Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Opioids activate brain analgesic circuits through cytochrome P450/epoxygenase signaling

Abstract

To assess the importance of brain cytochrome P450 (P450) activity in μ opioid analgesic action, we generated a mutant mouse with brain neuron–specific reductions in P450 activity; these mice showed highly attenuated morphine antinociception compared with controls. Pharmacological inhibition of brain P450 arachidonate epoxygenases also blocked morphine antinociception in mice and rats. Our findings indicate that a neuronal P450 epoxygenase mediates the pain-relieving properties of morphine.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Double immunolabeling showing expression of neuronal CPR in cerebral cortex (Ctx, top) and PAG (bottom) in control (WT, left) and null (right) mice.
Figure 2: Morphine antinociception in null and control mice.
Figure 3: Effects of P450 and epoxygenase inhibitors on morphine antinociception.

Similar content being viewed by others

References

  1. Heinricher, M.M. & Ingram, S.L. in The Senses: a Comprehensive Reference in Pain (eds. Basbaum, A.I., Bushnell, M.C. & Julius, D.) (Elsevier, New York, 2008).

  2. Vaughan, C.W., Ingram, S.L., Connor, M.A. & Christie, M.J. Nature 390, 611–614 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Fukuda, K., Kato, S., Morikawa, H., Shoda, T. & Mori, K. J. Neurochem. 67, 1309–1316 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Spector, A.A. J. Lipid Res. 50, S52–S56 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dragatsis, I. & Zeitlin, S. Genesis 26, 133–135 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Kuo, C.K., Hanioka, N., Hoshikawa, Y., Oguri, K. & Yoshimura, H. J. Pharmacobiodyn. 14, 187–193 (1991).

    Article  CAS  PubMed  Google Scholar 

  7. Wang, M.H. et al. J. Pharmacol. Exp. Ther. 284, 966–973 (1998).

    CAS  PubMed  Google Scholar 

  8. Law, P.Y., Wong, Y.H. & Loh, H.H. Annu. Rev. Pharmacol. Toxicol. 40, 389–430 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Narita, M. et al. Brain Res. 970, 140–148 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Aoki, T. et al. Neurosci. Lett. 350, 69–72 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Christie, M.J., Vaughan, C.W. & Ingram, S.L. Inflamm. Res. 48, 1–4 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Walters, C.L. et al. Psychopharmacology (Berl.) 170, 124–131 (2003).

    Article  CAS  Google Scholar 

  13. Terashvili, M. et al. J. Pharmacol. Exp. Ther. 326, 614–622 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Nigam, S. et al. J. Biol. Chem. 279, 29023–29030 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Hough, L.B. et al. Neuropharmacology 52, 1244–1255 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the use of the Molecular Genetics and the Biochemistry Cores of the Wadsworth Center. We thank A. Verschoor for reading the manuscript, Y. Weng for assistance with chemical analysis, J. Phillips (Curragh Chemistries) for CC12 and A. Mongin for valuable discussions. This work was supported in part by US National Institutes of Health grants ES07462 (X.D.), DA03816 (L.B.H.), DA00360 (J.M.B.) and NS43466 (S.O.Z.).

Author information

Authors and Affiliations

Authors

Contributions

J.L.C., J.W.N. and J.Y. performed all in vivo studies. C.F., J.G. and W.Y. contributed to the generation of the null mouse. C.F. performed most of the null mouse characterization, with additional help from J.G., M.B. and J.L.C. P.J.A., J.E.M. and A.S.-K. assisted with histochemistry and microscopy. M.A.V., J.L.C., B.I.K., J.M.B., O.P.Z. and R.L. performed drug, receptor and enzyme assays. Z.S., S.-Z.Z. and M.P.W. synthesized MW06-25. S.O.Z. provided the Camk2a-cre mouse. J.L.C., C.F., X.D. and L.B.H. wrote the manuscript. X.D. and L.B.H. supervised the overall design and performance of the project.

Corresponding authors

Correspondence to Xinxin Ding or Lindsay B Hough.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8, Supplementary Tables 1 and 2, and Supplementary Methods (PDF 2686 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conroy, J., Fang, C., Gu, J. et al. Opioids activate brain analgesic circuits through cytochrome P450/epoxygenase signaling. Nat Neurosci 13, 284–286 (2010). https://doi.org/10.1038/nn.2497

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2497

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing