Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing

This article has been updated

Abstract

Alternative splicing of pre-messenger RNA is a key feature of transcriptome expansion in eukaryotic cells, yet its regulation is poorly understood. Spliceosome assembly occurs co-transcriptionally, raising the possibility that DNA structure may directly influence alternative splicing. Supporting such an association, recent reports have identified distinct histone methylation patterns, elevated nucleosome occupancy and enriched DNA methylation at exons relative to introns. Moreover, the rate of transcription elongation has been linked to alternative splicing. Here we provide the first evidence that a DNA-binding protein, CCCTC-binding factor (CTCF), can promote inclusion of weak upstream exons by mediating local RNA polymerase II pausing both in a mammalian model system for alternative splicing, CD45, and genome-wide. We further show that CTCF binding to CD45 exon 5 is inhibited by DNA methylation, leading to reciprocal effects on exon 5 inclusion. These findings provide a mechanistic basis for developmental regulation of splicing outcome through heritable epigenetic marks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Binding of CTCF to exon 5 of CD45 DNA is associated with inclusion of exon 5 in CD45 transcripts.
Figure 2: CTCF depletion leads to reduced exon 5 inclusion in CD45 transcripts.
Figure 3: CTCF binding at CD45 exon 5 DNA facilitates exon 5 inclusion in CD45 transcripts through local pol II pausing.
Figure 4: 5-methylcytosine levels (5-mC) are inversely related to CTCF binding and exon 5 inclusion.
Figure 5: Global identification of CTCF-dependent exons.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Data deposits

All data sets in this publication are available in the NCBI Gene Expression Omnibus accession number GSE31278.

Change history

  • 03 November 2011

    Panel labelling in Fig. 3e was corrected.

References

  1. Wang, E. T. et al. Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470–476 (2008)

    Article  CAS  ADS  Google Scholar 

  2. Pan, Q., Shai, O., Lee, L. J., Frey, B. J. & Blencowe, B. J. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nature Genet. 40, 1413–1415 (2008)

    Article  CAS  Google Scholar 

  3. Tazi, J., Bakkour, N. & Stamm, S. Alternative splicing and disease. Biochim. Biophys. Acta 1792, 14–26 (2009)

    Article  CAS  Google Scholar 

  4. Matlin, A. J., Clark, F. & Smith, C. W. Understanding alternative splicing: towards a cellular code. Nature Rev. Mol. Cell Biol. 6, 386–398 (2005)

    Article  CAS  Google Scholar 

  5. Han, J., Xiong, J., Wang, D. & Fu, X. D. Pre-mRNA splicing: where and when in the nucleus. Trends Cell Biol. 21, 336–343 (2011)

    Article  CAS  Google Scholar 

  6. Singh, R. & Valcarcel, J. Building specificity with nonspecific RNA-binding proteins. Nature Struct. Mol. Biol. 12, 645–653 (2005)

    Article  CAS  Google Scholar 

  7. Kornblihtt, A. R. Coupling transcription and alternative splicing. Adv. Exp. Med. Biol. 623, 175–189 (2007)

    Article  Google Scholar 

  8. de la Mata, M. et al. A slow RNA polymerase II affects alternative splicing in vivo . Mol. Cell 12, 525–532 (2003)

    Article  CAS  Google Scholar 

  9. Tilgner, H. et al. Nucleosome positioning as a determinant of exon recognition. Nature Struct. Mol. Biol. 16, 996–1001 (2009)

    Article  CAS  Google Scholar 

  10. Spies, N., Nielsen, C. B., Padgett, R. A. & Burge, C. B. Biased chromatin signatures around polyadenylation sites and exons. Mol. Cell 36, 245–254 (2009)

    Article  CAS  Google Scholar 

  11. Andersson, R., Enroth, S., Rada-Iglesias, A., Wadelius, C. & Komorowski, J. Nucleosomes are well positioned in exons and carry characteristic histone modifications. Genome Res. 19, 1732–1741 (2009)

    Article  CAS  Google Scholar 

  12. Kolasinska-Zwierz, P. et al. Differential chromatin marking of introns and expressed exons by H3K36me3. Nature Genet. 41, 376–381 (2009)

    Article  CAS  Google Scholar 

  13. Schwartz, S., Meshorer, E. & Ast, G. Chromatin organization marks exon-intron structure. Nature Struct. Mol. Biol. 16, 990–995 (2009)

    Article  CAS  Google Scholar 

  14. Chodavarapu, R. K. et al. Relationship between nucleosome positioning and DNA methylation. Nature 466, 388–392 (2010)

    Article  CAS  ADS  Google Scholar 

  15. Hodges, E. et al. High definition profiling of mammalian DNA methylation by array capture and single molecule bisulfite sequencing. Genome Res. 19, 1593–1605 (2009)

    Article  CAS  Google Scholar 

  16. Luco, R. F., Allo, M., Schor, I. E., Kornblihtt, A. R. & Misteli, T. Epigenetics in alternative pre-mRNA splicing. Cell 144, 16–26 (2011)

    Article  CAS  Google Scholar 

  17. Alló, M. et al. Chromatin and alternative splicing. Cold Spring Harb. Symp. Quant. Biol. 75, 103–111 (2010)

    Article  Google Scholar 

  18. Trowbridge, I. S. & Thomas, M. L. CD45: an emerging role as a protein tyrosine phosphatase required for lymphocyte activation and development. Annu. Rev. Immunol. 12, 85–116 (1994)

    Article  CAS  Google Scholar 

  19. Hermiston, M. L., Xu, Z. & Weiss, A. CD45: a critical regulator of signaling thresholds in immune cells. Annu. Rev. Immunol. 21, 107–137 (2003)

    Article  CAS  Google Scholar 

  20. Oberdoerffer, S. et al. Regulation of CD45 alternative splicing by heterogeneous ribonucleoprotein, hnRNPLL. Science 321, 686–691 (2008)

    Article  CAS  ADS  Google Scholar 

  21. Topp, J. D., Jackson, J., Melton, A. A. & Lynch, K. W. A cell-based screen for splicing regulators identifies hnRNP LL as a distinct signal-induced repressor of CD45 variable exon 4. RNA 14, 2038–2049 (2008)

    Article  CAS  Google Scholar 

  22. Motta-Mena, L. B., Heyd, F. & Lynch, K. W. Context-dependent regulatory mechanism of the splicing factor hnRNP L. Mol. Cell 37, 223–234 (2010)

    Article  CAS  Google Scholar 

  23. Tong, A., Nguyen, J. & Lynch, K. W. Differential expression of CD45 isoforms is controlled by the combined activity of basal and inducible splicing-regulatory elements in each of the variable exons. J. Biol. Chem. 280, 38297–38304 (2005)

    Article  CAS  Google Scholar 

  24. Horgan, K. J. et al. CD45RB expression defines two interconvertible subsets of human CD4+ T cells with memory function. Eur. J. Immunol. 24, 1240–1243 (1994)

    Article  CAS  Google Scholar 

  25. Birney, E. et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816 (2007)

    Article  CAS  ADS  Google Scholar 

  26. UCSC Genome Browser, GRC37/hg19, ENCODE Histone Modification Tracks.

  27. Phillips, J. E. & Corces, V. G. CTCF: master weaver of the genome. Cell 137, 1194–1211 (2009)

    Article  Google Scholar 

  28. Ohlsson, R., Bartkuhn, M. & Renkawitz, R. CTCF shapes chromatin by multiple mechanisms: the impact of 20 years of CTCF research on understanding the workings of chromatin. Chromosoma 119, 351–360 (2010)

    Article  CAS  Google Scholar 

  29. Luco, R. F. et al. Regulation of alternative splicing by histone modifications. Science 327, 996–1000 (2010)

    Article  CAS  ADS  Google Scholar 

  30. Wada, Y. et al. A wave of nascent transcription on activated human genes. Proc. Natl Acad. Sci. USA 106, 18357–18361 (2009)

    Article  CAS  ADS  Google Scholar 

  31. Buratowski, S. Progression through the RNA polymerase II CTD cycle. Mol. Cell 36, 541–546 (2009)

    Article  CAS  Google Scholar 

  32. Komissarova, N., Kireeva, M. L., Becker, J., Sidorenkov, I. & Kashlev, M. Engineering of elongation complexes of bacterial and yeast RNA polymerases. Methods Enzymol. 371, 233–251 (2003)

    Article  CAS  Google Scholar 

  33. Filippova, G. N. et al. An exceptionally conserved transcriptional repressor, CTCF, employs different combinations of zinc fingers to bind diverged promoter sequences of avian and mammalian c-myc oncogenes. Mol. Cell. Biol. 16, 2802–2813 (1996)

    Article  CAS  Google Scholar 

  34. Renda, M. et al. Critical DNA binding interactions of the insulator protein CTCF: a small number of zinc fingers mediate strong binding, and a single finger-DNA interaction controls binding at imprinted loci. J. Biol. Chem. 282, 33336–33345 (2007)

    Article  CAS  Google Scholar 

  35. Kim, T. H. et al. Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome. Cell 128, 1231–1245 (2007)

    Article  CAS  Google Scholar 

  36. Lyko, F. et al. The honey bee epigenomes: differential methylation of brain DNA in queens and workers. PLoS Biol. 8, e1000506 (2010)

    Article  Google Scholar 

  37. Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007)

    Article  CAS  Google Scholar 

  38. Jothi, R., Cuddapah, S., Barski, A., Cui, K. & Zhao, K. Genome-wide identification of in vivo protein-DNA binding sites from ChIP-Seq data. Nucleic Acids Res. 36, 5221–5231 (2008)

    Article  CAS  Google Scholar 

  39. Katz, Y., Wang, E. T., Airoldi, E. M. & Burge, C. B. Analysis and design of RNA sequencing experiments for identifying isoform regulation. Nature Methods 7, 1009–1015 (2010)

    Article  CAS  Google Scholar 

  40. Huff, J. T., Plocik, A. M., Guthrie, C. & Yamamoto, K. R. Reciprocal intronic and exonic histone modification regions in humans. Nature Struct. Mol. Biol. 17, 1495–1499 (2010)

    Article  CAS  Google Scholar 

  41. Berdasco, M. & Esteller, M. Aberrant epigenetic landscape in cancer: how cellular identity goes awry. Dev. Cell 19, 698–711 (2010)

    Article  CAS  Google Scholar 

  42. David, C. J. & Manley, J. L. Alternative pre-mRNA splicing regulation in cancer: pathways and programs unhinged. Genes Dev. 24, 2343–2364 (2010)

    Article  CAS  Google Scholar 

  43. Jelinic, P. & Shaw, P. Loss of imprinting and cancer. J. Pathol. 211, 261–268 (2007)

    Article  CAS  Google Scholar 

  44. Mohn, F., Weber, M., Schubeler, D. & Roloff, T. C. Methylated DNA immunoprecipitation (MeDIP). Methods Mol. Biol. 507, 55–64 (2009)

    Article  CAS  Google Scholar 

  45. Kireeva, M. L. et al. Transient reversal of RNA polymerase II active site closing controls fidelity of transcription elongation. Mol. Cell 30, 557–566 (2008)

    Article  CAS  Google Scholar 

  46. Awrey, D. E. et al. Transcription elongation through DNA arrest sites. A multistep process involving both RNA polymerase II subunit RPB9 and TFIIS. J. Biol. Chem. 272, 14747–14754 (1997)

    Article  CAS  Google Scholar 

  47. Kireeva, M. L., Lubkowska, L., Komissarova, N. & Kashlev, M. Assays and affinity purification of biotinylated and nonbiotinylated forms of double-tagged core RNA polymerase II from Saccharomyces cerevisiae . Methods Enzymol. 370, 138–155 (2003)

    Article  CAS  Google Scholar 

  48. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009)

    Article  Google Scholar 

  49. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008)

    Article  Google Scholar 

  50. Trapnell, C., Pachter, L. & Salzberg, S. L. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111 (2009)

    Article  CAS  Google Scholar 

  51. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009)

    Article  Google Scholar 

  52. Ramsköld, D., Wang, E. T., Burge, C. B. & Sandberg, R. An abundance of ubiquitously expressed genes revealed by tissue transcriptome sequence data. PLoS Comput. Biol. 5, e1000598 (2009)

    Article  ADS  Google Scholar 

  53. Wall, M. E., Dyck, P. A. & Brettin, T. S. SVDMAN–singular value decomposition analysis of microarray data. Bioinformatics 17, 566–568 (2001)

    Article  CAS  Google Scholar 

  54. Wall, M. E., Rechsteiner, A. & Rocha, L. M. in A Practical Approach to Microarray Data Analysis (eds Berrar, D. P., Dubitzky, W. & Granzow, M.) pp. 91–109 (Springer, 2003)

    Google Scholar 

Download references

Acknowledgements

We thank A. Rao, C. Burge and K. Lynch for critical reading of this manuscript. We also thank A. Rao for reagents and K. Nyswaner and M. Prigge for technical assistance. This work is supported by the Intramural Research Program of NIH, the National Cancer Institute, The Center for Cancer Research (S.O., P.O., M.K.), and the Swedish Research Council Foundation and the Foundation for Strategic Research (R.S.).

Author information

Authors and Affiliations

Authors

Contributions

S.S. performed ChIP, MedIP and EMSA. M.G. and S.S. performed lentiviral transductions, transfections, flow cytometry, and qPCR. E.K. analysed ChIP and RNA-seq data. M.I. performed in vitro transcription. S.S. and B.S. cloned the minigenes. All authors designed experiments and M.K., P.O., R.S. and S.O. supervised the project. S.O. and R.S. wrote the text. P.O. edited the text.

Corresponding author

Correspondence to Shalini Oberdoerffer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Figures 1-10 with legends and Supplementary Tables 1-3. (PDF 1904 kb)

Supplementary Table 4

The table shows a list of exons with significantly different inclusion levels after CTCF knock-down. (XLS 1395 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shukla, S., Kavak, E., Gregory, M. et al. CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature 479, 74–79 (2011). https://doi.org/10.1038/nature10442

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10442

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing