methods. The polarized efflux activities of P-gp(s) in MDCK-MDR1 cells, MDCK-WT cells, and Caco-2 cells were compared using digoxin as a substrate. Apparent Michaelis-Menten constants (K M,V max) for the efflux of vinblastine in these three cell lines were determined. Apparent inhibition constants (K I) of known substrates/inhibitors of P-gp were determined by measuring their effects on the efflux of digoxin in Caco-2 or MDCK-MDR1 cell monolayers.

Results. MDCK-MDR1 cells expressed higher levels of P-gp compared to Caco-2 and MDCK-WT cells, as estimated by Western blots. Two isoforms of P-gp were expressed in Caco-2 and MDCK cells migrating with molecular weights of 150 kDa and 170 kDa. In MDCK-MDR1 cells, the 150 kDa isoforms appeared to be overexpressed. The MDCK-MDR1 cells exhibited higher polarized efflux of [3H]-digoxin than did Caco-2 and MDCK-WT cells. K M values of vinblastine in Caco-2, MDCK-WT, and MDCK-MDR1 cells were 89.2 ± 26.1, 24.5 ± 1.1, and 252.8 ± 134.7 μM, respectively, whereas V max values were 1.77 ± 0.22, 0.42 ± 0.01, and 2.43 ± 0.86 pmolcm−2s−1, respectively. Known P-gp substrates/inhibitors showed, in general, lower K I values for inhibition of digoxin efflux in Caco-2 cells than in MDCK-MDR1 cells.

Conclusions. These data suggest that the MDCK-MDR1 cells overexpress the 150 kDa isoform of P-gp. MDCK-MDR1 cells are a useful model for screening the P-gp substrate activity of drugs and drug candidates. However, the apparent kinetics constants and affinities of substrates determined in the MDCK-MDR1 cell model may be different than the values obtained in Caco-2 cells. These differences in substrate activity could result from differences in the relative expression levels of total P-gp in Caco-2 and MDCK-MDR1 cells and/or differences in the partitioning of substrates into these two cell membrane bilayers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. P. Artursson, K. Palm, and K. Luthman. Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv. Drug Deliv. Rev. 46:27–43 (2001).

    Google Scholar 

  2. R. T. Borchardt. The application of cell culture systems in drug discovery and development. J. Drug Target. 3:179–182 (1995).

    Google Scholar 

  3. C. Bailey, P. Bryla, and A. Malick. The use of the intestinal epithelial cell culture model, Caco-2, in pharmaceutical development. Adv. Drug Deliv. Rev. 22:85–103 (1996).

    Google Scholar 

  4. P. Artursson and R. T. Borchardt. Intestinal drug absorption and metabolism in cell cultures: Caco-2 and beyond. Pharm. Res. 14: 1655–1658 (1997).

    Google Scholar 

  5. A. H. Dantzig, J. A. Hoskins, L. B. Tabas, S. Bright, R. L. Shepard, I. L. Jenkins, D. C. Duckworth, J. R. Sportsman, D. Mackensen, P. R. Rosteck, and P. L. Skatrud. Association of intestinal peptide transport with a protein related to the cadherin superfamily. Science 264:430–433 (1994).

    Google Scholar 

  6. J. Hunter, M. A. Jepson, T. Tsuruo, N. L. Simmons, and B. H. Hirst. Functional expression of P-glycoprotein in apical membranes of human intestinal Caco-2 cells. Kinetics of vinblastine secretion and interaction with modulators. J. Biol. Chem. 268: 14991–14997 (1993).

    Google Scholar 

  7. V. J. Wacher, L. Salphati, and L. Z. Benet. Active secretion and enterocytic drug metabolism barriers to drug absorption. Adv. Drug Deliv. Rev. 46:89–102 (2001).

    Google Scholar 

  8. L. Z. Benet, T. Izumi, Y. Zhang, J. A. Silverman, and V. J. Wacher. Intestinal MDR transport proteins and P-450 enzymes as barriers to oral drug delivery. J. Control. Release 62:25–31 (1999).

    Google Scholar 

  9. A. H. Schinkel, E. M. Roelofs, and P. Borst. Characterization of the human MDR3 P-glycoprotein and its recognition by P-glycoprotein-specific monoclonal antibodies. Cancer Res. 51: 2628–2635 (1991).

    Google Scholar 

  10. R. L. Juliano and V. Ling. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim. Biophys. Acta. 455:152–162 (1976).

    Google Scholar 

  11. A. H. Schinkel, C. A. Mol, E. Wagenaar, L. van Deemter, J. J. Smit, and P. Borst. Multidrug resistance and the role of P-glycoprotein knockout mice. Eur. J. Cancer 31A:1295–1298 (1995).

    Google Scholar 

  12. K. I. Hosoya, K. J. Kim, and V. H. Lee. Age-dependent expression of P-glycoprotein gp170 in Caco-2 cell monolayers. Pharm. Res. 13:885–890 (1996).

    Google Scholar 

  13. U. K. Walle, A. Galijatovic, and T. Walle. Transport of the flavonoid chrysin and its conjugated metabolites by the human intestinal cell line Caco-2. Biochem. Pharmacol. 58:431–438 (1999).

    Google Scholar 

  14. P. S. Burton, R. A. Conradi, A. R. Hilgers, and N. F. Ho. Evidence for a polarized efflux system for peptides in the apical membrane of Caco-2 cells. Biochem. Biophys. Res. Commun. 190: 760–766 (1993).

    Google Scholar 

  15. J. Gao, E. D. Hugger, M. S. Beck-Westermeyer, and R. T. Borchardt. In A. Doyle, J. B. Griffiths, and D. J. Newell (eds.), Current Protocols in Pharmacology, Vol. 7.2, John Wiley & Sons, Inc., New York, 2000, pp. 1–23.

    Google Scholar 

  16. P. Anderle, E. Niederer, W. Rubas, C. Hilgendorf, H. Spahn-Langguth, H. Wunderli-Allenspach, H. P. Merkle, and P. Langguth. P-Glycoprotein (P-gp) mediated efflux in Caco-2 cell monolayers: the influence of culturing conditions and drug exposure on P-gp expression levels. J. Pharm. Sci. 87:757–762 (1998).

    Google Scholar 

  17. F. Tang and R. T. Borchardt. Characterization of the efflux transporter(s) responsible for restricting intestinal mucosa permeation of a coumarinic acid-based cyclic prodrug of the opioid peptide DADLE. Pharm. Res. 19:787–793 (2002).

    Google Scholar 

  18. M. J. Cho, D. P. Thompson, C. T. Cramer, T. J. Vidmar, and J. F. Scieszka. The Madin Darby canine kidney (MDCK) epithelial cell monolayer as a model cellular transport barrier. Pharm. Res. 6:71–77 (1989).

    Google Scholar 

  19. J. D. Irvine, L. Takahashi, K. Lockhart, J. Cheong, J. W. Tolan, H. E. Selick, and J. R. Grove. MDCK (Madin-Darby canine kidney) cells: A tool for membrane permeability screening. J. Pharm. Sci. 88:28–33 (1999).

    Google Scholar 

  20. R. Evers, N. H. Cnubben, J. Wijnholds, L. van Deemter, P. J. van Bladeren, and P. Borst. Transport of glutathione prostaglandin A conjugates by the multidrug resistance protein 1. FEBS Lett. 419: 112–116 (1997).

    Google Scholar 

  21. P. Borst, R. Evers, M. Kool, and J. Wijnholds. The multidrug resistance protein family. Biochim. Biophys. Acta. 1461:347–357 (1999).

    Google Scholar 

  22. S. P. Hammerle, B. Rothen-Rutishauser, S. D. Kramer, M. Gunthert, and H. Wunderli-Allenspach. P-Glycoprotein in cell cultures: a combined approach to study expression, localisation, and functionality in the confocal microscope. Eur. J. Pharm. Sci. 12:69–77 (2000).

    Google Scholar 

  23. A. Soldner, L. Z. Benet, E. Mutschler, and U. Christians. Active transport of the angiotensin-II antagonist losartan and its main metabolite EXP 3174 across MDCK-MDR1 and caco-2 cell monolayers. Br. J. Pharmacol. 129:1235–1243 (2000).

    Google Scholar 

  24. J. Gao, O. Murase, R. L. Schowen, J. Aube, and R. T. Borchardt. A functional assay for quantitation of the apparent affinities of ligands of P-glycoprotein in Caco-2 cells. Pharm. Res. 18:171–176 (2001).

    Google Scholar 

  25. A. Kurihara, H. Suzuki, Y. Sawada, Y. Sugiyama, T. Iga, and M. Hanano. Transport of digoxin into brain microvessels and choroid plexuses isolated from guinea pig. J. Pharm. Sci. 77:347–352 (1988).

    Google Scholar 

  26. A. H. Schinkel, U. Mayer, E. Wagenaar, C. A. Mol, L. van Deemter, J. J. Smit, M. A. van der Valk, A. C. Voordouw, H. Spits, O. van Tellingen, J. M. Zijlmans, W. E. Fibbe, and P. Borst. Normal viability and altered pharmacokinetics in mice lacking mdr1-type (drug-transporting) P-glycoproteins. Proc. Natl. Acad. Sci. USA 94:4028–4033 (1997).

    Google Scholar 

  27. S. Song, H. Suzuki, R. Kawai, and Y. Sugiyama. Effect of PSC 833, a P-glycoprotein modulator, on the disposition of vincristine and digoxin in rats. Drug Metab. Dispos. 27:689–694 (1999).

    Google Scholar 

  28. S. P. Letrent, G. M. Pollack, K. R. Brouwer, and K. L. Brouwer. Effects of a potent and specific P-glycoprotein inhibitor on the blood-brain barrier distribution and antinociceptive effect of morphine in the rat. Drug Metab. Dispos. 27:827–834 (1999).

    Google Scholar 

  29. C. Tanaka, R. Kawai, and M. Rowland. Dose-dependent pharmacokinetics of cyclosporin A in rats: events in tissues. Drug Metab. Dispos. 28:582–589 (2000).

    Google Scholar 

  30. A. J. Smith, U. Mayer, A. H. Schinkel, and P. Borst. Availability of PSC833, a substrate and inhibitor of P-glycoproteins, in various concentrations of serum. J. Natl. Cancer Inst. 90:1161–1166 (1998).

    Google Scholar 

  31. A. T. Nies, T. Cantz, M. Brom, I. Leier, and D. Keppler. Expression of the apical conjugate export pump, Mrp2, in the polarized hepatoma cell line, WIF-B. Hepatology. 28:1332–1340 (1998).

    Google Scholar 

  32. G. K. Chen, G. E. Duran, A. Mangili, L. Beketic-Oreskovic, and B. I. Sikic. MDR 1 activation is the predominant resistance mechanism selected by vinblastine in MES-SA cells. Br. J. Cancer. 83:892–898 (2000).

    Google Scholar 

  33. A. H. Schinkel, J. J. Smit, O. van Tellingen, J. H. Beijnen, E. Wagenaar, L. van Deemter, C. A. Mol, M. A. van der Valk, E. C. Robanus-Maandag, H. P. te Riele, A. J. M. Berns, and P. Borst. Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 77:491–502 (1994).

    Google Scholar 

  34. V. Ling, N. Kartner, T. Sudo, L. Siminovitch, and J. R. Riordan. Multidrug-resistance phenotype in Chinese hamster ovary cells. Cancer Treat. Rep. 67:869–874 (1983).

    Google Scholar 

  35. B. Lewin. Genes IV. Oxford Universtiy Press, New York, 1990.

    Google Scholar 

  36. R. Evers, G. J. Zaman, L. van Deemter, H. Jansen, J. Calafat, L. C. Oomen, R. P. Oude Elferink, P. Borst, and A. H. Schinkel. Basolateral localization and export activity of the human multidrug resistance-associated protein in polarized pig kidney cells. J. Clin. Invest. 97:1211–1218 (1996).

    Google Scholar 

  37. F. Hyafil, C. Vergely, P. Du Vignaud, and T. Grand-Perret. In vitro and in vivo reversal of multidrug resistance by GF120918, an acridonecarboxamide derivative. Cancer Res. 53:4595–4602 (1993).

    Google Scholar 

  38. M. de Bruin, K. Miyake, T. Litman, R. Robey, and S. E. Bates. Reversal of resistance by GF120918 in cell lines expressing the ABC half-transporter, MXR. Cancer Lett. 146:117–126 (1999).

    Google Scholar 

  39. P. van der Bijl, M. Lopes-Cardozo, and G. van Meer. Sorting of newly synthesized galactosphingolipids to the two surface domains of epithelial cells. J. Cell Biol. 132:813–821 (1996).

    Google Scholar 

  40. W. van't Hof. J. Silvius, F. Wieland, and G. van Meer. Epithelial sphingolipid sorting allows for extensive variation of the fatty acyl chain and the sphingosine backbone. Biochem. J. 283:913–917 (1992).

    Google Scholar 

  41. G. C. Hansson, K. Simons, and G. van Meer. Two strains of the Madin-Darby canine kidney (MDCK) cell line have distinct glycosphingolipid compositions. EMBO J. 5:483–489 (1986).

    Google Scholar 

  42. F. J. Sharom. X. Yu, J.W. Chu, and C.A. Doige. Characterization of the ATPase activity of P-glycoprotein from multidrug-resistant Chinese hamster ovary cells. Biochem. J. 308:381–390 (1995).

    Google Scholar 

  43. R. Callaghan, G. Berridge, D. R. Ferry, and C. F. Higgins. The functional purification of P-glycoprotein is dependent on maintenance of a lipid-protein interface. Biochim. Biophys. Acta. 1328:109–124 (1997).

    Google Scholar 

  44. J. Ferte. Analysis of the tangled relationships between P-glycoprotein-mediated multidrug resistance and the lipid phase of the cell membrane. Eur. J. Biochem. 267:277–294 (2000).

    Google Scholar 

  45. Y. Romsicki and F. J. Sharom. Interaction of P-glycoprotein with defined phospholipid bilayers: a differential scanning calorimetric study. Biochemistry. 36:9807–9815 (1997).

    Google Scholar 

  46. Y. Romsicki and F. J. Sharom. The membrane lipid environment modulates drug interactions with the P-glycoprotein multidrug transporter. Biochemistry. 38:6887–6896 (1999).

    Google Scholar 

  47. A. B. Shapiro, A. B. Corder, and V. Ling. P-glycoprotein-mediated Hoechst 33342 transport out of the lipid bilayer. Eur. J. Biochem. 250:115–121 (1997).

    Google Scholar 

  48. Y. Raviv, H. B. Pollard, E. P. Bruggemann, I. Pastan, and M. M. Gottesman. Photosensitized labeling of a functional multidrug transporter in living drug-resistant tumor cells. J. Biol. Chem. 265:3975–3980 (1990).

    Google Scholar 

  49. G. A. Altenberg, C. G. Vanoye, J. K. Horton, and L. Reuss. Unidirectional fluxes of rhodamine 123 in multidrug-resistant cells: evidence against direct drug extrusion from the plasma membrane. Proc. Natl. Acad. Sci. USA 91:4654–4657 (1994).

    Google Scholar 

  50. W. D. Stein, C. Cardarelli, I. Pastan, and M. M. Gottesman. Kinetic evidence suggesting that the multidrug transporter differentially handles influx and efflux of its substrates. Mol. Pharmacol. 45:763–772 (1994).

    Google Scholar 

  51. K. Tanaka, M. Hirai, Y. Tanigawara, K. Ueda, M. Takano, R. Hori, and K. Inui. Relationship between expression level of P-glycoprotein and daunorubicin transport in LLC-PK1 cells transfected with human MDR1 gene. Biochem. Pharmacol. 53:741–746 (1997).

    Google Scholar 

  52. A. Seelig, P. R. Allegrini, and J. Seelig. Partitioning of local anesthetics into membranes: surface charge effects monitored by the phospholipid head-group. Biochim.Biophys. Acta. 939:267–276 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald T. Borchardt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, F., Horie, K. & Borchardt, R.T. Are MDCK Cells Transfected with the Human MDR1 Gene a Good Model of the Human Intestinal Mucosa?. Pharm Res 19, 765–772 (2002). https://doi.org/10.1023/A:1016140429238

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016140429238

Navigation