Skip to main content
Log in

Rhodamine 123 Requires Carrier-Mediated Influx for Its Activity as a P-Glycoprotein Substrate in Caco-2 Cells

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The purpose of this work was to elucidate transport pathways of the P-glycoprotein (P-gp) substrates rhodamine 123 (R123) and doxorubicin across Caco-2 cells.

Methods. Experiments were designed to identify saturable and nonsaturable transport processes and transport barriers for R123 and doxorubicin transport across Caco-2 cells. Confocal laser scanning microscopy (CLSM) imaged R123 transport under normal conditions and in the presence of the P-gp inhibitor, GW918 (used to abolish P-gp-mediated efflux activity).

Results. R123 secretory P app (P app,BA) showed concentration dependence, whereas R123 absorptive P app (P app,AB) did not. Inhibition of P-gp efflux revealed that P-gp-mediated efflux had no effect on R123 or doxorubicin P app,AB, but enhanced R123 and doxorubicin P app,BA. In calcium-free medium, R123 P app,AB increased 15-fold, indicating intercellular junctions are a barrier to R123 absorption. CLSM of R123 fluorescence during absorptive transport under normal conditions and in the presence of GW918 was identical, and was limited to paracellular space, confirming that P-gp is not a barrier to R123 absorption. CLSM revealed that R123 fluorescence during secretory transport under normal conditions and in the presence of GW918 was localized intracellularly and in paracellular space. R123 and doxorubicin uptake across Caco-2 cells basolateral membrane was saturable.

Conclusions. R123 absorptive transport occurs primarily by paracellular route, whereas R123 secretory transport involves influx across BL membrane mediated solely by a saturable process followed by apically directed efflux via P-gp. Doxorubicin utilizes similar transport pathways to cross Caco-2 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. M. F. Fromm. P-glycoprotein: a defense mechanism limiting oral bioavailability and CNS accumulation of drugs. Int. J. Clin. Pharmacol. Ther. 38:69-74 (2000).

    Google Scholar 

  2. J. A. Silverman. Multidrug-resistance transporters. Pharm. Biotechnol. 12:353-386 (1999).

    Google Scholar 

  3. S. Hsing, Z. Gatmaitan, and I. M. Arias. The function of Gp170, the multidrug-resistance gene product, in the brush border of rat intestinal mucosa. Gastroenterology 102:879-885 (1992).

    Google Scholar 

  4. F. Thiebaut, T. Tsuruo, H. Hamada, M. M. Gottesman, I. Pastan, and M. C. Willingham. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc. Natl. Acad. Sci. USA 84:7735-7738 (1987).

    Google Scholar 

  5. P. Borst, A. H. Schinkel, J. J. Smit, E. Wagenaar, L. Van Deemter, A. J. Smith, E. W. Eijdems, F. Baas, and G. J. Zaman. Classical and novel forms of multidrug resistance and the physiological functions of P-glycoproteins in mammals. Pharmacol. Ther. 60:289-299 (1993).

    Google Scholar 

  6. P. Borst and A. H. Schinkel. What have we learnt thus far from mice with disrupted P-glycoprotein genes? Eur. J. Cancer 32A:985-990 (1996).

    Google Scholar 

  7. B. L. Lum and M. P. Gosland. MDR expression in normal tissues. Pharmacologic implications for the clinical use of P-glycoprotein inhibitors. Hematol. Oncol. Clin. North Am. 9:319-336 (1995).

    Google Scholar 

  8. R. B. Kim, M. F. Fromm, C. Wandel, B. Leake, A. J. Wood, D. M. Roden, and G. R. Wilkinson. The drug transporter P-glycoprotein limits oral absorption and brain entry of HIV-1 protease inhibitors. J. Clin. Invest. 101:289-294 (1998).

    Google Scholar 

  9. G. Y. Kwei, R. F. Alvaro, Q. Chen, H. J. Jenkins, C. E. Hop, C. A. Keohane, V. T. Ly, J. R. Strauss, R. W. Wang, Z. Wang, T. R. Pippert, and D. R. Umbenhauer. Disposition of ivermectin and cyclosporin A in CF-1 mice deficient in mdr1a P-glycoprotein. Drug Metab. Dispos. 27:581-587 (1999).

    Google Scholar 

  10. A. Sparreboom, J. van Asperen, U. Mayer, A. H. Schinkel, J. W. Smit, D. K. Meijer, P. Borst, W. J. Nooijen, J. H. Beijnen, and O. van Tellingen. Limited oral bioavailability and active epithelial excretion of paclitaxel (Taxol) caused by P-glycoprotein in the intestine. Proc. Natl. Acad. Sci. USA 94:2031-2035 (1997).

