Skip to main content
Log in

Development of a Whole Body Physiologically Based Model to Characterise the Pharmacokinetics of Benzodiazepines. 1: Estimation of Rat Tissue-Plasma Partition Ratios

  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

Three methods for estimation of the equilibrium tissue-to-plasma partition ratios (Kp values) in the presence of tissue concentration time data have been investigated. These are the area method, the open loop (tissue specific) method and the whole body model(closed loop) method, each with different model assumptions. Additionally, multiple imputations, a technique for dealing with deficiencies in data sets (i.e., missing tissues) is used. The estimated Kp values by the three methods have been compared and the limitations and advantages of each approach drawn. The area method, which is essentially model free, gives only a crude estimate of Kp without making any statement of its uncertainty; whereas both the open and closed loop methods provide an estimate of this. The closed loop method, where the most assumptions are made, is the approach that gives the best overall estimates of Kp, which was confirmed by comparing the predicted concentration–time profiles with experimental data. Although the estimates from the closed loop method, as well as the other two methods, are conditioned on the data, they are the most reliable for both propagating parameter variability and uncertainty through a whole body physiologically based model, as well as for extrapolation to human. A series of benzodiazepines, namely alprazolam, chlordiazepoxide, clobazam, diazepam, flunitrazepam, midazolam and triazolam in rat is used as a case study in the current investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. J. Mordenti. Man versus beast: Pharmacokinetic scaling in mammals. J. Pharm. Sci. 75: 1028–1040 (1986).

    PubMed  Google Scholar 

  2. L. E. Gerlovski and R. K. Jain. Physiologically based pharmacokinetic modeling: Principles and applications. J. Pharm. Sci. 72: 1103–1129 (1983).

    PubMed  Google Scholar 

  3. A. Bernareggi and M. Rowland. Physiological modeling of cyclosporine kinetics in rat and man. J. Pharmacokin. Biopharm. 19: 21–50 (1991).

    Article  Google Scholar 

  4. S. Bjorkman, D. R. Stanski, H. Harashima, R. Dowrie, S. R. Harapat, D. R. Wada, and W. F. Ebling. Tissue distribution of fentanyl and alfentanil in the rat cannot be described by a blood flow limited model. J. Pharmacokin. Biopharm. 21: 255–279 (1993).

    Article  Google Scholar 

  5. S. Bjorkman, D. R. Wada, D. R. Stanski and W. F. Ebling. Comparative pharmacoki-netics of fentanyl and alfentanil in rats and humans based on parametric single-tissue models. J. Pharmacokin. Biopharm. 22: 381–410 (1994).

    Google Scholar 

  6. R. Kawai, M. Lemaire, J.-L. Steimer, A. Bruelisauer, W. Niederberger, and M. Row-land. Physiologically based pharmacokinetic study on a cyclosporine derivative, SDZ IMM 125. J. Pharmacokin. Biopharm. 22: 327–365 (1994).

    Google Scholar 

  7. W. F. Ebling, D. R. Wada, and D. R. Stanski. From piecewise to full pharmacokinetic modeling: Application to thiopental disposition in the rat. J. Pharmacokin. Biopharm. 22: 259–292 (1994).

    Google Scholar 

  8. F. Marcucci, A. Guaitani, J. Kvetina, E. Mussini, and S. Garattini. Species difference in diazepam metabolism and anticonvulsant effect. Eur. J. Pharmacol. 4: 467–470 (1968).

    Article  PubMed  Google Scholar 

  9. F. Marcucci, R. Fanelli, E. Mussini, and S. Garattini. Further studies on species differ-ences in Diazepam metabolism. Eur. J. Pharmacol. 9: 253–256 (1970).

    Article  PubMed  Google Scholar 

  10. U. Klotz, K.-H. Antonin, and P. R. Bieck. Pharmacokinetics and plasma binding of diazepam in man, dog, rabbit, guinea pig and rat. J. Pharmacol. Exp. Ther. 199: 67–73 (1976).

    PubMed  Google Scholar 

  11. S. Caccia, M. Carli, S. Garattini, E. Poggesi, R. Rech, and R. Samanin. Pharmacological activities of clobazam and diazepam in the rat: Relation to drug brain levels. Arch. Int. Pharmacodyn. 243: 275–283 (1980).

    PubMed  Google Scholar 

  12. Y. Igari, Y. Sugiyama, Y. Sawada, T. Iga, and M. Nanano. Tissue distribution of 14C-diazepam and its metabolites in rats. Drug. Metab. Dispos. 10: 676–679 (1982).

    PubMed  Google Scholar 

  13. Y. Igari, Y. Sugiyama, Y. Sawada, T. Iga, and M. Nanano. In vitro and in vivo assess-ment of hepatic and extrahepatic metabolism of diazepam in the rat. J. Pharm. Sci. 73: 826–828 (1984).

    PubMed  Google Scholar 

  14. A. Becherucci, M. Palmi, and G. Segre. Pharmacokinetics of flunitrazepam in rats stud-ied by a radioreceptor assay. Pharmacol. Res. Commun. 17: 733–747 (1985).

    Article  PubMed  Google Scholar 

  15. L. Aarons, J. W. Mandema, and M. Danhof. A population analysis of the pharmacoki-netics and pharmacodynamics of midazolam in the rat. J. Pharmacokin. Biopharm. 19: 485–496 (1991).

    Article  Google Scholar 

  16. J. W. Mandema, L. N. Sansom, M. Carmen Dios-Vieitez, M. Hollander-Jansen, and M. Danhof. Pharmacokinetic-Pharmacodynami modeling of the encephalographic effects of benzodiazepines. Correlation with receptor binding and anticonvulsant activity. J. Pharmacol. Exp. Ther. 257: 472–478 (1991).

    PubMed  Google Scholar 

  17. J. W. Mandema, E. Tucker, and M. Danhof. Pharmacokinetic-pharmacodynamic model-ling of the EEG effects of midazolam in individual rats: influence of rate and route of administration. Br. J. Pharmacol. 102: 663–668 (1991).

    PubMed  Google Scholar 

  18. X. Xie, S. H. Steiner, and M. H. Bickel. Kinetics of distribution and adipose tissue stor-age as a function of lipophilicity and chemical structure: II. Benzodiazepines. Drug. Metab. Dispos. 19: 15–19 (1991).

    Google Scholar 

  19. W. R. Banks, H. Yamakita, and G. A. Digenis. Metabolism and distribution of 1-[14C ] alprazolam in rats. J. Pharm. Sci. 81: 797–801 (1992).

    PubMed  Google Scholar 

  20. J. M. Diaz-Garcia, J. Oliver-Botana, and D. Fos-Galve. Pharmacokinetics of diazepam in the rat: Influence of a carbon tetrachloride-induce hepatic injury. J. Pharm. Sci. 81: 768–772 (1992).

    PubMed  Google Scholar 

  21. S. Hovinga, A. M. Stijnen, M. W. E. Langemeijer, J. W. Mandema, C. F. A. van Bezooijen, and M. Danhof. Pharmacokinetic-Eeg effect relationship of midazolam in aging BN/BiBij rats. Br. J. Pharmacol. 107: 171–177 (1992).

    PubMed  Google Scholar 

  22. C. M. Hughes, J. G. Swanton, and P. S. Collier. The effect of three H2-receptor antago-nists on the disposition of midazolam in the rat in-situ perfused liver model. J. Pharm. Pharmacol. 46: 1029–1031 (1994).

    PubMed  Google Scholar 

  23. K. Zomorodi, D. J. Carlile, and J. B. Houston. Kinetics of diazepam metabolism in rat hepatic microzomes and hepatocytes and their use in predicting in vivo hepatic clearance. Xenobiotica 9: 907–916 (1995).

    Google Scholar 

  24. S. Bjorkman, A. Fyge, and Z. Qi. Determination of the steady state tissue distribution of midazolam in the rat. J. Pharm. Sci. 85: 887–889 (1996).

    Article  PubMed  Google Scholar 

  25. J. Gaudreault, F. Varin, and G. M. Pollack. Anticonvulsant pharmacodynamics and dis-position of triazolam in rats. J. Pharm. Sci. 85: 999–1004 (1996).

    Article  PubMed  Google Scholar 

  26. A. Hoogerkamp, R. H. G. P. Arends, A. M. Bomers, J. W. Mandema, R. A. Voskuyl, and M. Danhof. Pharmacokinetic/pharmacodynamic relationship of benzodiazepines in the direct cortical simulation model of anticonvulsant effect. J. Phrmacol. Exp. Ther. 279: 803–812 (1996).

    Google Scholar 

  27. J. Schmider, D. J. Greenblatt, L. L. von Moltke, J. S. Harmatz, S. X. Duan, D. Karsov, and R. I. Shader. Characterization of six in vitro reactions mediated by human cyto-chrome P450: application to the testing of cytochrome P450-directed antibodies. Pharmacology 52: 125–134 (1996).

    PubMed  Google Scholar 

  28. C. E. Lau and A. Heatherington. Pharmacokinetic-pharmacodynamic modeling of stim-ulatory and sedative effects of alprazolam: timing performance de cits. J. Pharmacol. Exp. Ther. 283: 1119–1129 (1997).

    PubMed  Google Scholar 

  29. C. E. Lau, Y. Wang, and J. F. Falk. Differential reinforcement of low rate performance, pharmacokinetics and pharmacokinetic-pharmacodynamic modeling: independent inter-action of alprazolam and caffeine. J. Pharmacol. Exp. Ther. 281: 1013–1029 (1997).

    PubMed  Google Scholar 

  30. A. Cleton, R. A. Voskuyl, and M. Danhof. Adaptive change in the pharmacodynamics of midazolam in different experimental modes of epilepsy: Kindling, cortical simulation and genetic absence epilepsy. Br. J. Pharmacol. 125: 615–620 (1998).

    Article  PubMed  Google Scholar 

  31. C. E. Lau, Y. Wang, and F. Ma. Pharmacokinetic-pharmacodynamic modeling of the coexistence of stimulatory and sedative components for midazolam. Eur. J. Pharmacol. 346: 131–144 (1998).

    Article  PubMed  Google Scholar 

  32. A. Cleton, D. Mazee, R. A. Voskuyl, and M. Danhof. Rate of change of blood concen-trations is a major determinant of the pharmacodynamics in rats. Br. J. Pharmacol. 127: 227–235 (1999).

    Article  PubMed  Google Scholar 

  33. F. Higashikawa, T. Murakami, T. Kaneda, and M. Takano. In vivo and in vitro meta-bolic clearance of midazolam, a cytochrome P450 3A substrate, by the liver under nor-mal and increased enzyme activity in rats. J. Pharm. Pharmacol. 51: 405–410 (1999).

    Article  PubMed  Google Scholar 

  34. Y. Wang, A. Roy, L. Sun, and C. E. Lau. A double-peak phenomenon in the pharmaco-kinetics of alprazolam after oral administration. Drug Metab Dispos. 27: 855–859 (1999).

    PubMed  Google Scholar 

  35. L. Aarons, S. Toon, and M. Rowland. Validation of assay methodology used in pharma-cokinetic studies. J. Pharmacol. Meth. 17: 337–346 (1987).

    Article  Google Scholar 

  36. F. D. Bondinot and W. J. Jusko. Fluid shifts and other factors affecting plasma protein binding of prednisolone by equilibrium dialysis. J. Pharm. Sci. 73 (6): 774–780 (1984).

    PubMed  Google Scholar 

  37. S. L. Beal and L. Sheiner. The NONMEM system. Am. Stat. 34: 118–119 (1980).

    Google Scholar 

  38. Y. Igari, Y. Sugiyama, Y. Sawada, T. Iga, and M. Hanano. Prediction of diazepam dis-position in the rat and man by a physiologically based pharmacokinetic model. J. Phar-macokin. Biopharm. 11: 577–593 (1983).

    Article  Google Scholar 

  39. I. Kuwahira, I. Gonzalez, N. Heisler, and J. Piper. Regional blood flows in conscious resting rats determined by microsphere distribution. J. Appl. Physiol. 74: 203–210 (1993).

    PubMed  Google Scholar 

  40. D. M. Foster. Developing and testing integrated multicompartment models to describe a single-input multiple-output study using the SAAM II software system. Adv. Exp. Med. Biol. 445: 59–78 (1998).

    PubMed  Google Scholar 

  41. ACSL Optimize User 's Guide. Version 1 for Windows. MGA Software. Concord MA, USA, 1996.

    Google Scholar 

  42. R. J. Carroll and D. Ruppert. Transformations and Weighting in Regression. Chapman and Hall, London, 1988.

    Google Scholar 

  43. MATLAB User 's guide version 6. 1. The MathWorks, UK.

  44. J. L. Schafer. Analysis of incomplete multivariate data. Monographs on Statistics and Applied Probability, vol. 72, Chapman and Hall, London, 2000.

    Google Scholar 

  45. J. L. Shafer. Multiple imputation: a primer. Stat. Meth. Med. Res. 8: 3–15 (1999).

    Article  Google Scholar 

  46. KOWWIN. Octanol-Water Partition Coefficient Program. User 's Guide, Syracuse Research Corporation, Merill Lane, Siracuse, NY, 1996.

    Google Scholar 

  47. M. D. Reed, C. M. Myers, and J. L. Blumer. Influence of midazolam on the protein binding of ketorolac. Curr. Therap. Res. Clin. Exp. 62: 558–565 (2001).

    Article  Google Scholar 

  48. J. M. Gallo, F. C. Lam, and D. G. Perrier. Area method for the estimation of partition coefficients for physiological pharmacokinetic models. J. Pharmacokin. Biopharm. 15: 271–280 (1987)

    Article  Google Scholar 

  49. H.-S. G. Chen and J. P. Gross. Estimation of tissue-to-plasma partition coefficients used in physiological pharmacokinetic models. J. Pharmacokin. Biopharm. 7: 117–125 (1979).

    Article  Google Scholar 

  50. C. Tanaka, R. Kawai and M. Rowland. Physiologically based pharmacokinetics of cyclo-sporine A: Reevaluation of dose-nonlinear kinetics in rats. J. Pharmacokin. Biopharm. 27 (6): 597–623 (1999).

    Article  Google Scholar 

  51. K. S. Pang and M. Rowland. Hepatic clearance of drugs. I. Theoretical considerations of a ''wellstirred ''model and a ''parallel tube ''model. Influence of hepatic blood flow plasma and blood cell binding and the hepatocellular enzymatic activity on hepatic drug clearance. J. Pharmacokin. Biopharm 5: 625–653 (1978).

    Article  Google Scholar 

  52. M. Andersen, H. Clewell, M. Gargas, F. Smith, and R. Reitz. Physiologically based pharmacokinetics and the risk assessment process for methylene chloride. Toxicol. Appl. Pharmacol. 87: 187–205.

  53. F. Bois, L. Zeise, and T. Tozer. Precision and sensitivity of pharmacokinetic models for cancer risk assessment: Tetrachlorethylene in mice, rats and humans. Toxicol. Appl. Pharmacol. 102: 300–315.

  54. G. E. Blakey, I. A. Nestorov, P. A. Arundel, L. J. Aarons, and M. Rowland. Quantita-tive structure-pharmacokinetics relationships: I. Development of a whole-body physio-logically based model to characterize changes in pharmacokinetics across a homologous series of barbiturates in the rat. J. Pharmacokin. Biopharm. 25: 277–312 (1997).

    Article  Google Scholar 

  55. Gueorguieva I. PhD thesis, University of Manchester, UK.

  56. A. Dempster, N. Laird, and D. Rubin. Maximum likelihood estimation from incomplete data via the EM algorithm (with discussion). J. Roy. Stat. Soc. B 39: 1–38 (1977).

    Google Scholar 

  57. J. M. Scavone, H. Friedman, D. J. Greenblatt, and R. I. Shader. Effect of age, body composition, and lipid solubility on benzodiazepine tissue distribution in rats. Arzneim.-Forsch. Arzneim.-Forsch. (Drug Res. ) 37: 2–6 (1987).

    Google Scholar 

  58. P. Poulin and F.-P. Thiel. Prediction of pharmacokinetics prior to in vivo studies. 1. Mechanism-based prediction of volume of distribution. J. Pharm. Sci. 91 (1): 129–156 (2002).

    Article  PubMed  Google Scholar 

  59. P. Ballard, D. E. Leahy, and M. Rowland. Prediction of in vivo tissue distribution from in vitro data 3. Correlation between in vitro and in vivo tissue distribution of a homolo-gous series of nine 5-n-alkyl-5-ethyl barbituric acid derivatives. Pharm. Res. 20: 864–872 (2003).

    Article  PubMed  Google Scholar 

  60. M. Easterling, M. Evans, and E. Kenyon. Comparative analysis of software for physio-logically based pharmacokinetic modelling: Simulation, optimisation and sensitivity anal-ysis. Toxicol. Meth. 10: 203–229 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gueorguieva, I., Nestorov, I.A., Murby, S. et al. Development of a Whole Body Physiologically Based Model to Characterise the Pharmacokinetics of Benzodiazepines. 1: Estimation of Rat Tissue-Plasma Partition Ratios. J Pharmacokinet Pharmacodyn 31, 269–298 (2004). https://doi.org/10.1023/B:JOPA.0000042737.14033.c6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOPA.0000042737.14033.c6

Navigation