Skip to main content
Log in

Solution structure of human intestinal fatty acid binding protein: Implications for ligand entry and exit

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

The human intestinal fatty acid binding protein (I-FABP) is a small (131 amino acids) proteinwhich binds dietary long-chain fatty acids in the cytosol of enterocytes. Recently, an alanineto threonine substitution at position 54 in I-FABP has been identified which affects fatty acidbinding and transport, and is associated with the development of insulin resistance in severalpopulations including Mexican-Americans and Pima Indians. To investigate the molecularbasis of the binding properties of I-FABP, the 3D solution structure of the more commonform of human I-FABP (Ala54) was studied by multidimensional NMR spectroscopy.Recombinant I-FABP was expressed from E. coli in the presence and absence of 15N-enriched media. The sequential assignments for non-delipidated I-FABP were completed byusing 2D homonuclear spectra (COSY, TOCSY and NOESY) and 3D heteronuclear spectra(NOESY-HMQC and TOCSY-HMQC). The tertiary structure of human I-FABP wascalculated by using the distance geometry program DIANA based on 2519 distance constraintsobtained from the NMR data. Subsequent energy minimization was carried out by using theprogram SYBYL in the presence of distance constraints. The conformation of human I-FABPconsists of 10 antiparallel β-strands which form two nearly orthogonal β-sheets offive strands each, and two short α-helices that connect the β-strands A and B. Theinterior of the protein consists of a water-filled cavity between the two β-sheets. TheNMR solution structure of human I-FABP is similar to the crystal structure of rat I-FABP.The NMR results show significant conformational variability of certain backbone segmentsaround the postulated portal region for the entry and exit of fatty acid ligand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Baier, L.J., Sacchettini, J.C., Knowler, W.C., Eads, J., Paolisso, G., Tataranni, P.A., Mochizuki, H., Bennett, P.H., Bogardus, C. and Prochazka, M. (1995) J. Clin. Invest., 95, 1281–1287.

    Google Scholar 

  • Baier, L.J., Bogardus, C. and Sacchettini, J.C. (1996) J. Biol. Chem., 271, 10892–10896.

    Google Scholar 

  • Banaszak, L.B., Winter, N., Xu, Z., Bernlohr, D.A., Cowan, S. and Jones, T.A. (1994) Adv. Protein Chem., 45, 89–151.

    Google Scholar 

  • Bass, N.M. (1993) Mol. Cell. Biochem., 123, 191–202.

    Google Scholar 

  • Boden, G., Chen, X., Ruiz, J., White, J.V. and Rossetti, L. (1994) J. Clin. Invest., 93, 2438–2446.

    Google Scholar 

  • Bodenhausen, G. and Ruben, D.J. (1980) Chem. Phys. Lett., 69, 185–191.

    Google Scholar 

  • Glatz, J.C. and Van der Vusse, G.J. (1990) Mol. Cell. Biochem., 98, 247–251.

    Google Scholar 

  • Griesinger, C., Otting, G., Wüthrich, K. and Ernst, R.R. (1988) J. Am. Chem. Soc., 110, 7870–7872.

    Google Scholar 

  • Hodsdon, M.E., Toner, J.J. and Cistola, D.P. (1995) J. Biomol. NMR, 6, 198–210.

    Google Scholar 

  • Jeener, J., Meier, B.H., Bachmann, P. and Ernst, R.R. (1979) J. Chem. Phys., 71, 4546–4553.

    Google Scholar 

  • Jones, T.A., Bergfors, T., Sedzik, J. and Unge, T. (1988) EMBO J., 7, 1597–1604.

    Google Scholar 

  • Kaikaus, R.M., Bass, N.M. and Ockner, R.K. (1990) Experientia, 46, 617–630.

    Google Scholar 

  • Kraulis, P.J. (1991) J. Appl. Crystallogr., 24, 946–950.

    Google Scholar 

  • Laskowski, R.A., MacArthur, M.W., Moss, D.S. and Thornton, J.M. (1993) J. Appl. Crystallogr., 26, 283–291.

    Google Scholar 

  • Lassen, D., Lücke, C., Kromminga, A., Lezius, A., Spener, F. and Rüterjans, H. (1993) Mol. Cell. Biochem., 123, 15–22.

