Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Organic cation transporter 2 controls brain norepinephrine and serotonin clearance and antidepressant response

Abstract

High-affinity transporters for norepinephrine (NE) and serotonin (5-HT), which ensure neurotransmitter clearance at the synapse, are the principal targets of widely used antidepressant drugs. Antidepressants targeting these high-affinity transporters, however, do not provide positive treatment outcomes for all patients. Other monoamine transport systems, with lower affinity, have been detected in the brain, but their role is largely unknown. Here we report that OCT2, a member of the polyspecific organic cation transporter (OCT) family, is expressed notably in the limbic system and implicated in anxiety and depression-related behaviors in the mouse. Genetic deletion of OCT2 in mice produced a significant reduction in brain tissue concentrations of NE and 5-HT and in ex vivo uptake of both these neurotransmitters in the presence of the dual 5-HT–NE transport blocker, venlafaxine. In vivo clearance of NE and 5-HT evaluated using microiontophoretic electrophysiology was diminished in the hippocampus of OCT2−/− mice in the presence of venlafaxine, thereby affecting postsynaptic neuronal activity. OCT2−/− mice displayed an altered sensitivity to acute treatments with NE- and/or 5-HT-selective transport blockers in the forced-swim test. Moreover, the mutant mice were insensitive to long-term venlafaxine treatment in a more realistic, corticosterone-induced, chronic depression model. Our findings identify OCT2 as an important postsynaptic determinant of aminergic tonus and mood-related behaviors and a potential pharmacological target for mood disorders therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Torres GE, Gainetdinov RR, Caron MG . Plasma membrane monoamine transporters: structure, regulation and function. Nat Rev Neurosci 2003; 4: 13–25.

    Article  CAS  PubMed  Google Scholar 

  2. Iversen L . Neurotransmitter transporters and their impact on the development of psychopharmacology. Br J Pharmacol 2006; 147 (Suppl 1): S82–S88.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Charney DS . Monoamine dysfunction and the pathophysiology and treatment of depression. J Clin Psychiatry 1998; 59 (Suppl 14): 11–14.

    CAS  PubMed  Google Scholar 

  4. Manji HK, Drevets WC, Charney DS . The cellular neurobiology of depression. Nat Med 2001; 7: 541–547.

    Article  CAS  PubMed  Google Scholar 

  5. Wayment HK, Schenk JO, Sorg BA . Characterization of extracellular dopamine clearance in the medial prefrontal cortex: role of monoamine uptake and monoamine oxidase inhibition. J Neurosci 2001; 21: 35–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vizi ES, Zsilla G, Caron MG, Kiss JP . Uptake and release of norepinephrine by serotonergic terminals in norepinephrine transporter knock-out mice: implications for the action of selective serotonin reuptake inhibitors. J Neurosci 2004; 24: 7888–7894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Daws LC, Montanez S, Owens WA, Gould GG, Frazer A, Toney GM et al. Transport mechanisms governing serotonin clearance in vivo revealed by high-speed chronoamperometry. J Neurosci Methods 2005; 143: 49–62.

    Article  CAS  PubMed  Google Scholar 

  8. Grundemann D, Schechinger B, Rappold GA, Schomig E . Molecular identification of the corticosterone-sensitive extraneuronal catecholamine transporter. Nat Neurosci 1998; 1: 349–351.

    Article  CAS  PubMed  Google Scholar 

  9. Vialou V, Amphoux A, Zwart R, Giros B, Gautron S . Organic cation transporter 3 (Slc22a3) is implicated in salt-intake regulation. J Neurosci 2004; 24: 2846–2851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Amphoux A, Vialou V, Drescher E, Bruss M, Mannoury La Cour C, Rochat C et al. Differential pharmacological in vitro properties of organic cation transporters and regional distribution in rat brain. Neuropharmacology 2006; 50: 941–952.

    Article  CAS  PubMed  Google Scholar 

  11. Engel K, Zhou M, Wang J . Identification and characterization of a novel monoamine transporter in the human brain. J Biol Chem 2004; 279: 50042–50049.

    Article  CAS  PubMed  Google Scholar 

  12. Zwart R, Verhaagh S, Buitelaar M, Popp-Snijders C, Barlow DP . Impaired activity of the extraneuronal monoamine transporter system known as uptake-2 in Orct3/Slc22a3-deficient mice. Mol Cell Biol 2001; 21: 4188–4196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jonker JW, Wagenaar E, Van Eijl S, Schinkel AH . Deficiency in the organic cation transporters 1 and 2 (Oct1/Oct2 [Slc22a1/Slc22a2]) in mice abolishes renal secretion of organic cations. Mol Cell Biol 2003; 23: 7902–7908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vialou V, Balasse L, Callebert J, Launay JM, Giros B, Gautron S . Altered aminergic neurotransmission in the brain of organic cation transporter 3-deficient mice. J Neurochem 2008; 106: 1471–1482.

    CAS  PubMed  Google Scholar 

  15. Baganz NL, Horton RE, Calderon AS, Owens WA, Munn JL, Watts LT et al. Organic cation transporter 3: keeping the brake on extracellular serotonin in serotonin-transporter-deficient mice. Proc Natl Acad Sci USA 2008; 105: 18976–18981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cui M, Aras R, Christian WV, Rappold PM, Hatwar M, Panza J et al. The organic cation transporter-3 is a pivotal modulator of neurodegeneration in the nigrostriatal dopaminergic pathway. Proc Natl Acad Sci USA 2009; 106: 8043–8048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Busch AE, Karbach U, Miska D, Gorboulev V, Akhoundova A, Volk C et al. Human neurons express the polyspecific cation transporter hOCT2, which translocates monoamine neurotransmitters, amantadine, and memantine. Mol Pharmacol 1998; 54: 342–352.

    Article  CAS  PubMed  Google Scholar 

  18. Russ H, Engel W, Schomig E . Isocyanines and pseudoisocyanines as a novel class of potent noradrenaline transport inhibitors: synthesis, detection, and biological activity. J Med Chem 1993; 36: 4208–4213.

    Article  CAS  PubMed  Google Scholar 

  19. Fabre V, Boutrel B, Hanoun N, Lanfumey L, Fattaccini CM, Demeneix B et al. Homeostatic regulation of serotonergic function by the serotonin transporter as revealed by nonviral gene transfer. J Neurosci 2000; 20: 5065–5075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kandel ER, Spencer WA, Brinley Jr FJ . Electrophysiology of hippocampal neurons. I. Sequential invasion and synaptic organization. J Neurophysiol 1961; 24: 225–242.

    Article  CAS  PubMed  Google Scholar 

  21. David DJ, Bourin M, Jego G, Przybylski C, Jolliet P, Gardier AM . Effects of acute treatment with paroxetine, citalopram and venlafaxine in vivo on noradrenaline and serotonin outflow: a microdialysis study in Swiss mice. Br J Pharmacol 2003; 140: 1128–1136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ordway GA, Stockmeier CA, Cason GW, Klimek V . Pharmacology and distribution of norepinephrine transporters in the human locus coeruleus and raphe nuclei. J Neurosci 1997; 17: 1710–1719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Le Marec N, Hebert C, Amdiss F, Botez MI, Reader TA . Regional distribution of 5-HT transporters in the brain of wild type and ‘Purkinje cell degeneration’ mutant mice: a quantitative autoradiographic study with [3H]citalopram. J Chem Neuroanat 1998; 15: 155–171.

    Article  CAS  PubMed  Google Scholar 

  24. Fabre V, Beaufour C, Evrard A, Rioux A, Hanoun N, Lesch KP et al. Altered expression and functions of serotonin 5-HT1A and 5-HT1B receptors in knock-out mice lacking the 5-HT transporter. Eur J Neurosci 2000; 12: 2299–2310.

    Article  CAS  PubMed  Google Scholar 

  25. David DJ, Klemenhagen KC, Holick KA, Saxe MD, Mendez I, Santarelli L et al. Efficacy of the MCHR1 antagonist N-[3-(1-{[4-(3,4-difluorophenoxy)phenyl]methyl}(4-piperidyl))-4-methylphen yl]-2-methylpropanamide (SNAP 94847) in mouse models of anxiety and depression following acute and chronic administration is independent of hippocampal neurogenesis. J Pharmacol Exp Ther 2007; 321: 237–248.

    Article  CAS  PubMed  Google Scholar 

  26. Porsolt RD, Le Pichon M, Jalfre M . Depression: a new animal model sensitive to antidepressant treatments. Nature 1977; 266: 730–732.

    Article  CAS  PubMed  Google Scholar 

  27. David DJ, Samuels BA, Rainer Q, Wang JW, Marsteller D, Mendez I et al. Neurogenesis-dependent and -independent effects of fluoxetine in an animal model of anxiety/depression. Neuron 2009; 62: 479–493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. LeDoux JE . Emotion circuits in the brain. Annu Rev Neurosci 2000; 23: 155–184.

    Article  CAS  PubMed  Google Scholar 

  29. Drevets WC . Prefrontal cortical-amygdalar metabolism in major depression. Ann NY Acad Sci 1999; 877: 614–637.

    Article  CAS  PubMed  Google Scholar 

  30. Drevets WC . Neuroimaging studies of mood disorders. Biol Psychiatry 2000; 48: 813–829.

    Article  CAS  PubMed  Google Scholar 

  31. Grundemann D, Koster S, Kiefer N, Breidert T, Engelhardt M, Spitzenberger F et al. Transport of monoamine transmitters by the organic cation transporter type 2, OCT2. J Biol Chem 1998; 273: 30915–30920.

    Article  CAS  PubMed  Google Scholar 

  32. Gobbi G, Murphy DL, Lesch K, Blier P . Modifications of the serotonergic system in mice lacking serotonin transporters: an in vivo electrophysiological study. J Pharmacol Exp Ther 2001; 296: 987–995.

    CAS  PubMed  Google Scholar 

  33. Gourley SL, Wu FJ, Kiraly DD, Ploski JE, Kedves AT, Duman RS et al. Regionally specific regulation of ERK MAP kinase in a model of antidepressant-sensitive chronic depression. Biol Psychiatry 2008; 63: 353–359.

    Article  CAS  PubMed  Google Scholar 

  34. Bunin MA, Wightman RM . Quantitative evaluation of 5-hydroxytryptamine (serotonin) neuronal release and uptake: an investigation of extrasynaptic transmission. J Neurosci 1998; 18: 4854–4860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mundorf ML, Joseph JD, Austin CM, Caron MG, Wightman RM . Catecholamine release and uptake in the mouse prefrontal cortex. J Neurochem 2001; 79: 130–142.

    Article  CAS  PubMed  Google Scholar 

  36. Mitchell K, Oke AF, Adams RN . In vivo dynamics of norepinephrine release-reuptake in multiple terminal field regions of rat brain. J Neurochem 1994; 63: 917–926.

    Article  CAS  PubMed  Google Scholar 

  37. Bengel D, Murphy DL, Andrews AM, Wichems CH, Feltner D, Heils A et al. Altered brain serotonin homeostasis and locomotor insensitivity to 3, 4-methylenedioxymethamphetamine (‘Ecstasy’) in serotonin transporter-deficient mice. Mol Pharmacol 1998; 53: 649–655.

    Article  CAS  PubMed  Google Scholar 

  38. Xu F, Gainetdinov RR, Wetsel WC, Jones SR, Bohn LM, Miller GW et al. Mice lacking the norepinephrine transporter are supersensitive to psychostimulants. Nat Neurosci 2000; 3: 465–471.

    Article  CAS  PubMed  Google Scholar 

  39. Sheline YI . Neuroimaging studies of mood disorder effects on the brain. Biol Psychiatry 2003; 54: 338–352.

    Article  PubMed  Google Scholar 

  40. Rajkowska G . Postmortem studies in mood disorders indicate altered numbers of neurons and glial cells. Biol Psychiatry 2000; 48: 766–777.

    Article  CAS  PubMed  Google Scholar 

  41. Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C et al. Deep brain stimulation for treatment-resistant depression. Neuron 2005; 45: 651–660.

    Article  CAS  PubMed  Google Scholar 

  42. Tremblay P, Blier P . Catecholaminergic strategies for the treatment of major depression. Curr Drug Targets 2006; 7: 149–158.

    Article  CAS  PubMed  Google Scholar 

  43. Lin CJ, Tai Y, Huang MT, Tsai YF, Hsu HJ, Tzen KY et al. Cellular localization of the organic cation transporters, OCT1 and OCT2, in brain microvessel endothelial cells and its implication for MPTP transport across the blood-brain barrier and MPTP-induced dopaminergic toxicity in rodents. J Neurochem 2010; 114: 717–727.

    Article  CAS  PubMed  Google Scholar 

  44. Roche M, Commons KG, Peoples A, Valentino RJ . Circuitry underlying regulation of the serotonergic system by swim stress. J Neurosci 2003; 23: 970–977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Heisler LK, Pronchuk N, Nonogaki K, Zhou L, Raber J, Tung L et al. Serotonin activates the hypothalamic-pituitary-adrenal axis via serotonin 2C receptor stimulation. J Neurosci 2007; 27: 6956–6964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Radley JJ, Williams B, Sawchenko PE . Noradrenergic innervation of the dorsal medial prefrontal cortex modulates hypothalamo-pituitary-adrenal responses to acute emotional stress. J Neurosci 2008; 28: 5806–5816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ulrich-Lai YM, Herman JP . Neural regulation of endocrine and autonomic stress responses. Nat Rev Neurosci 2009; 10: 397–409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Linthorst AC, Penalva RG, Flachskamm C, Holsboer F, Reul JM . Forced swim stress activates rat hippocampal serotonergic neurotransmission involving a corticotropin-releasing hormone receptor-dependent mechanism. Eur J Neurosci 2002; 16: 2441–2452.

    Article  PubMed  Google Scholar 

  49. Ma S, Morilak DA . Norepinephrine release in medial amygdala facilitates activation of the hypothalamic-pituitary-adrenal axis in response to acute immobilisation stress. J Neuroendocrinol 2005; 17: 22–28.

    Article  CAS  PubMed  Google Scholar 

  50. Yoshitake T, Wang FH, Kuteeva E, Holmberg K, Yamaguchi M, Crawley JN et al. Enhanced hippocampal noradrenaline and serotonin release in galanin-overexpressing mice after repeated forced swimming test. Proc Natl Acad Sci USA 2004; 101: 354–359.

    Article  CAS  PubMed  Google Scholar 

  51. Schreiber R, Brocco M, Gobert A, Veiga S, Millan MJ . The potent activity of the 5-HT1A receptor agonists, S 14506 and S 14671, in the rat forced swim test is blocked by novel 5-HT1A receptor antagonists. Eur J Pharmacol 1994; 271: 537–541.

    Article  CAS  PubMed  Google Scholar 

  52. De Vry J, Schreiber R, Melon C, Dalmus M, Jentzsch KR . 5-HT1A receptors are differentially involved in the anxiolytic- and antidepressant-like effects of 8-OH-DPAT and fluoxetine in the rat. Eur Neuropsychopharmacol 2004; 14: 487–495.

    Article  CAS  PubMed  Google Scholar 

  53. File SE, Gonzalez LE, Andrews N . Comparative study of pre- and postsynaptic 5-HT1A receptor modulation of anxiety in two ethological animal tests. J Neurosci 1996; 16: 4810–4815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Savitz J, Lucki I, Drevets WC . 5-HT(1A) receptor function in major depressive disorder. Prog Neurobiol 2009; 88: 17–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Li Q, Wichems C, Heils A, Lesch KP, Murphy DL . Reduction in the density and expression, but not G-protein coupling, of serotonin receptors (5-HT1A) in 5-HT transporter knock-out mice: gender and brain region differences. J Neurosci 2000; 20: 7888–7895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Koepsell H, Lips K, Volk C . Polyspecific organic cation transporters: structure, function, physiological roles, and biopharmaceutical implications. Pharm Res 2007; 24: 1227–1251.

    Article  CAS  PubMed  Google Scholar 

  57. Blier P, Pineyro G, el Mansari M, Bergeron R, de Montigny C . Role of somatodendritic 5-HT autoreceptors in modulating 5-HT neurotransmission. Ann NY Acad Sci 1998; 861: 204–216.

    Article  CAS  PubMed  Google Scholar 

  58. Cremers TI, de Boer P, Liao Y, Bosker FJ, den Boer JA, Westerink BH et al. Augmentation with a 5-HT(1A), but not a 5-HT(1B) receptor antagonist critically depends on the dose of citalopram. Eur J Pharmacol 2000; 397: 63–74.

    Article  CAS  PubMed  Google Scholar 

  59. Detke MJ, Wieland S, Lucki I . Blockade of the antidepressant-like effects of 8-OH-DPAT, buspirone and desipramine in the rat forced swim test by 5HT1A receptor antagonists. Psychopharmacology (Berl) 1995; 119: 47–54.

    Article  CAS  Google Scholar 

  60. Surget A, Saxe M, Leman S, Ibarguen-Vargas Y, Chalon S, Griebel G et al. Drug-dependent requirement of hippocampal neurogenesis in a model of depression and of antidepressant reversal. Biol Psychiatry 2008; 64: 293–301.

    Article  CAS  PubMed  Google Scholar 

  61. Kobayashi K, Ikeda Y, Sakai A, Yamasaki N, Haneda E, Miyakawa T et al. Reversal of hippocampal neuronal maturation by serotonergic antidepressants. Proc Natl Acad Sci USA 2010; 107: 8434–8439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yanpallewar SU, Fernandes K, Marathe SV, Vadodaria KC, Jhaveri D, Rommelfanger K et al. Alpha2-adrenoceptor blockade accelerates the neurogenic, neurotrophic, and behavioral effects of chronic antidepressant treatment. J Neurosci 2010; 30: 1096–1109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Richardson-Jones JW, Craige CP, Guiard BP, Stephen A, Metzger KL, Kung HF et al. 5-HT1A autoreceptor levels determine vulnerability to stress and response to antidepressants. Neuron 2010; 65: 40–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Beique J, de Montigny C, Blier P, Debonnel G . Effects of sustained administration of the serotonin and norepinephrine reuptake inhibitor venlafaxine: I. in vivo electrophysiological studies in the rat. Neuropharmacology 2000; 39: 1800–1812.

    Article  CAS  PubMed  Google Scholar 

  65. Szabo ST, Blier P . Effects of the selective norepinephrine reuptake inhibitor reboxetine on norepinephrine and serotonin transmission in the rat hippocampus. Neuropsychopharmacology 2001; 25: 845–857.

    Article  CAS  PubMed  Google Scholar 

  66. Berrocoso E, Mico JA . In vivo effect of venlafaxine on locus coeruleus neurons: role of opioid, alpha(2)-adrenergic, and 5-hydroxytryptamine(1A) receptors. J Pharmacol Exp Ther 2007; 322: 101–107.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous reviewers for their valuable comments on the manuscript. We thank F Tronche and E Massouride for advice concerning hormonal dosage, R Schwartzmann and S Bolte at the IFR 83 Cellular Imaging platform for help with confocal microscopy, Pfizer and Lundbeck for the gift of reboxetine and citalopram, respectively, and C Betancur for critical reading of the manuscript. AB, LB and VV were recipients of fellowships from the French Ministry for Research, the Société Française de Pharmacologie et Thérapeutique and the Fondation pour la Recherche Médicale. GB was a recipient of a grant from the EGIDE foundation. Financial support was provided by the Institut National pour la Santé et la Recherche Scientifique (INSERM) and the Fondation de France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Gautron.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bacq, A., Balasse, L., Biala, G. et al. Organic cation transporter 2 controls brain norepinephrine and serotonin clearance and antidepressant response. Mol Psychiatry 17, 926–939 (2012). https://doi.org/10.1038/mp.2011.87

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2011.87

Keywords

This article is cited by

Search

Quick links