Skip to main content
Log in

Application of a Combined “Effect Compartment/Indirect Response Model” to the Central Nervous System Effects of Tiagabine in the Rat

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

Pharmacological inhibition of GABA uptake transporters provides a mechanism for increasing GABAergic transmission, which may be useful in the treatment of various neurological disorders. The purpose of our investigations was to develop an integrated pharmacokinetic–pharmacodynamic (PK/PD) model for the characterization of the pharmacological effect of tiagabine, R-N-(4,4-di-(3-methylthien-2-yl)but-3-enyl)nipecotic acid, in individual rats in vivo. The tiagabine-induced increase in the amplitude of the EEG 11.5–30 Hz frequency band (β), was used as pharmacodynamic endpoint. Chronically instrumented male Wistar rats were randomly allocated to four groups which received an infusion of 3, 10, or 30 mg kg −1 \((\bar x \pm SE,{\text{ }}n = 23)\) \(96 \pm 9\) ml min -1 kg−1, 1.5ŷ0.1 L kg−1 and 20ŷ0.2 min.A time delay was observed between the occurrence of maximum plasma drug concentrations and maximal response. A physiological PK/PD model has been used to account for this time delay, in which a biophase was postulated to account for tiagabine available to the GABA uptake carriers in the synaptic cleft and the increase in EEG effect was considered an indirect response due to inhibition of GABA uptake carriers. The population values for the pharmacodynamic parameters characterizing the delay in pharmacological response relative to plasma concentrations were keo=0.030 min −1 and kout=81 min−1, respectively. Because of the large difference in these values the PK/PD model was simplified to the effect compartment model. Population estimates \((\bar x \pm SE)\) were E0=155 ŷ 6 μV, Emax=100 ŷ 5 μV, EC50=287 ŷ 7 ng ml−1, Hill factor=1.8 ŷ 0.2 and keo=0.030 ŷ 0.002 min −1. The results of this analysis show that for tiagabine the combined “effect compartment-indirect response” model can be simplified to the classical “effect compartment” model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. P. Krogsgaard-Larsen. Inhibitors of the GABA uptake systems. Mol. Cel. Biochem. 31:105-121(1980).

    Article  CAS  Google Scholar 

  2. P. Krogsgaard-Larsen, O. M. Larsson, and A. Schousboe. GABA uptake inhibitors: relevance to antiepileptic drug research. Epileps. Res. 1:77-93 (1987).

    Article  CAS  Google Scholar 

  3. F. E. Ali, W. E. Bondinell, P. A. Dandridge, J. S. Frazee, E. Garvey, G. R. Girard, C. Kaiser, T. W. Ku, J. J. Lafferty, G. I. Moonsammy, H.-J. Oh, J. A. Rush, P. E. Setler, O. D. Stringer, J. W. Venslavsky, B. W. Volpe, L. M. Younger, and C. L. Zirke. Orally active and potent inhibitors of gamma-aminobutyric acid uptake. J. Med. Chem. 28:653-660 (1985).

    Article  CAS  PubMed  Google Scholar 

  4. C. Braestrup, E. B. Nielsen, U. Sonnewald, L. J. S. Knutsen, K. E. Andersen, J. A. Jansen, K. Frederiksen, P. H. Andersen, A. Mortensen, and P. Suzdak, (R)-N-[4,4-Bis(3-Methyl-2-thienyl)but-3-en-1-yl]Nipecotic acid binds with high affinity to the brain γ-aminobutyric acid uptake carrier. J. Neurochem. 54:639-647 (1990).

    Article  CAS  PubMed  Google Scholar 

  5. P. Suzdak and J. A. Jansen. A review of the preclinical pharmacology of tiagabine: a potent and selective anticonvulsant GABA uptake inhibitor. Epilepsia 36:612-626 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. W. J. Jusko and H. C. Ko. Physiologic indirect response models characterize diverse types of pharmacodynamic effects. Clin. Pharmacol. Ther. 56:406-419 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. N. L. Dayneka, V. Garg, and W. J. Jusko. Comparison of four basic models of indirect pharmacodynamic responses. J. Pharmacokin. Biopharm. 21:457-478 (1993).

    Article  CAS  Google Scholar 

  8. L. B. Sheiner, D. R. Stanski, S. Vozeh, R. D. Miller, and J. Ham. Simultaneous modelling of pharmacokinetics and pharmacodynamics: Application to d-tubocurarine. Clin. Pharmacol. Ther. 25:358-371 (1979).

    CAS  PubMed  Google Scholar 

  9. R. Nagashima, R. A. O'Reilly, and G. Levy. Kinetics of pharmacologic effects in man: the anticoagulant action of warfarin. Clin. Pharmacol. Ther. 10:22-35 (1969).

    CAS  PubMed  Google Scholar 

  10. Z.-X. Xu, Y.-N. Sun, D. C. DuBois R. R. Almon, and W. J. Jusko. Third-generation model for corticosteroid pharmacodynamics: roles of glucocorticoid receptor mRNA and tyrosine aminotransferase mRNA in rat liver. J. Pharmacokin. Biopharm. 23: 163-181 (1995).

    Article  CAS  Google Scholar 

  11. G. L. Levy. Mechanism-based pharmacodynamic modelling. Clin. Pharmacol. Ther. 56:356-357 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. D. Verotta and L. B. Sheiner. A general conceptual model for non-steady state pharmacokinetic/pharmacodynamic data. J. Pharmacokin. Biopharm. 23:1-4 (1995).

    Article  CAS  Google Scholar 

  13. W. J. Jusko, H. C. Ko, and W. F. Ebling. Convergence of direct and indirect pharmacodynamic response models. J. Pharmacokin. Biopharm. 23:5-8 (1995).

    Article  CAS  Google Scholar 

  14. D. Verotta and L. B. Sheiner. Rejoinder. J. Pharmacokin. Biopharm. 23:9-10 (1995).

    Article  Google Scholar 

  15. J. W. Mandema and M. Danhof. Pharmacokinetic-pharmacodynamic modelling of the central nervous system effects of heptabarbital using aperiodic EEG analysis. J. Pharmacokin. Biopharm. 18:459-481 (1990).

    Article  CAS  Google Scholar 

  16. L. E. Gustavson and S.-Y. Chu. High performance liquid chromatographic procedure for the determination of tiagabine concentrations in human plasma using electrochemical detection. J. Chrom. 574: 313-318 (1992).

    Article  CAS  Google Scholar 

  17. R. C. Schoemaker and A. F. Cohen. Estimating impossible curves using NONMEM. Br. J. Clin. Pharmacol. 42:283-290 (1996).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. S. L. Beal and L. B. Sheiner (eds.). NONMEM users guide, NONMEM project group, University of California, San Francisco, CA (1992).

    Google Scholar 

  19. H. Akaike. A new look at the statistical model identification. IEEE Transactions on Automat. Control 19:716-723 (1974).

    Article  Google Scholar 

  20. M. Gibaldi and D. Perrier. Non-compartmental analysis based on statistical moment theory. In Pharmacokinetics (2nd ed.), Marcel Dekker, New Yorkm 1982, pp. 409-424.

    Google Scholar 

  21. A. Fink-Jensen, P. D. Suzdak, M. D. B. Swedberg, M. E. Judge, L. Hansen, and P. G. Nielsen. The γ-aminobutyric acid (GABA) uptake inhibitor, tiagabine, increases extracellular brain levels of GABA in awake rats. Eur. J. Pharmacol. 220:197-201 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. M. Lancel, J. Faulhaber, and R. A. Deisz. Effect of the GABA uptake inhibitor tiagabine on sleep and EEG power spectra in the rat. Br. J. Pharmacol. 123:1471-1477 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. A. M. L. Coenen, E. H. M. Blezer, and V. Luijtelaar. Effects of the GABA uptake inhibitor tiagabine on electroencephalogram, spike-wave discharges and behaviour of rats. Epilepsy Res. 21:89-94 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. L. B. Sheiner and D. Verotta. Further notes on physiological indirect response models. Clin. Pharmacol. Ther. 58:238-240 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. E. A. Van Schaick, H. J. M. M. De Graaf, A. P. IJzerman, and M. Danhof. Physiological indirect effect modelling of the anti-lipolytic effects of adenosine A1 receptor agonists. J. Pharmacokin. Biopharm. 25:713-730 (1997).

    Article  Google Scholar 

  26. E. Snoeck, V. Pitrovskij, P. Jacqmin, A. Van Peer, M. Danhof, K. Ver Donck, R. Woestenborghs, H. Van Belle, L. Van Bortel, R. Van Gool, A. Dupont, and J. Heykants. Population analysis of the nonlinear red blood cell partitioning and the concentration-effect relationship of draflazine following various infusion rates. Br. J. Clin. Pharmacol. 43:603-612 (1997).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. E. Snoeck, K. Ver Donck, P. Jacqmin, H. Van Belle, A. G. Dupont, A. Van Peer, and M. Danhof. Physiological red blood cell kinetic model to explain the apparent discrepancy between adenosine breakdown inhibition and nucleoside transport occupancy of draflazine. J. Pharmacol. Exp. Ther. 286:142-149 (1998).

    CAS  PubMed  Google Scholar 

  28. J. C. Rekling, H. Jahnsen, and A. M. Laursen. The effect of two lipophilic γ-aminobutyric acid uptake blockers in CA1 of the rat hippocampal slice. Br. J. Pharmacol. 99:103-106 (1990).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. C. H. Davies, S. N. Davies, and G. L. Collingridge. Paired-pulse depression of monosynaptic GABA-mediated inhibitory post-synaptic responses in rat hippocampus. J. Physiol. 424:513-531 (1990).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. S. M. Thompson and B. H. Gähwiler. Effects of the GABA uptake inhibitor tiagabine on inhibitory synaptic potentials in rat hippocampal slice cultures. J. Neurophysiol. 67:1698-1701 (1992).

    CAS  PubMed  Google Scholar 

  31. A. Cleton, R. A. Voskuyl, and M. Danhof. Adaptive changes in the pharmacodynamics of midazolam in different models of epilepsy: kindling, cortical stimulation, genetic absence epilepsy. Br. J. Pharmacol. 125:615-620 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. J. W. Mandema, E. Tukker, and M. Danhof. Pharmacokinetic-pharmacodynamic modelling of the EEG effects of midazolam in individual rats: influence of rate and route of administration. Br. J. Pharmacol. 102:663-668 (1991).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. A. Wessén, K. Parivar, M. Widman, A. Nilsson, and P. Hartvig. Concentration-effect relationships of eltanolone given as a bolus dose or constant rate intravenous infusion to healthy male volunteers. Anesthesiology 84:1317-1326 (1996).

    Article  PubMed  Google Scholar 

  34. A. Patat, F. le Coz, C. Dubruc, J.-M. Gandon, G. Durrieu, I. Cimarotsi, S. Jezequil, O. Curet, I. Zieleniuk, H. Allain, and P. Rosenzwieg. Pharmacodynamics and pharmacokinetics of two dosage regimens of befloxatone, a new reversible and selective monoamine oxidase inhibitor, at steady state in healthy volunteers. J. Clin. Pharmacol. 36:216-229 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. E. H. Cox, T. Kerbusch, P. H. van der Graaf, and M. Danhof. Pharmacokinetic-pharmacodynamic modelling of the EEG effect of synthetic opioids in the rat: correlation with the interaction at the μ-opioid receptor. J. Pharmacol. Exp. Ther. 284:1095-1103 (1998).

    CAS  PubMed  Google Scholar 

  36. T. Rydberg, A. Jönsson, M. O. Karlsson, and A. Melander. Concentration-effect relations of glibenclamide and its active metabolites in human: modelling of pharmacokinetics and pharmacodynamics. Br. J. Clin. Pharmacol. 43:373-381 (1997).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meindert Danhof.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cleton, A., de Greef, H.J.M.M., Edelbroek, P.M. et al. Application of a Combined “Effect Compartment/Indirect Response Model” to the Central Nervous System Effects of Tiagabine in the Rat. J Pharmacokinet Pharmacodyn 27, 301–323 (1999). https://doi.org/10.1023/A:1020999114109

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020999114109

Navigation