    Google Scholar 

  • Lassen, D., Lücke, C., Kveder, M., Mesgarzadeh, A., Schmidt, J.M., Specht, B., Lezius, A., Spener, F. and Rüterjans, H. (1995) Eur. J. Biochem., 230, 266–280.

    Google Scholar 

  • Lerner, L. and Bax, A. (1986) J. Magn. Reson., 69, 375–380.

    Google Scholar 

  • Lowe, J.B., Sacchettini, J.C., Laposata, M., McQuillan, J.J. and Gordon, J.I. (1987) J. Biol. Chem., 262, 5931–5937.

    Google Scholar 

  • Lücke, C., Lassen, D., Kreienkamp, H.-J., Spener, F. and Rüterjans, H. (1992) Eur. J. Biochem., 210, 901–910.

    Google Scholar 

  • Lücke, C., Zhang, F., Rüterjans, H., Hamilton, J.A. and Sacchettini, J.C. (1996) Structure, 4, 785–800.

    Google Scholar 

  • Marion, D., Driscoll, P.C., Kay, L.E., Wingfield, P.T., Bax, A., Gronenborn, A.M. and Clore, G.M. (1989a) Biochemistry, 28, 6150–6156.

    Google Scholar 

  • Marion, D., Kay, L.E., Sparks, S.W., Torchia, D.A. and Bax, A. (1989b) J. Am. Chem. Soc., 111, 1515–1517.

    Google Scholar 

  • Matarese, V., Stone, R.L., Waggoner, D.W. and Bernlohr, D.A. (1989) Prog. Lipid Res., 28, 245–272.

    Google Scholar 

  • Müller-Fahrnow, A., Egner, U., Jones, T.A., Rüdel, H., Spener, F. and Saenger, W. (1991) Eur. J. Biochem., 199, 271–276.

    Google Scholar 

  • Piantini, U., Sørensen, O.W. and Ernst, R.R. (1980) J. Am. Chem. Soc., 104, 6800–6801.

    Google Scholar 

  • Sacchettini, J.C., Gordon, J.I. and Banaszak, L.J. (1989) J. Mol. Biol., 208, 327–339.

    Google Scholar 

  • Sacchettini, J.C., Scapin, G., Gopaul, D. and Gordon, J.I. (1992) J. Biol. Chem., 267, 23534–23545.

    Google Scholar 

  • Scapin, G., Gordon, J.I. and Sacchettini, J.C. (1992) J. Biol. Chem., 267, 4253–4269.

    Google Scholar 

  • Shaka, A.J., Barker, P.B. and Freeman, R. (1985) J. Magn. Reson., 64, 547–552.

    Google Scholar 

  • Shon, K. and Opella, S.J. (1989) J. Magn. Reson., 71, 379–383.

    Google Scholar 

  • Veerkamp, J., Peeters, R.A. and Maatman, R.G.H.J. (1991) Biochim. Biophys. Acta, 1081, 1–24.

    Google Scholar 

  • Veerkamp, J. and Maatman, R.G.H.J. (1995) Prog. Lipid Res., 34, 17–52.

    Google Scholar 

  • Wüthrich, K. (1986) NMR of Proteins and Nucleic Acids, Wiley, New York, NY, U.S.A.

    Google Scholar 

  • Xu, Z., Bernlohr, D.A. and Banaszak, L.J. (1992) Biochem. J., 31, 3484–3492.

    Google Scholar 

  • Young, A.C.M., Scapin, G., Kromminga, A., Patel, S.B., Veerkamp, J.H. and Sacchettini, J.C. (1994) Structure, 2, 523–534.

    Google Scholar 

  • Zanotti, C., Scapin, G., Spandon, P., Veerkamp, J.H. and Sacchettini, J.C. (1992) J. Biol. Chem., 267, 18541–18550.

    Google Scholar 

  • Zuiderweg, E.R.P. and Fesik, S.W. (1989) Biochemistry, 28, 2387–2391.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, F., Lücke, C., Baier, L.J. et al. Solution structure of human intestinal fatty acid binding protein: Implications for ligand entry and exit. J Biomol NMR 9, 213–228 (1997). https://doi.org/10.1023/A:1018666522787

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018666522787

Navigation