Skip to main content
Log in

Enhanced Permeability of the Antimicrobial Agent 2,5-Bis(4-Amidinophenyl)Furan Across Caco-2 Cell Monolayers Via Its Methylamidoxime Prodrug

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. DB75 [2,5-bis(4-amidinophenyl)furan] is a promising antimicrobial agent although it has poor oral potency. In contrast, its novel prodrug, 2,5-bis(4-amidinophenyl)furan-bis-O-methyl- amidoxime (DB289), has excellent oral potency. The mechanisms of transport of DB289 and DB75 across intestinal epithelium have been investigated in these studies to understand differences in their oral potency.

Methods. Caco-2 cell monolayers were used as an in vitro model to examine the mechanisms of transport of DB289 and DB75. Samples collected from the transport studies were quantified using high-performance liquid chromatography with ultraviolet and fluorescence detection.

Results. A low permeability coefficient (3.8 × 10−7 cm/s for transport in apical [AP] to basolateral [BL] direction) and high sensitivity to extracellular Ca2+ suggest that AP to BL transport of DB75 across Caco-2 cell monolayers occurs predominantly via a paracellular route. DB289 has an 85-fold higher transport rate (322.0 × 10−7 cm/s for transport in the AP to BL direction) across Caco-2 monolayers than that of DB75. This, with its insensitivity to extracellular Ca2+ indicates that AP to BL transport of DB289 across Caco-2 cell monolayers occurs predominantly via a transcellular route.

Conclusions. DB75 is transported across Caco-2 cell monolayers predominantly via paracellular pathways, whereas the prodrug DB289 is transported via transcellular pathways. This could account for the much higher oral activity of DB289 over DB75.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. E. M. Lourie and W. Yorke. Studies in chemotherapy: The trypanocidal action of certain aromatic diamidines. Ann.Trop.Med.Parasitol. 33:289-304 (1939).

    Google Scholar 

  2. R. R. Tidwell and C. A. Bell. Pentamidine and related compounds in the treatment of Pneumocystis carinii infection. In P. D. Walzer, (ed.), Pneumocystis Carinii Pneumonia, Second Edition, Marcel Dekker, Inc., New York, 1993, pp. 561-583.

    Google Scholar 

  3. C. Burri and R. Brun. Human Trypanosomiasis. In G. C. Cook (ed.), Manson's Tropical Diseases, WB Saunders, Philadelphia, Pennsylvania, 2002, in press.

    Google Scholar 

  4. A. D. M. Bryceson, J. D. Chulay, M. Mugambi, J. B. Were, G. Gachihi, C. N. Chunge, R. Muigai, S. M. Bhatt, M. Ho, H. C. Spencer, J. Meme, and G. Anabwani. Visceral leishmaniasis unresponsive to antimonial drugs. II. Response to high dosage sodium stibogluconate or prolonged treatment with pentamidine. Trans.Roy.Soc.Trop.Med.Hyg. 79:705-714 (1985).

    PubMed  Google Scholar 

  5. J. A. Fishman. Treatment of infection due to Pneumocystis carinii. Antimicrob.Agents Chemother. 42:1309-1314 (1998).

    PubMed  Google Scholar 

  6. R. R. Tidwell, S. K. Jones, N. A. Naiman, L. C. Berger, W. B. Brake, C. C. Dykstra, and J. E. Hall. Activity of cationically substituted bis-benzimidazoles against experimental Pneumocystis carinii pneumonia. Antimicrob.Agents Chemother. 37:1713-1716 (1993).

    PubMed  Google Scholar 

  7. O. Dann, H. Fick, B. Pietzner, E. Walkenhorst, R. Fernbach, and D. Zeh. Trypanocide diamidine mit drei isolierten Ringsystemen. Liebigs.Ann.Chem. 160-194 (1975).

  8. B. P. Das and D. W. Boykin. Synthesis and antiprotozoal activity of 2,5-bis(4-guanylphenyl)furans. J.Med.Chem. 20:531-536 (1977).

    PubMed  Google Scholar 

  9. D. W. Boykin, A. Kumar, J. E. Hall, B. C. Bender, and R. R. Tidwell. Anti-pneumocystis activity of bis-amidoximes and bis-O-alkylamidoximes prodrugs. Bioorg.Med.Chem.Lett. 6:3017-3020 (1996).

    Google Scholar 

  10. E. A. Steck, K. E. Kinnamon, D. S. Rane, and W. L. Hanson. Leishmania donovani, Plasmodium berghei, Trypanosoma rhodesiense: antiprotozoal effects of some amidine types. Exp.Parasitol. 52:404-413 (1981).

    PubMed  Google Scholar 

  11. J. E. Hall, J. E. Kerrigan, K. Ramachandran, B. C. Bender, J. P. Stanko, S. K. Jones, D. A. Patrick, and R. R. Tidwell. Anti-Pneumocystis activities of aromatic diamidoxime prodrugs. Antimicrob.Agents Chemother. 42:666-674 (1998).

    PubMed  Google Scholar 

  12. B. Clement and F. Jung. N-hydroxylation of the antiprotozoal drug pentamidine catalyzed by rabbit liver cytochrome P-450 2C3 or human liver microsomes, microsomal retroreduction, and further oxidative transformation of the formed amidoximes. Drug Metab.Dis. 22:486-497 (1994).

    Google Scholar 

  13. S. M. Rahmathullah, J. E. Hall, B. C. Bender, D. R. McCurdy, R. R. Tidwell, and D. W. Boykin. Prodrugs for amidines: synthesis and anti-Pneumocystis carinii activity of carbamates of 2,5-bis(4-amidinophenyl)furan. J.Med.Chem. 42:3994-4000 (1999).

    PubMed  Google Scholar 

  14. W. Kamm, P. Raddatz, J. Gante, and T. Kissel. Prodrug approach for alpha IIb beta3-peptidomimetic antagonists to enhance their transport in monolayers of a human intestinal cell line (Caco-2): comparison of in vitro and in vivo data. Pharm.Res. 16:1527-1533 (1999).

    PubMed  Google Scholar 

  15. L. Zhou, R. D. Voyksner, D. R. Thakker, C. E. Stephens, M. Anbazhagan, D. W. Boykin, J. E. Hall, and R. R. Tidwell. Characterizing the fragmentation of 2,5-bis(4-amidinophenyl)furanbis-O-methylamidoxime and selected metabolites using ion trap mass spectrometry. Rapid Commun.Mass Spect. 16:1078-1085 (2002).

    Google Scholar 

  16. P. Artursson. Cell cultures as models for drug absorption across the intestinal mucosa. Crit.Rev.Ther.Drug Carrier Syst. 8:305-330 (1991).

    PubMed  Google Scholar 

  17. K. Lee and D. R. Thakker. Saturable transport of H2-antagonists ranitidine and famotidine across Caco-2 cell monolayers. J.Pharm.Sci. 88:680-687 (1999).

    PubMed  Google Scholar 

  18. R. Clothier, G. Starzec, S. Stipho, and Y. C. Kwong. Assessment of initial damage and recovery following exposure of MDCK cells to an irritant. Toxicol.in Vitro 13:713-717 (1999).

    Google Scholar 

  19. P. K. Smith, R. I. Krohn, G. T. Hermanson, A. K. Mallia, F. H. Gartner, M. D. Provenzano, E. K. Fujimoto, N. M. Goeke, B. J. Olson, and D. C. Klenk. Measurement of protein using bicinchoninic acid [published erratum appears in Anal.Biochem. 63:279, 1987]. Anal Biochem. 150:76-85 (1985).

    PubMed  Google Scholar 

  20. S. Neidle, L. R. Kelland, J. O. Trent, I. J. Simpson, D. W. Boykin, A. Kumar, and W. D. Wilson. Cytotoxicity of bis(phenylamidinium) furan alkyl derivatives in human tumour cell lines: Relation to DNA minor groove binding. Bioorg.Medicinal Chem.Lett. 7:1403-1408 (1997).

    Google Scholar 

  21. L. S. Gan, P. H. Hsyu, J. F. Pritchard, and D. Thakker. Mechanism of intestinal absorption of ranitidine and ondansetron: Transport across Caco-2 cell monolayers. Pharm.Res. 10:1722-1725 (1993).

    PubMed  Google Scholar 

  22. P. Artursson and C. Magnusson. Epithelial transport of drugs in cell culture. II: Effect of extracellular calcium concentration on the paracellular transport of drugs of different lipophilicities across monolayers of intestinal epithelial (Caco-2) cells. J.Pharm.Sci. 79:595-600 (1990).

    PubMed  Google Scholar 

  23. L. S. L. Gan and D. R. Thakker. Applications of the Caco-2 model in the design and development of orally active drugs: Elucidation of biochemical and physical barriers posed by the intestinal epithelium. Adv.Drug Deliv.Rev. 23:77-98 (1997).

    Google Scholar 

  24. P. Artursson and J. Karlsson. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem.Biophys.Res.Commun. 175:880-885 (1991).

    PubMed  Google Scholar 

  25. M. J. Cho, A. Adson, and F. J. Kezdy. Transepithelial transport of aliphatic carboxylic acids studied in Madin Darby canine kidney (MDCK) cell monolayers. Pharm.Res. 7:325-331 (1990).

    PubMed  Google Scholar 

  26. G. A. Sawada, C. L. Barsuhn, B. S. Lutzke, M. E. Houghton, G. E. Padbury, N. F. Ho, and T. J. Raub. Increased lipophilicity and subsequent cell partitioning decrease passive transcellular diffusion of novel, highly lipophilic antioxidants. J.Pharmacol.Exp.Ther. 288:1317-1326 (1999).

    PubMed  Google Scholar 

  27. P. Artursson and R. T. Borchardt. Intestinal drug absorption and metabolism in cell cultures: Caco-2 and beyond. Pharm.Res. 14:1655-1658 (1997).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard R. Tidwell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, L., Lee, K., Thakker, D.R. et al. Enhanced Permeability of the Antimicrobial Agent 2,5-Bis(4-Amidinophenyl)Furan Across Caco-2 Cell Monolayers Via Its Methylamidoxime Prodrug. Pharm Res 19, 1689–1695 (2002). https://doi.org/10.1023/A:1020957430400

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020957430400

Navigation