Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Of lineage and legacy: the development of mammalian hematopoietic stem cells

Abstract

The hematopoietic system is one of the first complex tissues to develop in the mammalian conceptus. Of particular interest in the field of developmental hematopoiesis is the origin of adult bone marrow hematopoietic stem cells. Tracing their origin is complicated because blood is a mobile tissue and because hematopoietic cells emerge from many embryonic sites. The origin of the adult mammalian blood system remains a topic of lively discussion and intense research. Interest is also focused on developmental signals that induce the adult hematopoietic stem cell program, as these may prove useful for generating and expanding these clinically important cell populations ex vivo. This review presents a historical overview of and the most recent data on the developmental origins of hematopoiesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Vertebrate hematopoietic development.
Figure 2: The generation of hematopoietic cells in the mouse conceptus.
Figure 3: Timeline of hematopoietic events in the mouse conceptus.

Similar content being viewed by others

References

  1. Sabin, F. Studies on the origin of blood vessels and of red blood corpuscles as seen in the living blastoderm of chicks during the second day of incubation. Carnegie Inst. Wash. Pub. # 272. Contrib. Embryol. 9, 214 (1920).

    Google Scholar 

  2. Murray, P. The development in vitro of the blood of the early chick embryo. Proc. Royal Soc. London 11, 497–521 (1932).

    Google Scholar 

  3. Choi, K., Kennedy, M., Kazarov, A., Papadimitriou, J.C. & Keller, G. A common precursor for hematopoietic and endothelial cells. Development 125, 725–732 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Fehling, H.J. et al. Tracking mesoderm induction and its specification to the hemangioblast during embryonic stem cell differentiation. Development 130, 4217–4227 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Huber, T.L., Kouskoff, V., Fehling, H.J., Palis, J. & Keller, G. Haemangioblast commitment is initiated in the primitive streak of the mouse embryo. Nature 432, 625–630 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Ferkowicz, M.J. & Yoder, M.C. Blood island formation: longstanding observations and modern interpretations. Exp. Hematol. 33, 1041–1047 (2005).

    Article  PubMed  Google Scholar 

  7. Ueno, H. & Weissman, I.L. Clonal analysis of mouse development reveals a polyclonal origin for yolk sac blood islands. Dev. Cell 11, 519–533 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Kinder, S.J. et al. The orderly allocation of mesodermal cells to the extraembryonic structures and the anteroposterior axis during gastrulation of the mouse embryo. Development 126, 4691–4701 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Moore, M.A. & Metcalf, D. Ontogeny of the haemopoietic system: yolk sac origin of in vivo and in vitro colony forming cells in the developing mouse embryo. Br. J. Haematol. 18, 279–296 (1970).

    Article  CAS  PubMed  Google Scholar 

  10. Weissman, I., Papaioannou, V. & Gardner, R. Differentiation of Normal and Neoplastic Hematopoietic Cells (Cold Spring Harbor Laboratory Press, New York, 1978).

    Google Scholar 

  11. Dieterlen-Lievre, F. On the origin of haemopoietic stem cells in the avian embryo: an experimental approach. J. Embryol. Exp. Morphol. 33, 607–619 (1975).

    CAS  PubMed  Google Scholar 

  12. Turpen, J.B., Knudson, C.M. & Hoefen, P.S. The early ontogeny of hematopoietic cells studied by grafting cytogenetically labeled tissue anlagen: localization of a prospective stem cell compartment. Dev. Biol. 85, 99–112 (1981).

    Article  CAS  PubMed  Google Scholar 

  13. Cormier, F. & Dieterlen-Lievre, F. The wall of the chick embryo aorta harbours M-CFC, G-CFC, GM-CFC and BFU-E. Development 102, 279–285 (1988).

    Article  CAS  PubMed  Google Scholar 

  14. Caprioli, A. et al. Hemangioblast commitment in the avian allantois: cellular and molecular aspects. Dev. Biol. 238, 64–78 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Ciau-Uitz, A., Walmsley, M. & Patient, R. Distinct origins of adult and embryonic blood in Xenopus. Cell 102, 787–796 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Walmsley, M., Ciau-Uitz, A. & Patient, R. Adult and embryonic blood and endothelium derive from distinct precursor populations which are differentially programmed by BMP in Xenopus. Development 129, 5683–5695 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Walmsley, M., Cleaver, D. & Patient, R. FGF controls the timing of Scl, Lmo2 and Runx1 expression during embryonic blood development. Blood published online 17 October 2007 (doi:10.1182/blood-2007-03-081323).

    Article  PubMed  CAS  Google Scholar 

  18. Turpen, J.B., Kelley, C.M., Mead, P.E. & Zon, L.I. Bipotential primitive-definitive hematopoietic progenitors in the vertebrate embryo. Immunity 7, 325–334 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Lawson, K.A., Meneses, J.J. & Pedersen, R.A. Clonal analysis of epiblast fate during germ layer formation in the mouse embryo. Development 113, 891–911 (1991).

    Article  CAS  PubMed  Google Scholar 

  20. Kanatsu, M. & Nishikawa, S.I. In vitro analysis of epiblast tissue potency for hematopoietic cell differentiation. Development 122, 823–830 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Medvinsky, A. & Dzierzak, E. Definitive hematopoiesis is autonomously initiated by the AGM region. Cell 86, 897–906 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Muller, A.M., Medvinsky, A., Strouboulis, J., Grosveld, F. & Dzierzak, E. Development of hematopoietic stem cell activity in the mouse embryo. Immunity 1, 291–301 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. de Bruijn, M.F., Speck, N.A., Peeters, M.C. & Dzierzak, E. Definitive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo. EMBO J. 19, 2465–2474 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Taoudi, S. & Medvinsky, A. Functional identification of the hematopoietic stem cell niche in the ventral domain of the embryonic dorsal aorta. Proc. Natl. Acad. Sci. USA 104, 9399–9403 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. North, T. et al. Runx1 expression marks long-term repopulating HSCs in the midgestation mouse embryo. Immunity 16, 661–672 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. de Bruijn, M. et al. HSCs localize to the endothelial layer in the midgestation mouse aorta. Immunity 16, 673–683 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Gekas, C., Dieterlen-Lievre, F., Orkin, S.H. & Mikkola, H.K. Placenta is a niche for hematopoietic stem cells. Dev. Cell 8, 365–375 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Ottersbach, K. & Dzierzak, E. The murine placenta contains hematopoietic stem cells within the vascular labyrinth region. Dev. Cell 8, 377–387 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Johnson, G.R. & Moore, M.A. Role of stem cell migration in initiation of mouse foetal liver haemopoiesis. Nature 258, 726–728 (1975).

    Article  CAS  PubMed  Google Scholar 

  30. Houssaint, E. Differentiation of the mouse hepatic primordium. II. Extrinsic origin of the haemopoietic cell line. Cell Differ. 10, 243–252 (1981).

    Article  CAS  PubMed  Google Scholar 

  31. Downs, K.M. The murine allantois. Curr. Top. Dev. Biol. 39, 1–33 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Kumaravelu, P. et al. Quantitative developmental anatomy of definitive haematopoietic stem cells/long-term repopulating units (HSC/RUs): role of the aorta-gonad-mesonephros (AGM) region and the yolk sac in colonisation of the mouse embryonic liver. Development 129, 4891–4899 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Takeuchi, M., Sekiguchi, T., Hara, T., Kinoshita, T. & Miyajima, A. Cultivation of aorta-gonad-mesonephros-derived hematopoietic stem cells in the fetal liver microenvironment amplifies long-term repopulating activity and enhances engraftment to the bone marrow. Blood 99, 1190–1196 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Ferkowicz, M.J. et al. CD41 expression defines the onset of primitive and definitive hematopoiesis in the murine embryo. Development 130, 4393–4403 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Palis, J., Robertson, S., Kennedy, M., Wall, C. & Keller, G. Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development 126, 5073–5084 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. McGrath, K.E. & Palis, J. Hematopoiesis in the yolk sac: more than meets the eye. Exp. Hematol. 33, 1021–1028 (2005).

    Article  PubMed  Google Scholar 

  37. Cumano, A., Dieterlen-Lievre, F. & Godin, I. Lymphoid potential, probed before circulation in mouse, is restricted to caudal intraembryonic splanchnopleura. Cell 86, 907–916 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Corbel, C., Salaun, J., Belo-Diabangouaya, P. & Dieterlen-Lievre, F. Hematopoietic potential of the pre-fusion allantois. Dev. Biol. 301, 478–488 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Zeigler, B.M. et al. The allantois and chorion, when isolated before circulation or chorio-allantoic fusion, have hematopoietic potential. Development 133, 4183–4192 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Alvarez-Silva, M., Belo-Diabangouaya, P., Salaun, J. & Dieterlen-Lievre, F. Mouse placenta is a major hematopoietic organ. Development 130, 5437–5444 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Medvinsky, A.L., Samoylina, N.L., Muller, A.M. & Dzierzak, E.A. An early pre-liver intraembryonic source of CFU-S in the developing mouse. Nature 364, 64–67 (1993).

    Article  CAS  PubMed  Google Scholar 

  42. Rampon, C. & Huber, P. Multilineage hematopoietic progenitor activity generated autonomously in the mouse yolk sac: analysis using angiogenesis-defective embryos. Int. J. Dev. Biol. 47, 273–280 (2003).

    CAS  PubMed  Google Scholar 

  43. Lux, C.T. et al. All primitive and definitive hematopoietic progenitor cells emerging prior to E10 in the mouse embryo are products of the yolk sac. Blood published online 17 October 2007 (doi:10.1182/blood-2007-08-107086).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yashiro, K., Shiratori, H. & Hamada, H. Haemodynamics determined by a genetic programme govern asymmetric development of the aortic arch. Nature 450, 285–288 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Cumano, A., Ferraz, J.C., Klaine, M., Di Santo, J.P. & Godin, I. Intraembryonic, but not yolk sac hematopoietic precursors, isolated before circulation, provide long-term multilineage reconstitution. Immunity 15, 477–485 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Tavian, M., Robin, C., Coulombel, L. & Peault, B. The human embryo, but not its yolk sac, generates lympho-myeloid stem cells: mapping multipotent hematopoietic cell fate in intraembryonic mesoderm. Immunity 15, 487–495 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Yoder, M.C. et al. Characterization of definitive lymphohematopoietic stem cells in the day 9 murine yolk sac. Immunity 7, 335–344 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Jaffredo, T., Bollerot, K., Sugiyama, D., Gautier, R. & Drevon, C. Tracing the hemangioblast during embryogenesis: developmental relationships between endothelial and hematopoietic cells. Int. J. Dev. Biol. 49, 269–277 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Jaffredo, T., Gautier, R., Eichmann, A. & Dieterlen-Lievre, F. Intraaortic hemopoietic cells are derived from endothelial cells during ontogeny. Development 125 (1998).

  50. Jaffredo, T., Gautier, R., Brajeul, V. & Dieterlen-Lievre, F. Tracing the progeny of the aortic hemangioblast in the avian embryo. Dev. Biol. 224, 204–214 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Sugiyama, D. et al. Erythropoiesis from acetyl LDL incorporating endothelial cells at the preliver stage. Blood 101, 4733–4738 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Sanchez, M.J., Holmes, A., Miles, C. & Dzierzak, E. Characterization of the first definitive hematopoietic stem cells in the AGM and liver of the mouse embryo. Immunity 5, 513–525 (1996).

    Article  CAS  PubMed  Google Scholar 

  53. Sanchez, M.J., Bockamp, E.O., Miller, J., Gambardella, L. & Green, A.R. Selective rescue of early haematopoietic progenitors in Scl−/− mice by expressing Scl under the control of a stem cell enhancer. Development 128, 4815–4827 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Ling, K.W. et al. GATA-2 plays two functionally distinct roles during the ontogeny of hematopoietic stem cells. J. Exp. Med. 200, 871–882 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Minegishi, N. et al. The mouse GATA-2 gene is expressed in the para-aortic splanchnopleura and aorta-gonads and mesonephros region. Blood 93, 4196–4207 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Taoudi, S. et al. Progressive divergence of definitive haematopoietic stem cells from the endothelial compartment does not depend on contact with the foetal liver. Development 132, 4179–4191 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Bertrand, J.Y. et al. Characterization of purified intraembryonic hematopoietic stem cells as a tool to define their site of origin. Proc. Natl. Acad. Sci. USA 102, 134–139 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Oberlin, E., Tavian, M., Blazsek, B. & Peault, B. Blood-forming potential of vascular endothelium in the human embryo. Development 129, 4147–4157 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Ody, C., Vaigot, P., Quere, P., Imhof, B.A. & Corbel, C. Glycoprotein IIb-IIIa is expressed on avian multilineage hematopoietic progenitor cells. Blood 93, 2898–2906 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Durand, C. et al. Embryonic stromal clones reveal developmental regulators of definitive hematopoietic stem cells. Proc. Natl. Acad. Sci. USA published online 17 December 2007 (doi:10.1073/pnas.0706923105).

    Article  CAS  Google Scholar 

  61. Pardanaud, L. et al. Two distinct endothelial lineages in ontogeny, one of them related to hemopoiesis. Development 122, 1363–1371 (1996).

    Article  CAS  PubMed  Google Scholar 

  62. Pouget, C., Gautier, R., Teillet, M.A. & Jaffredo, T. Somite-derived cells replace ventral aortic hemangioblasts and provide aortic smooth muscle cells of the trunk. Development 133, 1013–1022 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Esner, M. et al. Smooth muscle of the dorsal aorta shares a common clonal origin with skeletal muscle of the myotome. Development 133, 737–749 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Miura, Y. & Wilt, F.H. Tissue interaction and the formation of the first erythroblasts of the chick embryo. Dev. Biol. 19, 201–211 (1969).

    Article  CAS  PubMed  Google Scholar 

  65. Pardanaud, L. & Dieterlen-Lievre, F. Emergence of endothelial and hemopoietic cells in the avian embryo. Anat. Embryol. (Berl.) 187, 107–114 (1993).

    Article  CAS  Google Scholar 

  66. Wilt, F.H. Erythropoiesis in the chick embryo: the role of endoderm. Science 147, 1588–1590 (1965).

    Article  CAS  PubMed  Google Scholar 

  67. Pardanaud, L. & Dieterlen-Lievre, F. Manipulation of the angiopoietic/hemangiopoietic commitment in the avian embryo. Development 126, 617–627 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Belaoussoff, M., Farrington, S.M. & Baron, M.H. Hematopoietic induction and respecification of A-P identity by visceral endoderm signaling in the mouse embryo. Development 125, 5009–5018 (1998).

    Article  CAS  PubMed  Google Scholar 

  69. Dyer, M.A., Farrington, S.M., Mohn, D., Munday, J.R. & Baron, M.H. Indian hedgehog activates hematopoiesis and vasculogenesis and can respecify prospective neurectodermal cell fate in the mouse embryo. Development 128, 1717–1730 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Byrd, N. et al. Hedgehog is required for murine yolk sac angiogenesis. Development 129, 361–372 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Gering, M. & Patient, R. Hedgehog signaling is required for adult blood stem cell formation in zebrafish embryos. Dev. Cell 8, 389–400 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Faloon, P. et al. Basic fibroblast growth factor positively regulates hematopoietic development. Development 127, 1931–1941 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Shalaby, F. et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376, 62–66 (1995).

    Article  CAS  PubMed  Google Scholar 

  74. Winnier, G., Blessing, M., Labosky, P.A. & Hogan, B.L. Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev. 9, 2105–2116 (1995).

    Article  CAS  PubMed  Google Scholar 

  75. Breier, G., Clauss, M. & Risau, W. Coordinate expression of vascular endothelial growth factor receptor-1 (flt-1) and its ligand suggests a paracrine regulation of murine vascular development. Dev. Dyn. 204, 228–239 (1995).

    Article  CAS  PubMed  Google Scholar 

  76. Dumont, D.J. et al. Vascularization of the mouse embryo: a study of flk-1, tek, tie, and vascular endothelial growth factor expression during development. Dev. Dyn. 203, 80–92 (1995).

    Article  CAS  PubMed  Google Scholar 

  77. Johansson. B.a.W., M. Evidence for involvement of activin A and bone morphogenetic protein 4 in mammalian mesoderm and hematopoietic development. Mol. Cell. Biol. 15, 141–151 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Marshall, C.J., Kinnon, C. & Thrasher, A.J. Polarized expression of bone morphogenetic protein-4 in the human aorta-gonad-mesonephros region. Blood 96, 1591–1593 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Sadlon, T.J., Lewis, I.D. & D'Andrea, R.J. BMP4: its role in development of the hematopoietic system and potential as a hematopoietic growth factor. Stem Cells 22, 457–474 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Burns, C.E., Traver, D., Mayhall, E., Shepard, J.L. & Zon, L.I. Hematopoietic stem cell fate is established by the Notch-Runx pathway. Genes Dev. 19, 2331–2342 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kumano, K. et al. Notch1 but not Notch2 is essential for generating hematopoietic stem cells from endothelial cells. Immunity 18, 699–711 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Robert-Moreno, A., Espinosa, L., de la Pompa, J.L. & Bigas, A. RBPjκ-dependent Notch function regulates Gata2 and is essential for the formation of intra-embryonic hematopoietic cells. Development 132, 1117–1126 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Nakagawa, M. et al. AML1/Runx1 rescues Notch1-null mutation-induced deficiency of para-aortic splanchnopleural hematopoiesis. Blood 108, 3329–3334 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Tsai, F.Y. et al. An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature 371, 221–226 (1994).

    Article  CAS  PubMed  Google Scholar 

  85. North, T. et al. Cbfa is required for the formation of intraaortic hematopoietic clusters. Development 126, 2563–2575 (1999).

    Article  CAS  PubMed  Google Scholar 

  86. Cai, Z.L. et al. Haploinsufficiency of AML1/CBFA2 affects the temporal and spatial generation of hematopoietic stem cells in the mouse embryo. Immunity 13, 423–431 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Okuda, T., van Deursen, J., Hiebert, S.W., Grosveld, G. & Downing, J.R. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84, 321–330 (1996).

    Article  CAS  PubMed  Google Scholar 

  88. Wang, Q. et al. Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc. Natl. Acad. Sci. USA 93, 3444–3449 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Okada, H. et al. AML1−/− embryos do not express certain hematopoiesis-related gene transcripts including those of the PU.1 gene. Oncogene 17, 2287–2293 (1998).

    Article  CAS  PubMed  Google Scholar 

  90. McKercher, S.R. et al. Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities. EMBO J. 15, 5647–5658 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Scott, E.W., Simon, M.C., Anastasi, J. & Singh, H. Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science 265, 1573–1577 (1994).

    Article  CAS  PubMed  Google Scholar 

  92. Huang, G. et al. PU.1 is a major downstream target of AML1 (RUNX1) in adult mouse hematopoiesis. Nat. Genet. advance online publication 11 November 2007 (doi: 10.1038/ng.2007.7).

    Article  PubMed  CAS  Google Scholar 

  93. Robin, C. et al. An unexpected role for IL-3 in the embryonic development of hematopoietic stem cells. Dev. Cell 11, 171–180 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Gottgens, B. et al. Establishing the transcriptional programme for blood: the SCL stem cell enhancer is regulated by a multiprotein complex containing Ets and GATA factors. EMBO J. 21, 3039–3050 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Nottingham, W.T. et al. Runx1-mediated hematopoietic stem cell emergence is controlled by a Gata/Ets/SCL-regulated enhancer. Blood 110, 4188–4197 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. North, T.E. et al. Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature 447, 1007–1011 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Kissa, K. et al. Live imaging of emerging hematopoietic stem cells and early thymus colonization. Blood published online 12 October 2007 (doi:10.1182/blood-2007-07-099499).

    Article  PubMed  CAS  Google Scholar 

  99. Bertrand, J.Y. et al. Fetal spleen stroma drives macrophage commitment. Development 133, 3619–3628 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Yokota, T. et al. Tracing the first waves of lymphopoiesis in mice. Development 133, 2041–2051 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Jotereau, F.V. & Le Douarin, N.M. Demonstration of a cyclic renewal of the lymphocyte precursor cells in the quail thymus during embryonic and perinatal life. J. Immunol. 129, 1869–1877 (1982).

    CAS  PubMed  Google Scholar 

  102. van Ewijk, W., Hollander, G., Terhorst, C. & Wang, B. Stepwise development of thymic microenvironments in vivo is regulated by thymocyte subsets. Development 127, 1583–1591 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. Xie, H., Ye, M., Feng, R. & Graf, T. Stepwise reprogramming of B cells into macrophages. Cell 117, 663–676 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Mikkola, H.K., Fujiwara, Y., Schlaeger, T.M., Traver, D. & Orkin, S.H. Expression of CD41 marks the initiation of definitive hematopoiesis in the mouse embryo. Blood 101, 508–516 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Emambokus, N.R. & Frampton, J. The glycoprotein IIb molecule is expressed on early murine hematopoietic progenitors and regulates their numbers in sites of hematopoiesis. Immunity 19, 33–45 (2003).

    Article  CAS  PubMed  Google Scholar 

  106. Gothert, J.R. et al. In vivo fate tracing studies using the SCL stem cell enhancer: embryonic hematopoietic stem cells significantly contribute to adult hematopoiesis. Blood 1 05, 2724–2732 (2004).

    Google Scholar 

  107. Samokhvalov, I.M., Samokhvalova, N.I. & Nishikawa, S. Cell tracing shows the contribution of the yolk sac to adult haematopoiesis. Nature 446, 1056–1061 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank lab members and colleagues for discussions; and the Fondation des Treilles for supporting scientific dialog through the colloquium 'Stem cells of the blood vascular system'. T. de Vries Lentsch produced the figures here. Supported by the National Institutes of Health (RO1 HL091724 and R37 DK54077) and Dutch Innovative Research Program (BSIK SCDD 03038) and Dutch Medical Sciences Research Organization (VICI 916.36.601).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elaine Dzierzak or Nancy A Speck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dzierzak, E., Speck, N. Of lineage and legacy: the development of mammalian hematopoietic stem cells. Nat Immunol 9, 129–136 (2008). https://doi.org/10.1038/ni1560

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1560

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing