Skip to main content
Log in

Growth Hormone and Prolactin—Molecular and Functional Evolution

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Growth hormone, prolactin, the fish hormone, somatolactin, and related mammalian placental hormones, including placental lactogen, form a family of polypeptide hormones that share a common tertiary structure. They produce their biological effects by interacting with and dimerizing specific single transmembrane-domain receptors. The receptors belong to a superfamily of cytokine receptors with no intrinsic tyrosine kinase, which use the Jak-Stat cascade as a major signalling pathway. Hormones and receptors are thought to have arisen as a result of gene duplication and subsequent divergence early in vertebrate evolution. Mammalian growth hormone and prolactin show a slow basal evolutionary rate of change, but with episodes of accelerated evolution. These occurred for growth hormone during the evolution of the primates and artiodactyls and for prolactin in lineages leading to rodents, elephants, ruminants, and man. Placental lactogen has probably evolved independently on three occasions, from prolactin in rodents and ruminants and from growth hormone in man. Receptor sequences also show variable rates of evolution, corresponding partly, but not completely, with changes in the ligand. A principal biological role of growth hormone, the control of postnatal growth, has remained quite consistent throughout vertebrate evolution and is largely mediated by insulin-like growth factors. Prolactin has many and diverse roles. In relation to lactation, the relative roles of growth hormone and prolactin vary between species. Correlation between the molecular and functional evolution of these hormones is very incomplete, and it is likely that many important functional adaptations involved changes in regulatory elements, for example, altering tissue of origin or posttranscriptional processing, rather than change of the structures of the proteins themselves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. C. Darwin (1859). On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life, 1st edn., John Murray, London.

    Google Scholar 

  2. E. Mayr (1991). One Long Argument.Charles Darwin and the Genesis of ModernEvolutionary Thought, Harvard University Press, Cambridge, MA.

    Google Scholar 

  3. P. K. Qasba and S. Kumar (1997). Molecular divergence of lysozymes and ®-lactalbumin. Crit.Rev.Biochem.Mol.Biol. 32: 255–306.

    Google Scholar 

  4. A. S. Goldman and B. S. Prabhakar (1996). Immunology. In S. B. Baron (ed.), Medical Microbiology, 4th edn., The University of Texas Medical Branch Press, Galveston, TX, pp. 1–34.

    Google Scholar 

  5. A. S. Goldman, S. Chheda, and R. Garofalo (1998). Evolution of immunological functions of the mammary gland and the postnatal development of immunity. Pediatr.Res. 43: 155–162.

    PubMed  Google Scholar 

  6. I. Tizard (2001). The protective properties of milk and colostrum in non-human species. In B. Woodward and H. H. Draper (eds.), Advances in Nutritional Research.Immunological Properties of Milk, Vol.10, Kluwer Academic/Plenum Publishers, New York, NY, pp. 130–166.

    Google Scholar 

  7. A. S. Goldman, S. Chheda, and S. E. Keeney (1998). Immunology of human milk and host immunity. In R. A. Polin and W. W. Fox (eds.), Fetal and Neonatal Physiology, 3rd edn., Vol. 184, W. B. Saunders, Philadelphia, PA, pp. 2022–2032.

    Google Scholar 

  8. R. P. Garofalo and A. S. Goldman (1998). Cytokines, chemokines, and colony stimulating factors in human milk: The 1997 update. Biol.Neonat. 74: 134–142.

    Google Scholar 

  9. M. Nei, J. C. Stephens, and N. Saitou (1985). Methods for computing the standard errors of branching points in an evolutionary tree and their application to molecular data from humans and apes. Mol.Biol.Evol. 2: 66–85.

    Google Scholar 

  10. A. R. Templeton (1985). The phylogeny of the hominoid primates: A statistical analysis of the DNA-DNA hybridization data. Mol.Biol.Evol. 2: 420–433.

    Google Scholar 

  11. L. C. Smith and E. H. Davidson (1994). The echinoderm immune system. Characters shared with vertebrate immune systems and characters arising later in deuterostome phylogeny. Ann.NY Acad.Sci. 712: 213–226.

    Google Scholar 

  12. Z. X. Luo, A. W. Crompton, and A. L. Sun (2001). A new mammaliaform from the early Jurassic and evolution of mammalian characteristics. Science 292: 1535–1540.

    PubMed  Google Scholar 

  13. D. G. Blackburn (1993). Lactation: Historical patterns and potential for manipulation. J.Dairy Sci. 76: 3195–3212.

    PubMed  Google Scholar 

  14. L. Paulesu, R. Romagnoli, M. Marchetti, M. Cintorino, P. Ghiara, F. M. Guarino, and G. Ghiara (1995). Cytokines in viviparous reproduction of squamate reptiles: Interleukin-1® (IL-1®) and IL-1¯ in placental structures of a skink. Placenta 16: 193–205.

    PubMed  Google Scholar 

  15. L. Paulesu, C. Cateni, R. Romagnoli, F. Chellini, F. Angelini, F. M. Guarino, V. Rider, K. Imakawa, and E. Bigliardi (2001). Evidence of Hbeta58, a gene involved in mammalian placental development, in the three-toed skink, Chalcides chalcides (Squamata: Scincidae), a viviparous placentotrophic reptile. Placenta 22: 735–741.

    Google Scholar 

  16. M. Griffiths (1988). The platypus. Sci.Am. 258: 84–91.

    Google Scholar 

  17. M. E. Stewart (1992). Sebaceous gland lipids. Semin.Dermatol. 11: 100–105.

    PubMed  Google Scholar 

  18. S. Ansai, S. Koseki, Y. Hozumi, and S. Kondo (1995). An immunohisto-chemical study of lysozyme, CD-15 (Leu M1), and gross cystic disease fluid protin-15 in various skin tumors. Assessment of the specificity and sensitivity of markers of apocrine differentiation. Am.J.Dermatopathol. 17: 249–255.

    PubMed  Google Scholar 

  19. R. Alemany, M. R. Vila, C. Franci, G. Egea, F. X. Real, and T. M. Thomson (1993). Glycosyl phosphatidylinositol membrane anchoring of melanotransferrin (p97): Apical compartmentalization in intestinal epithelial cells. J.Cell.Sci. 104: 1155–1162.

    Google Scholar 

  20. C. G. Teahan, H. A. McKenzie, and M. Griffiths (1991). Some monotreme milk “whey” and blood proteins. Comp.Biochem. Physiol. 99B: 99–118.

    Google Scholar 

  21. C. G. Tehan and H. A. McKenzie (1990). Iron (III) binding proteins of echidna (Tachyglossus aculeatus) and platypus (Ornithorhynchus anatinus). Biochem.Int. 22: 321–328.

    PubMed  Google Scholar 

  22. G. A. Jenkins, J. H. Bradbury, M. Messer, and E. Trifonoff (1984). Determination of the structures of fucosyl-lactose and difucosyl-lactose from the milk of monotremes, using 13 C-n. m.r. spectroscopy. Carbohydr.Res. 126: 157–161.

    Google Scholar 

  23. D. S. Newburg (1999). Human milk glycoconjugates that inhibit pathogens. Curr.Med.Chem. 6: 117–127.

    PubMed  Google Scholar 

  24. J. K. Crane, S. S. Azar, A. Stam, and D. S. Newburg (1994). Oligosaccharides from human milk block binding and activity of the Escherichia coli heat-stable enterotoxin (Sta) in T84 intestinal cells. J.Nutr. 124: 2358–2364.

    Google Scholar 

  25. M. Aveskogh and L. Hellman (1998). Evidence for an early appearance of modern post-switch isotypes in mammalian evolution; cloning of IgE, IgG and IgA from the marsupial Monodelphis domestica. Eur.J.Immunol. 28: 2738–2750.

    PubMed  Google Scholar 

  26. M. B. Renfree (1973). The composition of fetal fluids of the marsupial Macropus eugenii. Dev.Biol. 33: 62–79.

    Google Scholar 

  27. M. Yadav, M. Eadie, and N. F. Stanley (1971). Passage of maternal immunoglobulins to the pouch young of a marsupial, Setonix brachyurus. Aust.J.Zool. 21: 171.

    Google Scholar 

  28. E. M. Deane, D. H. Cooper, and M. B. Renfree (1990). Immunoglobulin G levels in fetal and newborn tammar wal-labies (Macropus eugenii). Reprod.Fertil.Dev. 2: 369–375.

    Google Scholar 

  29. E. M. Deane and D. W. Cooper (1984). Immunology of pouch young marsupials. I: Levels of immunoglobulin, transferrin, and albumin in the blood and milk of euros and wallabies (hill kangaroos): Macropus robustus, marsupialia. Dev.Comp. Immunol. 8: 863–876.

    Google Scholar 

  30. F. M. Adamski and J. Demmer (2000). Immunological protection of the vulnerable marsupial pouch young: Two periods of immune transfer during lactation in Trichosurus vulpecula (brushtail possum). Dev.Comp.Immunol. 24: 491–502.

    Google Scholar 

  31. C. P. Piotte, C. J. Marshall, M. J. Hubbard, C. Collet, and M. R. Grigor (1997). Lysozyme and ®-lactalbumin from the milk of a marsupial, the common brush-tailed possum (Trichosurus vulpecula). Biochim.Biophys.Acta 1336: 235–242.

    PubMed  Google Scholar 

  32. D. S. Newberg and S. H. Neubauer (1995). Carbohydrates in milk: Analysis, quantities, and significance. In R. G. Jensen (ed.), Handbook of Milk Composition, Academic Press, San Diego, CA, pp. 273–347.

    Google Scholar 

  33. L. Young, K. Basden, D. W. Cooper, and E. M. Deane (1997). Cellular components of the milk of the tammar wallaby (Macropus eugenii). Aust.J.Zool. 45: 423–433.

    Google Scholar 

  34. E. Eizirik, W. J. Murphy, and S. J. O'Brien (2001). Molecular dating and biogeography of the early placental mammal radiation. J.Hered. 92: 212–219.

    Google Scholar 

  35. S. Easteal (1999). Molecular evidence for the early divergence of placental mammals. Bioessays 21: 1052–1058.

    PubMed  Google Scholar 

  36. W. J. Murphy, E. Eizirik, S. J. O'Brien, O. Madsen, M. Scally, C. J. Douady, E. Teeling, O. A. Ryder, M. J. Stanhope, W. W. de Jong, and M. S. Springer (2001). Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294: 2348–2351.

    Google Scholar 

  37. T. D. White, G. Suwa, and B. Asfaw (1994). Australopithe-cus ramidus, a new species of early hominid from Aramis, Ethiopia. Nature 371: 306–312.

    Google Scholar 

  38. A. Hill, S. Ward, A. Deino, A. Curtis, and R. Drake (1992). Earliest Homo. Nature 355: 719–722.

    PubMed  Google Scholar 

  39. F. J. Ayala (1995). The myth of Eve: Molecular biology and human origins. Science 270: 1930–1936.

    Google Scholar 

  40. R. V. Collura and C.-B. Stewart (1995). Insertions and duplications of mtDNA in the nuclear genomes of Old World monkeys and hominoids. Nature 378: 485–489.

    Google Scholar 

  41. M. F. Hammer (1995). A recent common ancestry for human Y chromosomes. Nature 378: 376–378.

    Google Scholar 

  42. B. Wood (1992). Origin and evolution of the genus Homo. Nature 355: 783–790.

    Google Scholar 

  43. N. Takahata, Y. Satta, and J. Klein (1995). Divergence time and population size in the lineage leading to modern humans. Theor.Popul.Biol. 48: 198–221.

    Google Scholar 

  44. J. H. Edwards (1994). Comparative genome mapping in mammals. Curr.Opin.Genet.Dev. 4: 861–867.

    Google Scholar 

  45. M. Goodman, W. J. Bailey, K. Hayasaka, M. J. Stanhope, J. Slightom, and J. Czelusniak (1994). Molecular evidence on primate phylogeny from DNA sequences. Am.J.Phys. Anthropol. 94: 3–24.

    PubMed  Google Scholar 

  46. J. Shoshani, C. P. Groves, E. L. Simons, and G. F. Gunnell (1996). Primate phylogeny: Morphological vs. molecular results. Mol.Phylogenet.Evol. 5: 102–154.

    PubMed  Google Scholar 

  47. L. Pemberton, J. Taylor-Papadimitriou, and S. J. Gendler (1992). Antibodies to the cytoplasmic domain of the MUC 1 mucin show conservation throughout mammals. Biochem. Biophys.Res.Commun. 185: 167–175.

    PubMed  Google Scholar 

  48. K. R. Acharya, D. I. Stuart, D. C. Phillips, H. A. McKenzie, and C. G. Teahan (1994). Models of the three-dimensional structures of echidna, horse, and pigeon lysozymes: Calcium-binding lysozymes and their relationship with alpha-lactalbumins. J.Protein Chem. 13: 569–584.

    PubMed  Google Scholar 

  49. D. Newburg (1996). Oligosaccharides and glycoconjugates in human milk. J.Mammary Gland Biol.Neoplasia 1: 271–283.

    PubMed  Google Scholar 

  50. P. K. Gopal and H. S. Gill (2000). Oligosaccharides and glycoconjugates in bovine milk and colostrum. Br.J.Nutr. 84(Suppl. 1):S69–S74.

    Google Scholar 

  51. A. S. Goldman, C. Garza, C. A. Johnson, B. L. Nichols, and R. M. Goldblum (1982). Immunologic factors in human milk during the first year of lactation. J.Pediatr. 100: 563–567.

    PubMed  Google Scholar 

  52. N. F. Butte, R. M. Goldblum, L. M. Fehl, K. Loftin, E. O. Smith, C. Garza, and A. S. Goldman (1984). Daily ingestion of immunologic components in human milk during the first four months of life. Acta Paediatr.Scand. 73: 296–301.

    PubMed  Google Scholar 

  53. N. L. Norcross (1982). Secretion and composition of colostrums and milk. J.Am.Vet.Med.Assoc. 181: 1057–1060.

    Google Scholar 

  54. H. Korhonen, P. Marnila, and H. S. Gill (2000). Milk immunoglobulins and complement factors. Br.J.Nutr.84 (Suppl. 1): S75–S80.

    PubMed  Google Scholar 

  55. L. Sanchez, P. Aranda, M. D. Perez, and M. Calvo (1988). Concentration of lactoferrin and transferrin throughout lactation in cow's colostrum and milk. Biol.Chem.Hoppe Seyler 369: 1005–1008.

    PubMed  Google Scholar 

  56. J. Goudswaard, E. C. Bakker-de Koff, and H. P. van Ravenswaaij-Kraan (1978). Lysozyme and its presence in bovine milk and serum. Tijdschr Diergeneeskd 103: 445–450.

    PubMed  Google Scholar 

  57. L. Gothefors and S. Marklund (1975). Lactoperoxidase activity in human milk and in saliva of newborn infants. Infect. Immun. 11: 1210–1215.

    PubMed  Google Scholar 

  58. B. Reiter (1985). The lactoperoxidase system of bovine milk. In R. M. Pritt and J. Tenovuo (eds.), The Lactoperoxidase System: Chemistry and Biologic Significance, Marcel Dekker, New York, pp. 123–144.

    Google Scholar 

  59. H. Schroten (2001). Chemistry of milk mucins and their anti-microbial action. Adv.Nutr.Res.Immunol.Prop.Milk 10: 231–245.

    Google Scholar 

  60. V. Bl ¨ um (1985). Vertebrate Reproduction, Springer-Verlag, Berlin.

    Google Scholar 

  61. J. E. Butler (1986). Biochemistry and biology of ruminant im-munoglobulins. Prog.Vet.Microbiol.Immunol. 2: 1–53.

    PubMed  Google Scholar 

  62. J. C. Olson and G. A. Leslie (1982). IgD: A component of the secretory immune system? Ann.N.Y.Acad.Sci. 399: 97–104.

    PubMed  Google Scholar 

  63. E. F. Thatcher and L. J. Gershwen (1989). Colostral transfer of bovine immunoglobulin E and dynamics of serum IgE in calves. Vet.Immunol.Immunopathol. 29: 325–334.

    Google Scholar 

  64. M. F. Cole, C. A. Hale, and S. Sturzenegger (1992). Identification of two subclasses of IgA in the chimpanzee (Pan troglodytes). J.Med.Primatol. 21: 275–278.

    PubMed  Google Scholar 

  65. U. Galili (1993). Evolution and pathophysiology of the human natural anti-alpha-galactosyl IgG (anti-Gal) antibody. Springer Semin.Immunopathol. 15: 155–171.

    Google Scholar 

  66. R. M. Hamadeh, U. Galili, P. Zhou, and J. M. Griffiss (1995). Anti-alpha-galactosyl immunoglobulin A (IgA), IgG, and IgM in human secretions. Clin.Diagn.Lab.Immunol.2: 125–131.

    Google Scholar 

  67. L. A. Davidson and B. Lonnerdal (1986). Isolation and characterization of rhesus monkey milk lactoferrin. Pediatr.Res. 20: 197–201.

    Google Scholar 

  68. J. K. Cho, N. Azuma, C. H. Lee, J. H. Yu, and C. Kanno (2000). Purification of membrane-bound lactoferrin from the human milk fat globule membrane. Biosci.Biotechnol.Biochem. 64: 633–635.

    Google Scholar 

  69. P. L. Masson, J. F. Heremans, J. J. Prignot, and G. Wauters (1966). Immunochemical localization and bacteriostatic properties of an iron-binding protein from bronchial mucus. Thorax 21: 538–544.

    Google Scholar 

  70. Y. Andersson, S. Lindquist, C. Lagerqvist, and O. Hernell (2000). Lactoferrin is responsible for the fungistatic effect of human milk. Early Hum.Dev. 59: 95–105.

    Google Scholar 

  71. W. Bellamy, H. Wakabayashi, M. Takase, K. Kawase, S. Shimamura, and M. Tomita (1993). Killing of Candida albicans by lactoferricin B, a potent antimicrobial peptide derived from the N-terminal region of bovine lactoferrin. Med.Microbiol. Immunol.(Berl.) 182: 97–105.

    Google Scholar 

  72. L. H. Vorland, H. Ulvatne, J. Andersen, H. Haukland, O. Rekdal, J. S. Svendsen, and T. J. Gutteberg (1998). Lacto-ferricin of bovine origin is more active than lactoferricins of human, murine and caprine origin. Scand.J.Infect.Dis. 30: 513–517.

    Google Scholar 

  73. D. Arnold, A. M. Di Biase, M. Marchetti, A. Pietrantoni, P. Valenti, L. Seganti, and F. Superti (2002). Antiadenovirus activity of milk proteins: Lactoferrin prevents viral infection. Antiviral Res. 53: 153–158.

    Google Scholar 

  74. N. M. Clarke and J. T. May (2000). Effect of antimicrobial factors in human milk on rhinoviruses and milk-borne cytomegalovirus in vitro. J.Med.Microbiol. 49: 719–723.

    Google Scholar 

  75. F. Superti, M. G. Ammendolia, P. Valenti, and L. Seganti (1997). Antirotaviral activity of milk proteins: Lactoferrin prevents rotavirus infection in the enterocyte-like cell line HT-29. Med.Microbiol.Immunol.(Berl.). 186: 83–91.

    Google Scholar 

  76. M. Moriuchi and H. Moriuchi (2001). A milk protein lacto-ferrin enhances human T cell leukemia virus type I and sup-presses HIV-1 infection. J.Immunol.166: 4231–4236.

    Google Scholar 

  77. A. S. Goldman, L. W. Thorpe, R. M. Goldblum, and L. ° A. Hanson (1986). Anti-inflammatory properties of human milk. Acta Paediatr.Scand. 75: 689–695.

    PubMed  Google Scholar 

  78. A. S. Goldman, C. Garza, R. J. Schanler, and R. M. Goldblum (1990). Molecular forms of lactoferrin in stool and urine from infants fed human milk. Pediatr.Res. 27: 252–255.

    Google Scholar 

  79. P. Chaturvedi, C. D. Warren, C. R. Buescher, L. K. Pickering, and D. S. Newburg (2001). Survival of human milk oligosaccharides in the intestine of infants. Adv.Exp.Med. Biol.Immunol.Prop.Milk 501: 315–323.

    Google Scholar 

  80. J. A. Grobler, K. R. Rao, S. Pervaiz, and K. Brew (1994). Sequences of two highly divergent canine type c lysozymes: Implications for the evolutionary origins of the lysozyme/alpha-lactalbumin superfamily. Arch.Biochem. Biophys. 313: 360–366.

    PubMed  Google Scholar 

  81. D. M. Chipman and N. Sharon (1969). Mechanism of lysozyme action. Science 165: 454–465.

    PubMed  Google Scholar 

  82. R. T. Ellison III and T. J. Giehl (1991). Killing of Gram-negative bacteria by lactoferrin and lysozyme. J.Clin.Invest.88: 1080–1091.

    PubMed  Google Scholar 

  83. P. W. Park, K. Biedermann, L. Mecham, D. L. Bissett, and R. P. Mecham (1996). Lysozyme binds to elastin and protects elastin from elastase-mediated degradation. J.Invest.Derma-tol.106: 1075–1080.

    Google Scholar 

  84. A. Pellegrini, U. Thomas, N. Bramaz, P. Hunziker, and H. P. von Fellenberg (1999). Isolation and identification of three bactericidal domains in the bovine ®-lactalbumin molecule. Biochim.Biophys.Acta 1426: 439–448.

    PubMed  Google Scholar 

  85. M. Svensson, A. Hakansson, A. K. Mossberg, S. Linse, and C. Svanborg (2000). Conversion of alpha-lactalbumin to a protein inducing apoptosis. Proc.Natl.Acad.Sci.U.S.A.97: 4221–4226.

    PubMed  Google Scholar 

  86. C. Kunz, S. Rudloff, W. Schad, and D. Braun (1999). Lactose-derived oligosaccharides in the milk of elephants: Comparison with human milk. Br.J.Nutr.82: 391–399.

    PubMed  Google Scholar 

  87. C. D. Warren, P. Chaturvedi, A. R. Newburg, O. T. Oftedal, C. D. Tilden, and D. S. Newburg (2001). Comparison of oligosaccharides in milk specimens from humans and twelve other species. Adv.Exp.Med.Biol.Immunol.Prop.Milk 501: 325–332.

    Google Scholar 

  88. D. P. Wirt, L. T. Adkins, K. H. Palkowetz, F. C. Schmalstieg, and A. S. Goldman (1992). Activated-memory T lymphocytes in human milk. Cytometry 13: 282–290.

    PubMed  Google Scholar 

  89. S. E. Keeney, F. C. Schmalstieg, K. H. Palkowetz, H. E. Rudloff, B.-M., Le, and A. S. Goldman (1993). Activated neutrophils and neutrophil activators in human milk. Increased expression of CD11b and decreased expression of L-selectin. J.Leukocyte Biol.54: 97–104.

    PubMed  Google Scholar 

  90. C. S. Lee, I. McCauley, and P. E. Hartman (1983). Light and electron microscopy of cells in pig colostrum, milk, and involution secretions. Acta Anat. 117: 270–280.

    PubMed  Google Scholar 

  91. E. A. Wagstrom, K.-J. Yoon, and J. J. Zimmerman (2000). Immune components in porcine mammary secretions. Viral Immunol. 13: 383–397.

    PubMed  Google Scholar 

  92. A. S. Goldman and R. M. Goldblum (1997). Transfer of maternal leukocytes to the infant by human milk. In L. Olding (ed.), Reproductive Immunology/Current Topics in Microbiology and Immunology, Springer-Verlag, Heidelberg, Germany, pp. 205–213.

    Google Scholar 

  93. S. Chheda, K. H. Palkowetz, D. K. Rassin, and A. S. Goldman (1996). Deficient quantitative expression of CD45 isoforms on CD4C and CD8C T-cell subpopulations and subsets of CD45RA low CD45RO low T cells in newborn blood. Biol. Neonat. 69: 128–132.

    Google Scholar 

  94. Y. Weinrauch, D. Drujan, S. D. Shapiro, J. Weiss, and A. Zychlinsky (2002). Neutrophil elastase targets virulence factors of enterobacteria. Nature 417: 91–94.

    Google Scholar 

  95. R. P. Garofalo and A. S. Goldman (1999). Expression of functional immunomodulatory and antiinflammatory factors in human milk. In C. Wagner (ed.), Clinical Aspects of Human Milk and Lactation, Clinics in Perinatology, Vol. 26, W.B. Saunders Company, Philadelphia, PA, pp. 361–377.

    Google Scholar 

  96. H. Lindmark-Mansson and B. Akesson (2000). Antioxidant factors in milk. Br.J.Nutr.80 (Suppl. 1): S103–S110.

    Google Scholar 

  97. E. Schlimme, D. Martin, and H. Meisel (2000). Nucleosides and nucleotides: Natural bioactive substances in milk and colostrum. Br.J.Nutr. 84: S59–S68.

    Google Scholar 

  98. H. S. Gill, F. Doull, K. J. Rutherfurd, and M. L. Cross (2000). Immunoregulatory peptides in bovine milk. Br.J.Nutr.84 (Suppl. 1): S111–S117.

    Google Scholar 

  99. A. S. Goldman (2000). Modulation of the gastrointestinal tract of infants by human milk. Interfaces and interactions. An evolutionary perspective. J.Nutr.130(Suppl. 2S): S426–S431.

    Google Scholar 

  100. E. Lindh (1975). Increased resistance of immunoglobulin dimers to proteolytic degradation after binding of secretory component. J.Immunol.114: 284–286.

    Google Scholar 

  101. R. R. Samson, C. Mirtle, and D. B. L. McClelland (1980). The effect of digestive enzymes upon the binding and bacterio-static properties of lactoferrin and vitamin B12 binder in human milk. Acta Paediatr.Scand.59: 517–523.

    Google Scholar 

  102. E. S. Buescher and P. McWilliams-Koeppen (1998). Soluble tumor necrosis factor-alpha (TNF-alpha) receptors in human colostrum and milk bind to TNF-alpha and neutralize TNF-alpha bioactivity. Pediatr.Res.44: 37–42.

    Google Scholar 

  103. O. Koldovsky (1996). Digestive–absorptive functions in fetuses, infants, and children. In W. A. Walker and J. B. Watkins (eds.), Nutrition in Pediatrics, Basic Science and Clinical Application, 2nd edn., B. C. Decker, London, pp. 233–247.

    Google Scholar 

  104. A. S. Goldman, C. Garza, R. J. Schanler, and R. M. Goldblum (1990). Molecular forms of lactoferrin in stool and urine from infants fed human milk. Pediatr.Res. 27: 252–255.

    PubMed  Google Scholar 

  105. V. Brantl (1985). Novel opioid peptides derived from human ¯-casein: Human ¯-casomorphins. Eur.J.Pharmacol. 106: 213–214.

    Google Scholar 

  106. C. E. Issacs (2001). The antimicrobial function of milk lipids. In B. Woodward and H. H. Draper (eds.), Advances in Nutritional Research.Immunological Properties of Milk, Vol.10, Plenum, New York, pp. 271–285.

    Google Scholar 

  107. Y. Ge, D. L. MacDonald, K. J. Holroyd, C. Thornsberry, H. Wexler, and M. Zasloff (1999). In vitro antibacterial peptides of pexiganan, an analog of magainin. Antimicrob.Agents Chemother.43: 782–788.

    Google Scholar 

  108. S. Krisanaprakornkit, J. R. Kimball, A. Weinberg, R. P. Darveau, B. W. Bainbridge, and B. A. Dale (2000). Inducible expression of human ¯ defensin 2 by Fusobacterium nucleatum in oral epithelial cells: Multiple signaling pathways and role of commensal bacteria in innate immunity and the epithelial barrier. Infect.Immun. 68: 2907–2915.

    Google Scholar 

  109. C. Linnæi (1735). Systema naturæ sive regna tria naturæ systematice proposita per classes, ordines, genera, & species, Theodorum Haak, Lugduni Batavorum.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel A. Forsyth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forsyth, I.A., Wallis, M. Growth Hormone and Prolactin—Molecular and Functional Evolution. J Mammary Gland Biol Neoplasia 7, 291–312 (2002). https://doi.org/10.1023/A:1022804817104

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022804817104

Navigation