    Google Scholar 

  11. W. L. Chiou, S. M. Chung, and T. C. Wu. Commentary: Potential role of P-glycoprotein in affecting hepatic metabolism of drugs. Pharm. Res. 17:901-903 (2000).

    Google Scholar 

  12. K. Arimori and M. Nakano. Drug exsorption from blood into the gastrointestinal tract. Pharm. Res. 15:371-376 (1998).

    Google Scholar 

  13. J. van Asperen, O. van Tellingen, and J. H. Beijnen. The role of mdr1a P-glycoprotein in the biliary and intestinal secretion of doxorubicin and vinblastine in mice. Drug Metab. Dispos. 28:264-267 (2000).

    Google Scholar 

  14. U. Mayer, E. Wagenaar, J. H. Beijnen, J. W. Smit, D. K. Meijer, J. van Asperen, P. Borst, and A. H. Schinkel. Substantial excretion of digoxin via the intestinal mucosa and prevention of long-term digoxin accumulation in the brain by the mdr 1a P-glycoprotein. Br. J. Pharmacol. 119:1038-1044 (1996).

    Google Scholar 

  15. B. Greiner, M. Eichelbaum, P. Fritz, H. P. Kreichgauer, O. von Richter, J. Zundler, and H. K. Kroemer. The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin. J. Clin. Invest. 104:147-153 (1999).

    Google Scholar 

  16. H. Diddens, V. Gekeler, M. Neumann, and D. Niethammer. Characterization of actinomycin-D-resistant CHO cell lines exhibiting a multidrug-resistance phenotype and amplified DNA sequences. Int. J. Cancer 40:635-642 (1987).

    Google Scholar 

  17. J. S. Lee, K. Paull, M. Alvarez, C. Hose, A. Monks, M. Grever, A. T. Fojo, and S. E. Bates. Rhodamine efflux patterns predict P-glycoprotein substrates in the National Cancer Institute drug screen. Mol. Pharmacol. 46:627-638 (1994).

    Google Scholar 

  18. R. Yumoto, T. Murakami, Y. Nakamoto, R. Hasegawa, J. Nagai, and M. Takano. Transport of rhodamine 123, a P-glycoprotein substrate, across rat intestine and Caco-2 cell monolayers in the presence of cytochrome P-450 3A-related compounds. J. Pharmacol. Exp. Ther. 289:149-155 (1999).

    Google Scholar 

  19. M. Takano, R. Hasegawa, T. Fukuda, R. Yumoto, J. Nagai, and T. Murakami. Interaction with P-glycoprotein and transport of erythromycin, midazolam and ketoconazole in Caco-2 cells. Eur. J. Pharmacol. 358:289-294 (1998).

    Google Scholar 

  20. M. D. Perloff, L. L. von Moltke, E. Stormer, R. I. Shader, and D. J. Greenblatt. Saint John's wort: an in vitro analysis of P-glycoprotein induction due to extended exposure. Br. J. Pharmacol. 134:1601-1608 (2001).

    Google Scholar 

  21. J. M. Dintaman and J. A. Silverman. Inhibition of P-glycoprotein by D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS). Pharm. Res. 16:1550-1556 (1999).

    Google Scholar 

  22. S. Tansan, Y. Koc, H. Aydin, G. Urbano, and R. McCaffrey. Augmentation of vincristine cytotoxicity by megestrol acetate. Cancer Chemother. Pharmacol. 39:333-340 (1997).

    Google Scholar 

  23. C. W. Cho, Y. Liu, X. Yan, T. Henthorn, and K. Y. Ng. Carrier-mediated uptake of rhodamine 123: implications on its use for MDR research. Biochem. Biophys. Res. Commun. 279:124-130 (2000).

    Google Scholar 

  24. R. Masereeuw, M. M. Moons, and F. G. Russel. Rhodamine 123 accumulates extensively in the isolated perfused rat kidney and is secreted by the organic cation system. Eur. J. Pharmacol. 321:315-323 (1997).

    Google Scholar 

  25. I. C. van der Sandt, M. C. Blom-Roosemalen, A. G. de Boer, and D. D. Breimer. Specificity of doxorubicin versus rhodamine-123 in assessing P-glycoprotein functionality in the LLC-PK1, LLC-PK1:MDR1 and Caco-2 cell lines. Eur. J. Pharm. Sci. 11:207-214 (2000).

    Google Scholar 

  26. P. Schmiedlin-Ren, K. E. Thummel, J. M. Fisher, M. F. Paine, K. S. Lown, and P. B. Watkins. Expression of enzymatically active CYP3A4 by Caco-2 cells grown on extracellular matrix-coated permeable supports in the presence of 1alpha,25-dihydroxy-vitamin D3. Mol. Pharmacol. 51:741-754 (1997).

