Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter to the Editor
  • Published:

Specificity and mechanism-of-action of the JAK2 tyrosine kinase inhibitors ruxolitinib and SAR302503 (TG101348)

A Corrigendum to this article was published on 05 February 2014

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

References

  1. Skoda R . The genetic basis of myeloproliferative disorders. Hematology AmSoc Hematol Educ Program 2007, 1–10.

    Article  Google Scholar 

  2. Tefferi A, Vainchenker W . Myeloproliferative neoplasms: molecular pathophysiology, essential clinical understanding, and treatment strategies. J Clin Oncol 2011; 29: 573–582.

    Article  CAS  Google Scholar 

  3. Pardanani A, Vannucchi AM, Passamonti F, Cervantes F, Barbui T, Tefferi A . JAK inhibitor therapy for myelofibrosis: critical assessment of value and limitations. Leukemia 2011; 25: 218–225.

    Article  CAS  Google Scholar 

  4. Harrison C, Kiladjian JJ, Al-Ali HK, Gisslinger H, Waltzman R, Stalbovskaya V et al. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med 2012; 366: 787–798.

    Article  CAS  Google Scholar 

  5. Verstovsek S, Mesa RA, Gotlib J, Levy RS, Gupta V, DiPersio JF et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med 2012; 366: 799–807.

    Article  CAS  Google Scholar 

  6. Pardanani A, Gotlib JR, Jamieson C, Cortes JE, Talpaz M, Stone RM et al. Safety and efficacy of TG101348, a selective JAK2 inhibitor, in myelofibrosis. J Clin Oncol 2011; 29: 789–796.

    Article  CAS  Google Scholar 

  7. Geyer HL, Tibes R, Mesa RA . JAK2 inhibitors and their impact in myeloproliferative neoplasms. Hematology 2012; 17 (Suppl 1): S129–S132.

    Article  CAS  Google Scholar 

  8. Quintás-Cardama A, Vaddi K, Liu P, Manshouri T, Li J, Scherle PA et al. Preclinical characterization of the selective JAK1/2 inhibitor INCB018424: therapeutic implications for the treatment of myeloproliferative neoplasms. Blood 2010; 115: 3109–3117.

    Article  Google Scholar 

  9. Wernig G, Kharas MG, Okabe R, Moore SA, Leeman DS, Cullen DE et al. Efficacy of TG101348, a selective JAK2 inhibitor, in treatment of a murine model of JAK2V617F-induced polycythemia vera. Cancer Cell 2008; 13: 311–320.

    Article  CAS  Google Scholar 

  10. Lamontanara AJ, Gencer EB, Kuzyk O, Hantschel O . Mechanisms of resistance to BCR-ABL and other kinase inhibitors. Biochim Biophys Acta 2013; 1834 (7): 1449–1459.

    Article  CAS  Google Scholar 

  11. Hantschel O, Warsch W, Eckelhart E, Kaupe I, Grebien F, Wagner K-U et al. BCR-ABL uncouples canonical JAK2-STAT5 signaling in chronic myeloid leukemia. Nat Chem Biol 2012; 8: 285–293.

    Article  CAS  Google Scholar 

  12. Rudenko IN, Chia R, Cookson MR . Is inhibition of kinase activity the only therapeutic strategy for LRRK2-associated Parkinson's disease? BMC Med 2012; 10: 20.

    Article  CAS  Google Scholar 

  13. Lafleur K, Dong J, Huang D, Caflisch A, Nevado C . Optimization of inhibitors of the tyrosine kinase EphB4. 2. Cellular potency improvement and binding mode validation by X-ray crystallography. J Med Chem 2013; 56: 84–96.

    Article  CAS  Google Scholar 

  14. Liu Y, Gray NS . Rational design of inhibitors that bind to inactive kinase conformations. Nat Chem Biol 2006; 2: 358–364.

    Article  CAS  Google Scholar 

  15. Deshpande A, Reddy MM, Schade GOM, Ray A, Chowdary TK, Griffin JD et al. Kinase domain mutations confer resistance to novel inhibitors targeting JAK2V617F in myeloproliferative neoplasms. Leukemia 2012; 26: 708–715.

    Article  CAS  Google Scholar 

  16. Hantschel O, Rix U, Schmidt U, Burckstummer T, Kneidinger M, Schutze G et al. The Btk tyrosine kinase is a major target of the Bcr-Abl inhibitor dasatinib. Proc Natl Acad Sci USA 2007; 104: 13283–13288.

    Article  CAS  Google Scholar 

  17. Wallace AC, Laskowski RA, Thornton JM . LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng 1995; 8: 127–134.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the ISREC Foundation (grant to OH and SG), the Swiss National Science Foundation (grant to AC) and the Olga Mayenfisch Foundation. The MD simulations were carried out on the Schroedinger computer cluster of the University of Zurich.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A Caflisch or O Hantschel.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, T., Georgeon, S., Moser, R. et al. Specificity and mechanism-of-action of the JAK2 tyrosine kinase inhibitors ruxolitinib and SAR302503 (TG101348). Leukemia 28, 404–407 (2014). https://doi.org/10.1038/leu.2013.205

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2013.205

This article is cited by

Search

Quick links