Skip to main content
Log in

Biopharmaceutics Classification System: The Scientific Basis for Biowaiver Extensions

  • Commentary
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

REFERENCES

  1. G. L. Amidon, H. Lennernas, V. P. Shah, and J. R. Crison. A theoretical basis for a biopharmaceutic drug classification: The correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm. Res. 12:413–420 (1995).

    Google Scholar 

  2. C. S. Series. Biopharmaceutics Drug Classification and International Drug Regulation. Seminars and Open Forums, Tokyo, Japan, July 15, 1997; Geneva, Switzerland, May 14, 1996; and Princeton, New Jersey, May 17, 1995.

    Google Scholar 

  3. Guidance for industry, Immediate Release Solid Oral Dosage Forms: Scale-Up and Post-Approval Changes. November 1995, CDER/FDA.

  4. Guidance for industry, Dissolution Testing of Immediate Release Solid Oral Dosage Forms. August 1997, CDER/FDA.

  5. Guidance for industry, Waiver of In Vivo Bioavailability and Bioequivalence Studies for Immediate Release Solid Oral Dosage Forms Based on a Biopharmaceutics Classification System. August 2000, CDER/FDA.

  6. H. H. Blume and B. S. Schug. The biopharmaceutics classification system (BCS): Class III drugs-better candidates for BA/BE waiver? Eur. J. Pharm. Sci. 9:117–121 (1999).

    Google Scholar 

  7. J. B. Dressman. Physiological aspects of the design of dissolution tests. In G. L. Amidon, J. R. Robinson, and R. L. Williams (eds.), Scientific Foundations for Regulating Drug Product Quality, AAPS Press, 1997 pp. 155–168.

  8. L. X. Yu, E. Lipka, J. R. Crison, and G. L. Amidon. Transport approaches to modeling the biopharmaceutical design of oral drug delivery systems: Prediction of intestinal drug absorption. Adv. Drug Deliv. Rev. 19:359–376 (1996).

    Google Scholar 

  9. R. L. Oberle and G. L. Amidon. The influence of variable gastric emptying and intestinal transit rates on the plasma level curve of cimetidine; An explanation for the double peak phenomenon. J. Pharmacokinet. Biopharm. 15:529–544 (1987).

    Google Scholar 

  10. R. Lobenberg and G. L. Amidon. Modern bioavailability, bioequivalence and biopharmaceutics classification system. New scientific approaches to international regulatory standards. Eur. J. Pharm. Biopharm. 50:3–12 (2000).

    Google Scholar 

  11. D. Fleisher, C. Li, Y. Zhou, L.-H. Pao, and A. Karim. Drug, meal, and formulation interactions influencing drug absorption after oral administration. Clin. Pharmacokinet. 36:233–254 (1999).

    Google Scholar 

  12. L. X. Yu, A. S. Carlin, and A. S. Hussain. Feasibility studies of intrinsic dissolution rate as an alternative method to determine BCS solubility membership. AAPS annual meeting (2000).

  13. L. X. Yu. An integrated absorption model for determining dissolution, permeability, and solubility limited absorption. Pharm. Res. 16:1884–1888 (1999).

    Google Scholar 

  14. L. X. Yu, A. Bridgers, J. Polli, A. Vickers, S. Long, A. Roy, R. Winnike, and M. Coffin. Vitamin E-TPGS increases absorption flux of an HIV protease inhibitor by enhancing its solubility and permeability. Pharm. Res. 16:1812–1817 (1999).

    Google Scholar 

  15. J. E. Polli and M. J. Ginski. Human drug absorption kinetics and comparison to Caco-2 monolayer permeabilities. Pharm. Res. 15: 47–52 (1998).

    Google Scholar 

  16. Guidance for industry, Bioavailability and Bioequivalence Studies for Orally Administered Drug Products-General Considerations. October 2000, CDER/FDA

  17. V. H. L. Lee. Membrane transporters. Eur. J. Pharm. Sci. 11:S41–S50 (2000).

    Google Scholar 

  18. V. J. Wacher, L. Salphati, and L. Z. Benet. Active secretion and enterocytic drug metabolism barriers to drug absorption. Adv. Drug Deliv. Rev. 46:89–102 (2001).

    Google Scholar 

  19. K. M. Koch, A. F. Parr, J. J. Tomlinson, E. P. Sandefer, G. A. Digenis, K. H. Donn, and J. R. Powell. Effect of sodium pyrophosphate on ranitidine bioavailability and gastrointestinal transit time. Pharm. Res. 10:1027–1030 (1993).

    Google Scholar 

  20. D. A. Adkin, S. S. Davis, R. A. Sparrow, P. D. Huckle, A. J. Yu et al. 924 Phillips, and I. R. Wilding. The effects of pharmaceutical excipients on small intestinal transit.Br. J. Clin. Pharmacol. 39:381–387 (1995).

    Google Scholar 

  21. B. J. Aungst. Intestinal permeation enhancers. J. Pharm. Sci. 89: 429–442 (2000).

    Google Scholar 

  22. B. D. Rege, L. X. Yu, A. S. Hussain, and J. E. Polli. Effect of common excipients on Caco-2 transport of low permeability drugs. J. Pharm. Sci. 90:1776–1786 (2001).

    Google Scholar 

  23. L. X. Yu, C. D. Ellison, D. P. Conner, L. J. Lesko, and A. S. Hussain. Influence of drug release properties of conventional solid dosage forms on the systemic exposure of highly soluble drugs. {tiPharm. Sci.} 3:article 24, (2001).

  24. W. L. Chiou, S. M. Chung, T. C. Wu, and C. Ma. A comprehensive account on the role of efflux transporters in the gastrointestinal absorption of 13 commonly used substrate drugs in humans. Int. J. Clin. Pharmacol. Ther. 39:93–101 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence X. Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, L.X., Amidon, G.L., Polli, J.E. et al. Biopharmaceutics Classification System: The Scientific Basis for Biowaiver Extensions. Pharm Res 19, 921–925 (2002). https://doi.org/10.1023/A:1016473601633

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016473601633

Navigation