    Google Scholar 

  27. K. Lee and D. R. Thakker. Saturable transport of H2-antagonists ranitidine and famotidine across Caco-2 cell monolayers. J. Pharm. Sci. 88:680-687 (1999).

    Google Scholar 

  28. L. S. Gan, P. H. Hsyu, J. F. Pritchard, and D. Thakker. Mechanism of intestinal absorption of ranitidine and ondansetron: transport across Caco-2 cell monolayers. Pharm. Res. 10:1722-1725 (1993).

    Google Scholar 

  29. F. Hyafil, C. Vergely, P. Du Vignaud, and T. Grand-Perret. In vitro and in vivo reversal of multidrug resistance by GF120918, an acridonecarboxamide derivative. Cancer Res. 53:4595-4602 (1993).

    Google Scholar 

  30. P. F. Augustijns, T. P. Bradshaw, L. S. Gan, R. W. Hendren, and D. R. Thakker. Evidence for a polarized efflux system in CACO-2 cells capable of modulating cyclosporin A transport. Biochem. Biophys. Res. Commun. 197:360-365 (1993).

    Google Scholar 

  31. J. Hunter, M. A. Jepson, T. Tsuruo, N. L. Simmons, and B. H. Hirst. Functional expression of P-glycoprotein in apical membranes of human intestinal Caco-2 cells. Kinetics of vinblastine secretion and interaction with modulators. J. Biol. Chem. 268:14991-14997 (1993).

    Google Scholar 

  32. A. B. Shapiro and V. Ling. Positively cooperative sites for drug transport by P-glycoprotein with distinct drug specificities. Eur. J. Biochem. 250:130-137 (1997).

    Google Scholar 

  33. M. A. Hurni, A. B. Noach, M. C. Blom-Roosemalen, A. G. de Boer, J. F. Nagelkerke, and D. D. Breimer. Permeability enhancement in Caco-2 cell monolayers by sodium salicylate and sodium taurodihydrofusidate: assessment of effect-reversibility and imaging of transepithelial transport routes by confocal laser scanning microscopy. J. Pharmacol. Exp. Ther. 267:942-950 (1993).

    Google Scholar 

  34. T. J. Lampidis, C. Castello, A. del Giglio, B. C. Pressman, P. Viallet, K. W. Trevorrow, G. K. Valet, H. Tapiero, and N. Savaraj. Relevance of the chemical charge of rhodamine dyes to multiple drug resistance. Biochem. Pharmacol. 38:4267-4271 (1989).

    Google Scholar 

  35. F. Ingels, S. Deferme, E. Destexhe, M. Oth, G. Van den Mooter, and P. Augustijns. Simulated intestinal fluid as transport medium in the Caco-2 cell culture model. Int. J. Pharm. 232:183-192 (2002).

    Google Scholar 

  36. L. P. Rivory, K. M. Avent, and S. M. Pond. Effects of lipophilicity and protein binding on the hepatocellular uptake and hepatic disposition of two anthracyclines, doxorubicin and iododoxorubicin. Cancer Chemother. Pharmacol. 38:439-445 (1996).

    Google Scholar 

  37. G. A. Altenberg, C. G. Vanoye, J. K. Horton, and L. Reuss. Unidirectional fluxes of rhodamine 123 in multidrug-resistant cells: evidence against direct drug extrusion from the plasma membrane. Proc. Natl. Acad. Sci. USA 91:4654-4657 (1994).

    Google Scholar 

  38. G. van Meer and K. Simons. The function of tight junctions in maintaining differences in lipid composition between the apical and the basolateral cell surface domains of MDCK cells. EMBO J. 5:1455-1464 (1986).

    Google Scholar 

  39. A. Collett, N. B. Higgs, E. Sims, M. Rowland, and G. Warhurst. Modulation of the permeability of H2 receptor antagonists cimetidine and ranitidine by P-glycoprotein in rat intestine and the human colonic cell line Caco-2. J. Pharmacol. Exp. Ther. 288:171-178 (1999).

    Google Scholar 

  40. M. D. Troutman and D. R. Thakker. Novel experimental parameters to quantify the modulation of absorptive and secretory transport of compounds by P-glycoprotein in cell culture. Models of intestinal epithelium. Pharm. Res. >20:1210-1224 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhiren R. Thakker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Troutman, M.D., Thakker, D.R. Rhodamine 123 Requires Carrier-Mediated Influx for Its Activity as a P-Glycoprotein Substrate in Caco-2 Cells. Pharm Res 20, 1192–1199 (2003). https://doi.org/10.1023/A:1025096930604

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025096930604

Navigation