Skip to main content
Log in

pH-Dependent Bidirectional Transport of Weakly Basic Drugs Across Caco-2 Monolayers: Implications for Drug–Drug Interactions

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The purpose of this study was to investigate the pH-dependent passive and active transport of weakly basic drugs across the human intestinal epithelium.

Methods. The bidirectional pH-dependent transport of weak bases was studied in Caco-2 cell monolayers in the physiologic pH range of the gastrointestinal tract.

Results. A net secretion of atenolol and metoprolol was observed when a pH gradient was applied. However, the bidirectional transport of both compounds was equal in the nongradient system. Hence, at lower apical than basolateral pH a change in passive transport caused by an imbalance in the concentration of the uncharged drug species resulted in a “false” asymmetry (efflux ratio). Furthermore, a mixture of pH-dependent passive and active efflux was found for the P-glycoprotein (P-gp, MDR1, ABCB1) substrates, talinolol and quinidine, but not for the neutral drug, digoxin. However, the clinically important digoxin-quinidine interaction depended on the presence of a pH gradient. Hence, the degree of interaction depends on the amount of quinidine available at the binding site of the P-gp.

Conclusions. Active efflux of weak bases can only be accounted for when the fraction of unionized drug species is equal in all compartments because the transport is biased by a pH-dependent passive component. However, this component may take part in vivo and contribute to drug-drug interactions involving P-gp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. P. A. Shore, B. B. Brodie, and C. A. M. Hogben. The gastric secretion of drugs: A pH partition hypothesis. J. Pharmacol. Exp. Ther. 119:361-369 (1957).

    Google Scholar 

  2. J. Fallingborg, L. A. Christensen, M. Ingelman-Nielsen, B. A. Jacobsen, K. Abildgaard, and H. H. Rasmussen. pH-Profile and #x00AEional transit times of the normal gut measured by radiotelemetry device. Aliment. Pharmacol. Ther. 3:605-613 (1989).

    Google Scholar 

  3. G. T. McEwan and M. L. Lucas. The effect of E. coli STa enterotoxin on the absorption of weakly dissociable drugs from rat proximal jejunum in vivo. Br. J. Pharmacol. 101:937-943 (1990).

    Google Scholar 

  4. D. C. Taylor, R. Pownall, and W. Burke. The absorption of #x0392-adrenoceptor antagonists in rat in-situ small intestine; the effect of lipophilicity. J. Pharm. Pharmacol. 37:280-283 (1985).

    Google Scholar 

  5. A. Tsuji, E. Miyamoto, N. Hashimoto, and T. Yamana. GI absorption of Β-lactam antibiotics II: Deviation from pH-partition hypothesis in penicillin absorption through in situ and in vitro lipoidal barriers. J. Pharm. Sci. 67:1705-1711 (1978).

    Google Scholar 

  6. K. Palm, K. Luthman, J. Ros, J. Grasjo, and P. Artursson. Effect of molecular charge on intestinal epithelial drug transport: pH-dependent transport of cationic drugs. J. Pharmacol. Exp. Ther. 291:435-443 (1999).

    Google Scholar 

  7. J. C. Hardman, L. E. Limbird, and A. G. Gilman. Goodman Gilman's: The Pharmacological basis of Therapeutics, 10th Edition, McGraw-Hill, New York, 2001.

    Google Scholar 

  8. S. Yamashita, T. Furubayashi, M. Kataoka, T. Sakane, H. Sezaki, and H. Tokuda. Optimized conditions for prediction of intestinal drug permeability using Caco-2 cells. Eur. J. Pharm. Sci. 10:195-204 (2000).

    Google Scholar 

  9. M. Boisset, R. P. Botham, K. D. Haegele, B. Lenfant, and J. I. Pachot. Absorption of angiotensin II antagonists in Ussing chambers, Caco-2, perfused jejunum loop and in vivo: importance of drug ionisation in the in vitro prediction of in vivo absorption. Eur. J. Pharm. Sci. 10:215-224 (2000).

    Google Scholar 

  10. K. Palm, K. Luthman, A. L. Ungell, G. Strandlund, F. Beigi, P. Lundahl, and P. Artursson. Evaluation of dynamic polar molecular surface area as predictor of drug absorption: comparison with other computational and experimental predictors. J. Med. Chem. 41:5382-5392 (1998).

    Google Scholar 

  11. M. F. Fromm, R. B. Kim, C. M. Stein, G. R. Wilkinson, and D. M. Roden. Inhibition of P-glycoprotein-mediated drug transport: A unifying mechanism to explain the interaction between digoxin and quinidine. Circulation 99:552-557 (1999).

    Google Scholar 

  12. K. Westphal, A. Weinbrenner, T. Giessmann, M. Stuhr, G. Franke, M. Zschiesche, R. Oertel, B. Terhaag, H. K. Kroemer, and W. Siegmund. Oral bioavailability of digoxin is enhanced by talinolol: evidence for involvement of intestinal P-glycoprotein. Clin. Pharmacol. Ther. 68:6-12 (2000).

    Google Scholar 

  13. P. N. Craig. Drug compendium. In C. J. Drayton (Ed.), Cumulative Subject Index & Drug Compendium, Vol. 6, Pergamon Press, Oxford, 1990, pp. 237-991.

    Google Scholar 

  14. W. Kamm, J. Hauptmann, I. Behrens, J. StÜrzebecher, F. Dullweber, H. Gohlke, M. Stubbs, G. Klebe, and T. Kissel. Transport of Peptidomimetic Thrombin Inhibitors with a 3-Amino-Phenylalanine Structure: Permeability and Efflux Mechanism in Monolayers of a Human Intestinal Cell Line (Caco-2). Pharm. Res. 18:1110-1118 (2001).

    Google Scholar 

  15. R. A. Boyd, R. H. Stern, B. H. Stewart, X. Wu, E. L. Reyner, E. A. Zegarac, E. J. Randinitis, and L. Whitfield. Atorvastatin coadministration may increase digoxin concentrations by inhibition of intestinal P-glycoprotein-mediated secretion. J. Clin. Pharmacol. 40:91-98 (2000).

    Google Scholar 

  16. A. Rakhit, N. H. G. Holford, T. W. Guentert, K. Maloney, and S. Riegelman. Pharmacokinetics of quinidine and three of its metabolites in Man. J. Pharmacokinet. Biopharm. 12:1-21 (1984).

    Google Scholar 

  17. B. Terhaag, U. Palm, H. Sahre, K. Richter, and R. Oertel. Interaction of talinolol and sulfasalazine in the human gastrointestinal tract. Eur. J. Clin. Pharmacol. 42:461-462 (1992).

    Google Scholar 

  18. P. Artursson. Epithelial transport of drugs in cell culture. I: A model for studying the passive diffusion of drugs over intestinal absorptive (Caco-2) cells. J. Pharm. Sci. 79:476-482 (1990).

    Google Scholar 

  19. J. Hunter, B. H. Hirst, and N. L. Simmons. Epithelial secretion of vinblastine by human intestinal adenocarcinoma cell (HCT-8 and T84) layers expressing P-glycoprotein. Br. J. Cancer 64:437-444 (1991).

    Google Scholar 

  20. A. Adson, P. S. Burton, T. J. Raub, C. L. Barsuhn, K. L. Audus, and N. F. H. Ho. Passive diffusion of weak organic electrolytes across Caco-2 cell monolayers: Uncoupling the contributions of hydrodynamic, transcellular, and paracellular barriers. J. Pharm. Sci. 84:1197-1204 (1995).

    Google Scholar 

  21. A. Adson, T. J. Raub, P. S. Burton, C. L. Barsuhn, A. R. Hilgers, K. L. Audus, and N. F. H. Ho. Quantitative approaches to delineate paracellular diffusion in cultured epithelial cell monolayers. J. Pharm. Sci. 83:1529-1536 (1994).

    Google Scholar 

  22. F. Wohnsland and B. Faller. High-throughput permeability pH profile and high-throughput alkane/water log P with artificial membranes. J. Med. Chem. 44:923-930 (2001).

    Google Scholar 

  23. D. Sun, H. Lennernas, L. S. Welage, J. L. Barnett, C. P. Landowski, D. Foster, D. Fleisher, K.-D. Lee, and G. L. Amidon. Comparison of human duodenum and Caco-2 gene expression profiles for 12,000 gene sequences tags and correlation with permeability of 26 drugs. Pharm. Res. 19:1400-1416 (2002).

    Google Scholar 

  24. T. GramattÉ, R. Oertel, B. Terhaag, and W. Kirch. Direct demonstration of small intestinal secretion and site-dependent absorption of the Β-blocker talinolol in humans. Clin. Pharmacol. Ther. 59:541-549 (1996).

    Google Scholar 

  25. T. W. Loo, M. C. Bartlett, and D. M. Clarke. The ‘LSGGQ’ Motif in Each Nucleotide-binding Domain of Human P-glycoprotein Is Adjacent to the Opposing Walker A Sequence. J. Biol. Chem. 277:41303-41306 (2002).

    Google Scholar 

  26. T. W. Loo and D. M. Clarke. Location of the rhodamine binding-site in the human multidrug resistance P-glycoprotein. J. Biol. Chem. 277:44332-44338 (2002).

    Google Scholar 

  27. R. Ohashi, I. Tamai, H. Yabuuchi, J. I. Nezu, A. Oku, Y. Sai, M. Shimane, and A. Tsuji. Na(+)-dependent carnitine transport by organic cation transporter (OCTN2): its pharmacological and toxicological relevance. J. Pharm. Exp. Ther. 291:778-784 (1999).

    Google Scholar 

  28. Y. Cui, J. Konig, and D. Keppler. Vectorial transport by double-transfected cells expressing the human uptake transporter SLC21A8 and the apical export pump ABCC2. Mol. Pharmacol. 60:934-943 (2001).

    Google Scholar 

  29. M. Sasaki, H. Suzuki, K. Ito, T. Abe, and Y. Sugiyama. Transcellular transport of organic anions across a double-transfected Madin-Darby canine kidney II cell monolayer expressing both human organic anion-transporting polypeptide (OATP2/SLC21A6) and Multidrug resistance-associated protein 2 (MRP2/ABCC2). J. Biol. Chem. 277:6497-6503 (2002).

    Google Scholar 

  30. I. A. M. de Lannoy and M. Silverman. The MDR1 gene product, P-Glycoprotein, mediates the transport of the cardiac Glycoside, Digoxin. Biochem. Biophys. Res. Commun. 189:551-557 (1992).

    Google Scholar 

  31. K. Goda, L. Balkay, T. Marian, L. Tron, A. Aszalos, and G. Szabo Jr. Intracellular pH does not affect drug extrusion by P-glycoprotein. J. Photochem. Photobiol. B 34:177-182 (1996).

    Google Scholar 

  32. G. A. Altenberg, G. Young, J. K. Horton, D. Glass, J. A. Belli, and L. Reuss. Changes in intra-or extracellular pH do not mediate P-glycoprotein-dependent multidrug resistance. Proc. Nati. Acad. Sci. USA 90:9735-9738 (1993).

    Google Scholar 

  33. E. Landwojtowicz, P. Nervi, and A. Seelig. Real-time monitoring of P-glycoprotein activation in living cells. Biochemistry 41:8050-8057 (2002).

    Google Scholar 

  34. T. Sakaeda, T. Nakamura, M. Horinouchi, M. Kakumoto, N. Ohmoto, T. Sakai, Y. Morita, T. Tamura, N. Aoyama, M. Hirai, M. Kasuga, and K. Okumura. MDR1 genotype-related pharmacokinetics of digoxin after single oral administration in healthy Japanese subjects. Pharm. Res. 18:1400-1404 (2001).

    Google Scholar 

  35. S. Hoffmeyer, O. Burk, O. von Richter, H. P. Arnold, J. Brockmoller, A. Johne, I. Cascorbi, T. Gerloff, I. Roots, M. Eichelbaum, and U. Brinkmann. Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc. Nati. Acad. Sci. USA 97:3473-3478 (2000).

    Google Scholar 

  36. M. Verschraagen, C. H. Koks, J. H. Schellens, and J. H. Beijnen. P-glycoprotein system as a determinant of drug interactions: the case of digoxin-verapamil. Pharmacol. Res. 40:301-306 (1999).

    Google Scholar 

  37. W. L. Chiou, C. Ma, S. M. Chung, and T. C. Wu. An alternative hypothesis to involvement of intestinal P-glycoprotein as the cause for digoxin oral bioavailability enhancement by talinolol. Clin. Pharmacol. Ther. 69:79-81 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per Artursson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neuhoff, S., Ungell, AL., Zamora, I. et al. pH-Dependent Bidirectional Transport of Weakly Basic Drugs Across Caco-2 Monolayers: Implications for Drug–Drug Interactions. Pharm Res 20, 1141–1148 (2003). https://doi.org/10.1023/A:1025032511040

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025032511040

Navigation