Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Optimizing mouse models for precision cancer prevention

Abstract

As cancer has become increasingly prevalent, cancer prevention research has evolved towards placing a greater emphasis on reducing cancer deaths and minimizing the adverse consequences of having cancer. 'Precision cancer prevention' takes into account the collaboration of intrinsic and extrinsic factors in influencing cancer incidence and aggressiveness in the context of the individual, as well as recognizing that such knowledge can improve early detection and enable more accurate discrimination of cancerous lesions. However, mouse models, and particularly genetically engineered mouse (GEM) models, have yet to be fully integrated into prevention research. In this Opinion article, we discuss opportunities and challenges for precision mouse modelling, including the essential criteria of mouse models for prevention research, representative success stories and opportunities for more refined analyses in future studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: New paradigms for cancer prevention using mouse models.
Figure 2: Applications for mouse models in precision cancer prevention.

Similar content being viewed by others

References

  1. Welch, H. G. & Black, W. C. Overdiagnosis in cancer. J. Natl Cancer Inst. 102, 605–613 (2010).

    Article  PubMed  Google Scholar 

  2. Lippman, S. M. et al. Cancer prevention and the American Society of Clinical Oncology. J. Clin. Oncol. 22, 3848–3851 (2004).

    Article  PubMed  Google Scholar 

  3. Rebbeck, T. R. Precision prevention of cancer. Cancer Epidemiol. Biomarkers Prev. 23, 2713–2715 (2014).

    Article  PubMed  Google Scholar 

  4. Meacham, C. E. & Morrison, S. J. Tumour heterogeneity and cancer cell plasticity. Nature 501, 328–337 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Collins, F. S. & Varmus, H. A new initiative on precision medicine. N. Engl. J. Med. 372, 793–795 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hawgood, S., Hook-Barnard, I. G., O'Brien, T. C. & Yamamoto, K. R. Precision medicine: beyond the inflection point. Sci. Transl Med. 7, 300ps31 (2015).

    Article  Google Scholar 

  7. Friedman, A. A., Letai, A., Fisher, D. E. & Flaherty, K. T. Precision medicine for cancer with next-generation functional diagnostics. Nat. Rev. Cancer 15, 747–756 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Narod, S. A. Breast cancer prevention in the era of precision medicine. J. Natl Cancer Inst. 107, djv078 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Sieh, W., Rothstein, J. H., McGuire, V. & Whittemore, A. S. The role of genome sequencing in personalized breast cancer prevention. Cancer Epidemiol. Biomarkers Prev. 23, 2322–2327 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vaughan, T. L. & Fitzgerald, R. C. Precision prevention of oesophageal adenocarcinoma. Nat. Rev. Gastroenterol. Hepatol. 12, 243–248 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  11. William, W. N. Jr et al. Erlotinib and the risk of oral cancer: the Erlotinib Prevention of Oral Cancer (EPOC) randomized clinical trial. JAMA Oncol., http://dx.doi.org/10.1001/jamaoncol.2015.4364 (2015).

  12. Rangarajan, A. & Weinberg, R. A. Comparative biology of mouse versus human cells: modelling human cancer in mice. Nat. Rev. Cancer 3, 952–959 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Van Dyke, T. & Jacks, T. Cancer modeling in the modern era: progress and challenges. Cell 108, 135–144 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Hanahan, D., Wagner, E. F. & Palmiter, R. D. The origins of oncomice: a history of the first transgenic mice genetically engineered to develop cancer. Genes Dev. 21, 2258–2270 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Green, J. E. & Hudson, T. The promise of genetically engineered mice for cancer prevention studies. Nat. Rev. Cancer 5, 184–198 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Abate-Shen, C. et al. The untapped potential of genetically engineered mouse models in chemoprevention research: opportunities and challenges. Cancer Prevention Res. 1, 161–166 (2008).

    Article  Google Scholar 

  17. Grippo, P. J. & Tuveson, D. A. Deploying mouse models of pancreatic cancer for chemoprevention studies. Cancer Prevention Res. 3, 1382–1387 (2010).

    Article  Google Scholar 

  18. Rosenberg, D. W., Giardina, C. & Tanaka, T. Mouse models for the study of colon carcinogenesis. Carcinogenesis 30, 183–196 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Wang, Y., Rouggly, L., You, M. & Lubet, R. Animal models of lung cancer characterization and use for chemoprevention research. Prog. Mol. Biol. Transl Sci. 105, 211–226 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Tentler, J. J. et al. Patient-derived tumour xenografts as models for oncology drug development. Nat. Rev. Clin. Oncol. 9, 338–350 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hidalgo, M. et al. Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discov. 4, 998–1013 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Frese, K. K. & Tuveson, D. A. Maximizing mouse cancer models. Nat. Rev. Cancer 7, 645–658 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Sharpless, N. E. & Depinho, R. A. The mighty mouse: genetically engineered mouse models in cancer drug development. Nat. Rev. Drug Discov. 5, 741–754 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Heyer, J., Kwong, L. N., Lowe, S. W. & Chin, L. Non-germline genetically engineered mouse models for translational cancer research. Nat. Rev. Cancer 10, 470–480 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Irshad, S. & Abate-Shen, C. Modeling prostate cancer in mice: something old, something new, something premalignant, something metastatic. Cancer Metastasis Rev. 32, 109–122 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cohen, S. M. Urinary bladder carcinogenesis. Toxicol. Pathol. 26, 121–127 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Kobayashi, T., Owczarek, T. B., McKiernan, J. M. & Abate-Shen, C. Modelling bladder cancer in mice: opportunities and challenges. Nat. Rev. Cancer 15, 42–54 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ittmann, M. et al. Animal models of human prostate cancer: the consensus report of the New York meeting of the Mouse Models of Human Cancers Consortium Prostate Pathology Committee. Cancer Res. 73, 2718–2736 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Aytes, A. et al. Cross-species regulatory network analysis identifies a synergistic interaction between FOXM1 and CENPF that drives prostate cancer malignancy. Cancer Cell 25, 638–651 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shibata, M. & Shen, M. M. The roots of cancer: stem cells and the basis for tumor heterogeneity. BioEssays 35, 253–260 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Mestas, J. & Hughes, C. C. Of mice and not men: differences between mouse and human immunology. J. Immunol. 172, 2731–2738 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Zschaler, J., Schlorke, D. & Arnhold, J. Differences in innate immune response between man and mouse. Crit. Rev. Immunol. 34, 433–454 (2014).

    CAS  PubMed  Google Scholar 

  33. Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shultz, L. D., Brehm, M. A., Garcia-Martinez, J. V. & Greiner, D. L. Humanized mice for immune system investigation: progress, promise and challenges. Nat. Rev. Immunol. 12, 786–798 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Morse, H. Origins of Inbred Mice (Academic Press, 1978).

    Google Scholar 

  36. Hunter, K. W. Mouse models of cancer: does the strain matter? Nat. Rev. Cancer 12, 144–149 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Churchill, G. A. et al. The Collaborative Cross, a community resource for the genetic analysis of complex traits. Nat. Genet. 36, 1133–1137 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Threadgill, D. W. & Churchill, G. A. Ten years of the Collaborative Cross. Genetics 190, 291–294 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Threadgill, D. W., Miller, D. R., Churchill, G. A. & de Villena, F. P. The collaborative cross: a recombinant inbred mouse population for the systems genetic era. ILAR J. 52, 24–31 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Collaborative Cross Consortium. The genome architecture of the Collaborative Cross mouse genetic reference population. Genetics 190, 389–401 (2012).

  41. Threadgill, D. W., Hunter, K. W. & Williams, R. W. Genetic dissection of complex and quantitative traits: from fantasy to reality via a community effort. Mammal. Genome 13, 175–178 (2002).

    Article  CAS  Google Scholar 

  42. Roberts, A., Pardo- Manuel de Villena, F., Wang, W., McMillan, L. & Threadgill, D. W. The polymorphism architecture of mouse genetic resources elucidated using genome-wide resequencing data: implications for QTL discovery and systems genetics. Mammal. Genome 18, 473–481 (2007).

    Article  CAS  Google Scholar 

  43. Rasmussen, A. L. et al. Host genetic diversity enables Ebola hemorrhagic fever pathogenesis and resistance. Science 346, 987–991 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Phillippi, J. et al. Using the emerging Collaborative Cross to probe the immune system. Genes Immun. 15, 38–46 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Ferguson, B. et al. Melanoma susceptibility as a complex trait: genetic variation controls all stages of tumor progression. Oncogene 34, 2879–2886 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Patel, S. J., Molinolo, A. A., Gutkind, S. & Crawford, N. P. Germline genetic variation modulates tumor progression and metastasis in a mouse model of neuroendocrine prostate carcinoma. PLoS ONE 8, e61848 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Churchill, G. A., Gatti, D. M., Munger, S. C. & Svenson, K. L. The Diversity Outbred mouse population. Mammal. Genome 23, 713–718 (2012).

    Article  Google Scholar 

  48. French, J. E. et al. Diversity Outbred mice identify population-based exposure thresholds and genetic factors that influence benzene-induced genotoxicity. Environ. Health Persp. 123, 237–245 (2015).

    Article  CAS  Google Scholar 

  49. Wang, Y., Tseng, J. C., Sun, Y., Beck, A. H. & Kung, A. L. Noninvasive imaging of tumor burden and molecular pathways in mouse models of cancer. Cold Spring Harb. Protoc. 2015, 135–144 (2015).

    PubMed  Google Scholar 

  50. Mou, H., Kennedy, Z., Anderson, D. G., Yin, H. & Xue, W. Precision cancer mouse models through genome editing with CRISPR-Cas9. Genome Med. 7, 53 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sanchez-Rivera, F. J. & Jacks, T. Applications of the CRISPR–Cas9 system in cancer biology. Nat. Rev. Cancer 15, 387–395 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yuspa, S. H. & Poirier, M. C. Chemical carcinogenesis: from animal models to molecular models in one decade. Adv. Cancer Res. 50, 25–70 (1988).

    Article  CAS  PubMed  Google Scholar 

  53. Balmain, A. & Yuspa, S. H. Milestones in skin carcinogenesis: the biology of multistage carcinogenesis. J. Invest. Dermatol. 134, E2–E7 (2014).

    Article  PubMed  Google Scholar 

  54. Kemp, C. J. Animal models of chemical carcinogenesis: driving breakthroughs in cancer research for 100 years. Cold Spring Harb. Protoc. 2015, 865–874 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Balmain, A., Brown, K., Akhurst, R. J. & Fee, F. M. Molecular analysis of chemical carcinogenesis in the skin. Bri. J. Cancer Suppl. 9, 72–75 (1988).

    CAS  Google Scholar 

  56. Bain, J. A. & Rusch, H. P. Carcinogenesis with ultraviolet radiation of wave length 2,800–3,400 Å. Cancer Res. 3, 425–430 (1943).

    Google Scholar 

  57. Fisher, M. S. & Kripke, M. L. Suppressor T lymphocytes control the development of primary skin cancers in ultraviolet-irradiated mice. Science 216, 1133–1134 (1982).

    Article  CAS  PubMed  Google Scholar 

  58. Kripke, M. L. The ABCs of sunscreen protection factors. J. Invest. Dermatol. 121, VII–VIII (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Walker, G. J., Soyer, H. P., Terzian, T. & Box, N. F. Modelling melanoma in mice. Pigment Cell. Melanoma Res. 24, 1158–1176 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Hecht, S. S. et al. Tobacco-specific nitrosamines: formation from nicotine in vitro and during tobacco curing and carcinogenicity in strain A mice. J. Natl Cancer Inst. 60, 819–824 (1978).

    Article  CAS  PubMed  Google Scholar 

  61. Pfeifer, G. P. et al. Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking-associated cancers. Oncogene 21, 7435–7451 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Memmott, R. M. & Dennis, P. A. The role of the Akt/mTOR pathway in tobacco carcinogen-induced lung tumorigenesis. Clin. Cancer Res. 16, 4–10 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. West, K. A., Linnoila, I. R., Belinsky, S. A., Harris, C. C. & Dennis, P. A. Tobacco carcinogen-induced cellular transformation increases activation of the phosphatidylinositol 3′-kinase/Akt pathway in vitro and in vivo. Cancer Res. 64, 446–451 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Wislez, M. et al. Inhibition of mammalian target of rapamycin reverses alveolar epithelial neoplasia induced by oncogenic K-ras. Cancer Res. 65, 3226–3235 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Han, W., Gills, J. J., Memmott, R. M., Lam, S. & Dennis, P. A. The chemopreventive agent myoinositol inhibits Akt and extracellular signal-regulated kinase in bronchial lesions from heavy smokers. Cancer Prevention Res. 2, 370–376 (2009).

    Article  CAS  Google Scholar 

  66. Lin, R. K. et al. The tobacco-specific carcinogen NNK induces DNA methyltransferase 1 accumulation and tumor suppressor gene hypermethylation in mice and lung cancer patients. J. Clin. Invest. 120, 521–532 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kawabata, S. et al. Rapamycin prevents the development and progression of mutant epidermal growth factor receptor lung tumors with the acquired resistance mutation T790M. Cell Rep. 7, 1824–1832 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01013831.

  69. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01294306.

  70. Kim, S. K. et al. Identification of gene expression signature modulated by nicotinamide in a mouse bladder cancer model. PLoS ONE 6, e26131 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. He, Z., Kosinska, W., Zhao, Z. L., Wu, X. R. & Guttenplan, J. B. Tissue-specific mutagenesis by N-butyl-N-(4-hydroxybutyl)nitrosamine as the basis for urothelial carcinogenesis. Mutat. Res. 742, 92–95 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Nassar, D., Latil, M., Boeckx, B., Lambrechts, D. & Blanpain, C. Genomic landscape of carcinogen-induced and genetically induced mouse skin squamous cell carcinoma. Nat. Med. 21, 946–954 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. Westcott, P. M. et al. The mutational landscapes of genetic and chemical models of Kras-driven lung cancer. Nature 517, 489–492 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Harvey, M. et al. Spontaneous and carcinogen-induced tumorigenesis in p53-deficient mice. Nat. Genet. 5, 225–229 (1993).

    Article  CAS  PubMed  Google Scholar 

  75. Corpet, D. E. & Pierre, F. Point. From animal models to prevention of colon cancer. Systematic review of chemoprevention in Min mice and choice of the model system. Cancer Epidemiol. Biomarkers Prev. 12, 391–400 (2003).

    PubMed  PubMed Central  Google Scholar 

  76. Ozaki, K. et al. High susceptibility of p53+/− knockout mice in N-butyl-N-(4-hydroxybutyl)nitrosamine urinary bladder carcinogenesis and lack of frequent mutation in residual allele. Cancer Res. 58, 3806–3811 (1998).

    CAS  PubMed  Google Scholar 

  77. Van Batavia, J. et al. Bladder cancers arise from distinct urothelial sub-populations. Nat. Cell Biol. 16, 982–991 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Philipp, J., Vo, K., Gurley, K. E., Seidel, K. & Kemp, C. J. Tumor suppression by p27Kip1 and p21Cip1 during chemically induced skin carcinogenesis. Oncogene 18, 4689–4698 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Abate-Shen, C. & Pandolfi, P. P. Effective utilization and appropriate selection of genetically engineered mouse models for translational integration of mouse and human trials. Cold Spring Harb. Protoc. http://dx.doi.org/10.1101/pdb.top078774 (2013).

  80. Politi, K. & Pao, W. How genetically engineered mouse tumor models provide insights into human cancers. J. Clin. Oncol. 29, 2273–2281 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Olive, K. P. & Politi, K. Translational therapeutics in genetically engineered mouse models of cancer. Cold Spring Harb. Protoc. 2014, 131–143 (2014).

    Article  PubMed  Google Scholar 

  82. Greenberg, N. M. et al. Prostate cancer in a transgenic mouse. Proc. Natl Acad. Sci. USA 92, 3439–3443 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Shappell, S. B. et al. Prostate pathology of genetically engineered mice: definitions and classification. The consensus report from the Bar Harbor Meeting of the Mouse Models of Human Cancer Consortium Prostate Pathology Committee. Cancer Res. 64, 2270–2305 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Gupta, S. et al. Suppression of prostate carcinogenesis by dietary supplementation of celecoxib in transgenic adenocarcinoma of the mouse prostate model. Cancer Res. 64, 3334–3343 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Narayanan, B. A., Narayanan, N. K., Pittman, B. & Reddy, B. S. Regression of mouse prostatic intraepithelial neoplasia by nonsteroidal anti-inflammatory drugs in the transgenic adenocarcinoma mouse prostate model. Clin. Cancer Res. 10, 7727–7737 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Wan, L. et al. Dietary tomato and lycopene impact androgen signaling- and carcinogenesis-related gene expression during early TRAMP prostate carcinogenesis. Cancer Prevention Res. 7, 1228–1239 (2014).

    Article  CAS  Google Scholar 

  87. Ellwood-Yen, K. et al. Myc-driven murine prostate cancer shares molecular features with human prostate tumors. Cancer Cell 4, 223–238 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Iwata, T. et al. MYC overexpression induces prostatic intraepithelial neoplasia and loss of Nkx3.1 in mouse luminal epithelial cells. PLoS ONE 5, e9427 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Blando, J. et al. Dietary energy balance modulates prostate cancer progression in Hi-Myc mice. Cancer Prevention Res. 4, 2002–2014 (2011).

    Article  CAS  Google Scholar 

  90. Oshima, M. et al. Suppression of intestinal polyposis in ApcΔ716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell 87, 803–809 (1996).

    Article  CAS  PubMed  Google Scholar 

  91. Steinbach, G. et al. The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N. Engl. J. Med. 342, 1946–1952 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Arber, N. et al. Celecoxib for the prevention of colorectal adenomatous polyps. N. Engl. J. Med. 355, 885–895 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Solomon, S. D. et al. Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma prevention. N. Engl. J. Med. 352, 1071–1080 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Jordan, V. C. Tamoxifen: a most unlikely pioneering medicine. Nat. Rev. Drug Discov. 2, 205–213 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Jordan, V. C. Tamoxifen as the first targeted long-term adjuvant therapy for breast cancer. Endocr. Relat. Cancer 21, R235–R246 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Jordan, V. C. & Koerner, S. Tamoxifen as an anti-tumour agent: role of oestradiol and prolactin. J. Endocrinol. 68, 305–311 (1976).

    Article  CAS  PubMed  Google Scholar 

  97. Ali, S., Buluwela, L. & Coombes, R. C. Antiestrogens and their therapeutic applications in breast cancer and other diseases. Annu. Rev. Med. 62, 217–232 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Haslam, S. Z., Osuch, J. R., Raafat, A. M. & Hofseth, L. J. Postmenopausal hormone replacement therapy: effects on normal mammary gland in humans and in a mouse postmenopausal model. J. Mammary Gland Biol. Neoplasia 7, 93–105 (2002).

    Article  PubMed  Google Scholar 

  99. Raafat, A. M., Hofseth, L. J., Li, S., Bennett, J. M. & Haslam, S. Z. A mouse model to study the effects of hormone replacement therapy on normal mammary gland during menopause: enhanced proliferative response to estrogen in late postmenopausal mice. Endocrinology 140, 2570–2580 (1999).

    Article  CAS  PubMed  Google Scholar 

  100. Bosland, M. C. Hormonal factors in carcinogenesis of the prostate and testis in humans and in animal models. Prog. Clin. Biol. Res. 394, 309–352 (1996).

    CAS  PubMed  Google Scholar 

  101. Bosland, M. C. et al. Multistage prostate carcinogenesis: the role of hormones. Princess Takamatsu Symp. 22, 109–123 (1991).

    CAS  PubMed  Google Scholar 

  102. Urayama, S. Pancreatic cancer early detection: expanding higher-risk group with clinical and metabolomics parameters. World J. Gastroenterol. 21, 1707–1717 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Siegel, R., Ma, J., Zou, Z. & Jemal, A. Cancer statistics, 2014. CA Cancer J. Clin. 64, 9–29 (2014).

    Article  PubMed  Google Scholar 

  104. Poruk, K. E. et al. The clinical utility of CA 19-9 in pancreatic adenocarcinoma: diagnostic and prognostic updates. Curr. Mol. Med. 13, 340–351 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Westphalen, C. B. & Olive, K. P. Genetically engineered mouse models of pancreatic cancer. Cancer J. 18, 502–510 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Mayers, J. R. et al. Elevation of circulating branched-chain amino acids is an early event in human pancreatic adenocarcinoma development. Nat. Med. 20, 1193–1198 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hanash, S. M. & Taguchi, A. Mouse to human blood-based cancer biomarker discovery strategies. Cold Spring Harb. Protoc. 2014, 144–149 (2014).

    Article  PubMed  Google Scholar 

  108. Kucherlapati, R. Genetically modified mouse models for biomarker discovery and preclinical drug testing. Clin. Cancer Res. 18, 625–630 (2012).

    Article  CAS  PubMed  Google Scholar 

  109. Pitteri, S. J. et al. Integrated proteomic analysis of human cancer cells and plasma from tumor bearing mice for ovarian cancer biomarker discovery. PLoS ONE 4, e7916 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hung, K. E. et al. Comprehensive proteome analysis of an Apc mouse model uncovers proteins associated with intestinal tumorigenesis. Cancer Prevention Res. 2, 224–233 (2009).

    Article  CAS  Google Scholar 

  111. Taguchi, A. et al. MAPRE1 as a plasma biomarker for early-stage colorectal cancer and adenomas. Cancer Prevention Res. 8, 1112–1119 (2015).

    Article  CAS  Google Scholar 

  112. Fijneman, R. J. et al. Proximal fluid proteome profiling of mouse colon tumors reveals biomarkers for early diagnosis of human colorectal cancer. Clin. Cancer Res. 18, 2613–2624 (2012).

    Article  CAS  PubMed  Google Scholar 

  113. Taguchi, A. et al. Lung cancer signatures in plasma based on proteome profiling of mouse tumor models. Cancer Cell 20, 289–299 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Shaw, A. T., Kirsch, D. G. & Jacks, T. Future of early detection of lung cancer: the role of mouse models. Clin. Cancer Res. 11, 4999s–5003s (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Daskivich, T. J. et al. Overtreatment of men with low-risk prostate cancer and significant comorbidity. Cancer 117, 2058–2066 (2011).

    Article  PubMed  Google Scholar 

  116. Cooperberg, M. R., Carroll, P. R. & Klotz, L. Active surveillance for prostate cancer: progress and promise. J. Clin. Oncol. 29, 3669–3676 (2011).

    Article  PubMed  Google Scholar 

  117. Irshad, S. et al. A molecular signature predictive of indolent prostate cancer. Sci. Transl Med. 5, 202ra122 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Robles-Espinoza, C. D. & Adams, D. J. Cross-species analysis of mouse and human cancer genomes. Cold Spring Harb. Protoc. 2014, 350–358 (2014).

    Article  PubMed  Google Scholar 

  119. Jacks, T. Tumor suppressor gene mutations in mice. Annu. Rev. Genet. 30, 603–636 (1996).

    Article  CAS  PubMed  Google Scholar 

  120. Wang, J. & Abate-Shen, C. Analyses of tumor-suppressor genes in germline mouse models of cancer. Cold Spring Harb. Protoc. 2014, 807–812 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Jacks, T. et al. Effects of an Rb mutation in the mouse. Nature 359, 295–300 (1992).

    Article  CAS  PubMed  Google Scholar 

  122. Jacks, T. et al. Tumor spectrum analysis in p53-mutant mice. Curr. Biol. 4, 1–7 (1994).

    Article  CAS  PubMed  Google Scholar 

  123. Donehower, L. A. et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215–221 (1992).

    Article  CAS  PubMed  Google Scholar 

  124. Evers, B. & Jonkers, J. Mouse models of BRCA1 and BRCA2 deficiency: past lessons, current understanding and future prospects. Oncogene 25, 5885–5897 (2006).

    Article  CAS  PubMed  Google Scholar 

  125. Jonkers, J. & Berns, A. Conditional mouse models of sporadic cancer. Nat. Rev. Cancer 2, 251–265 (2002).

    Article  CAS  PubMed  Google Scholar 

  126. Yeh, E. S., Vernon-Grey, A., Martin, H. & Chodosh, L. A. Tetracycline-regulated mouse models of cancer. Cold Spring Harb Protoc. http://dx.doi.org/10.1101/pdb.top069823 (2014).

  127. DuPage, M., Dooley, A. L. & Jacks, T. Conditional mouse lung cancer models using adenoviral or lentiviral delivery of Cre recombinase. Nat. Protoc. 4, 1064–1072 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Branda, C. S. & Dymecki, S. M. Talking about a revolution: the impact of site-specific recombinases on genetic analyses in mice. Dev. Cell 6, 7–28 (2004).

    Article  CAS  PubMed  Google Scholar 

  129. Lyons, S. K., Patrick, P. S. & Brindle, K. M. Imaging mouse cancer models in vivo using reporter transgenes. Cold Spring Harb. Protoc. 2013, 685–699 (2013).

    Article  PubMed  Google Scholar 

  130. Kretzschmar, K. & Watt, F. M. Lineage tracing. Cell 148, 33–45 (2012).

    Article  CAS  PubMed  Google Scholar 

  131. Premsrirut, P. K. et al. A rapid and scalable system for studying gene function in mice using conditional RNA interference. Cell 145, 145–158 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Huijbers, I. J., Krimpenfort, P., Berns, A. & Jonkers, J. Rapid validation of cancer genes in chimeras derived from established genetically engineered mouse models. BioEssays 33, 701–710 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Wang, H. et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153, 910–918 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Shen, M. M. & Abate-Shen, C. Molecular genetics of prostate cancer: new prospects for old challenges. Genes Dev. 24, 1967–2000 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to colleagues who provided thoughtful comments on this article, including N. Crawford, A. Dannenberg, R. Drapkin, E. Gelmann, J. Green, S. Hanash, K. Hunter, C. Kemp, K. Olive, K. Reilly, D. Threadgill and M. Shen. Research in the C.A.-S. laboratory is supported in part by funding from the US National Cancer Institute (CA154293, CA0141535 and CA084294). C.L. is supported by the Swiss National Science Foundation (PBBSP3_146959 and P300P3_151158). A.D. is supported in part by the US National Center for Advancing Translational Sciences, National Institutes of Health, Grant Number UL1 TR000040. C.A.-S. is an American Cancer Society research professor supported in part by a generous gift from the F. M. Kirby Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cory Abate-Shen.

Ethics declarations

Competing interests

Research funding from LabCorp Patent to CAS, which covers our work on biomarkers of indolent prostate cancer. CU Invention report 3000 PCT application # PCT/US13/55469, Publication #: WO/2014/028907 entitled: Diagnostic markers of indolent prostate cancer. Priority filing date: 16 August 2012.

PowerPoint slides

Glossary

Autochthonous mouse models

Models in which tumours arise de novo in the whole organism, as exemplified by genetically engineered mouse (GEM) models.

Humanized mouse models

Mice engineered to harbour human genes of interest.

Non-autochthonous mouse models

Models in which tumours are engrafted into host organisms, as exemplified by patient-derived xenograft (PDX) models.

Precision medicine

Customization of health care with medical decisions and practices tailored to the individual patient.

Precision mouse modelling

Use of validated and optimized mouse models for prevention research.

Precision prevention

Prevention strategies that incorporate precision medicine approaches and consider an individual's unique risk profile.

Primary prevention

Prevention of cancer occurrence and reduction of the risk of cancer in the general population. Includes identification of hazards that promote disease or increase the risk of disease and reduction in exposure to such hazards.

Secondary prevention

Reduction of the impact of cancer after it has occurred and control of cancer progression or risk of progression. Includes early detection and early intervention as well as adoption of lifestyles to prevent progression or recurrence.

Tertiary prevention

Reduction of the impact of cancer to ensure a longer and better quality of life. Includes chronic disease management, but excludes cancer treatment.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le Magnen, C., Dutta, A. & Abate-Shen, C. Optimizing mouse models for precision cancer prevention. Nat Rev Cancer 16, 187–196 (2016). https://doi.org/10.1038/nrc.2016.1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc.2016.1

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer