Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting PI3K signalling in cancer: opportunities, challenges and limitations

Key Points

  • There are several therapeutics that target the PI3K–Akt pathway in clinical development for the treatment of cancer. These include dual PI3K–mTOR inhibitors, PI3K inhibitors, Akt inhibitors and mTOR complex catalytic site inhibitors.

  • The PI3K–Akt pathway is inappropriately activated in many cancers. The pathway is activated by receptor tyrosine kinases, as well as by the genetic mutation and amplification of key pathway components.

  • The most effective type of therapeutic used to inhibit this pathway is likely to depend on the particular mechanism of PI3K–Akt activation in a cancer.

  • So far, preclinical data suggest that PI3K–Akt pathway inhibitors might have single-agent activity in breast cancers with ERBB2 amplifications or PIK3CA mutations. These drugs might also be effective in overcoming acquired resistance to therapies that target receptor tyrosine kinases (such as acquired resistance to trastuzumab or erlotinib).

  • Drugs targeting the PI3K–Akt pathway might most effectively treat cancers when they are used in combination with other targeted therapies, such as MEK inhibitors.

  • Effective clinical development will centre on determining why these compounds fail when they do. It will be important to determine whether a drug could not effectively downregulate PI3K–Akt signalling or if effective inhibition of the pathway was not sufficient to produce a clinical response.

Abstract

There are ample genetic and laboratory studies that suggest the PI3K–Akt pathway is vital to the growth and survival of cancer cells. Inhibitors targeting this pathway are entering the clinic at a rapid pace. In this Review, the therapeutic potential of drugs targeting PI3K–Akt signalling for the treatment of cancer is discussed. I focus on the advantages and drawbacks of different treatment strategies for targeting this pathway, the cancers that might respond best to these therapies and the challenges and limitations that confront their clinical development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms of acquired resistance to receptor tyrosine kinase inhibitors.
Figure 2: Combined PI3K and MEK pathway inhibition.

Similar content being viewed by others

References

  1. Katso, R. et al. Cellular function of phosphoinositide 3-kinases: implications for development, homeostasis, and cancer. Annu. Rev. Cell Dev. Biol. 17, 615–675 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Zhao, L. & Vogt, P. K. Class I PI3K in oncogenic cellular transformation. Oncogene 27, 5486–5496 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Engelman, J. A., Luo, J. & Cantley, L. C. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nature Rev. Genet. 7, 606–619 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Salmena, L., Carracedo, A. & Pandolfi, P. P. Tenets of PTEN tumor suppression. Cell 133, 403–414 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Yuan, T. L. & Cantley, L. C. PI3K pathway alterations in cancer: variations on a theme. Oncogene 27, 5497–5510 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Luo, J., Manning, B. D. & Cantley, L. C. Targeting the PI3K–Akt pathway in human cancer: rationale and promise. Cancer Cell 4, 257–262 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Garcia-Echeverria, C. & Sellers, W. R. Drug discovery approaches targeting the PI3K/Akt pathway in cancer. Oncogene 27, 5511–5526 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Qiu, Y. & Kung, H. J. Signaling network of the Btk family kinases. Oncogene 19, 5651–5661 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Cain, R. J. & Ridley, A. J. Phosphoinositide 3-kinases in cell migration. Biol. Cell 101, 13–29 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Whitman, M., Kaplan, D. R., Schaffhausen, B., Cantley, L. & Roberts, T. M. Association of phosphatidylinositol kinase activity with polyoma middle-T competent for transformation. Nature 315, 239–242 (1985). This study showed that the polyomavirus middle T antigen requires a physical interaction with PI3K to transform cells.

    Article  CAS  PubMed  Google Scholar 

  11. Songyang, Z. et al. SH2 domains recognize specific phosphopeptide sequences. Cell 72, 767–778 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Engelman, J. A. et al. ErbB3 mediates phosphoinositide 3-kinase activity in gefitinib-sensitive non-small cell lung cancer cell lines. Proc. Natl Acad. Sci. USA 102, 3788–3793 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bianco, R. et al. Loss of PTEN/MMAC1/TEP in EGF receptor-expressing tumor cells counteracts the antitumor action of EGFR tyrosine kinase inhibitors. Oncogene 22, 2812–2822 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Moulder, S. L. et al. Epidermal growth factor receptor (HER1) tyrosine kinase inhibitor ZD1839 (Iressa) inhibits HER2/neu (erbB2)-overexpressing breast cancer cells in vitro and in vivo. Cancer Res. 61, 8887–8895 (2001).

    CAS  PubMed  Google Scholar 

  15. Yakes, F. M. et al. Herceptin-induced inhibition of phosphatidylinositol-3 kinase and Akt is required for antibody-mediated effects on p27, cyclin D1, and antitumor action. Cancer Res. 62, 4132–4141 (2002).

    CAS  PubMed  Google Scholar 

  16. Mellinghoff, I. K. et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N. Engl. J. Med. 353, 2012–2024 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Berns, K. et al. A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell 12, 395–402 (2007). This study showed that breast cancers with amplifications of ERBB2 treated with trastuzumab have a worse prognosis if they also harbour PIK3CA mutations or have lost PTEN expression.

    Article  CAS  PubMed  Google Scholar 

  18. Stommel, J. M. et al. Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science 318, 287–290 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Engelman, J. A. et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316, 1039–1043 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Guix, M. et al. Acquired resistance to EGFR tyrosine kinase inhibitors in cancer cells is mediated by loss of IGF-binding proteins. J. Clin. Invest. 118, 2609–2619 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Rodriguez-Viciana, P. et al. Phosphatidylinositol3-OH- kinase as a direct target of Ras. Nature 370, 527–532 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Pacold, M. E. et al. Crystal structure and functional analysis of Ras binding to its effector phosphoinositide 3-kinase g. Cell 103, 931–943 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Kurosu, H. et al. Heterodimeric phosphoinositide 3-kinase consisting of p85 and p110b is synergistically activated by the bg subunits of G proteins and phosphotyrosyl peptide. J. Biol. Chem. 272, 24252–24256 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Roche, S., Downward, J., Raynal, P. & Courtneidge, S. A. A function for phosphatidylinositol 3-kinase b (p85a–p110b) in fibroblasts during mitogenesis: requirement for insulin- and lysophosphatidic acid-mediated signal transduction. Mol. Cell Biol. 18, 7119–7129 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li, J. et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275, 1943–1947 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Steck, P. A. et al. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nature Genet. 15, 356–362 (1997). References 25 and 26 identifed PTEN as a candidate tumour suppressor gene.

    Article  CAS  PubMed  Google Scholar 

  27. Maehama, T. & Dixon, J. E. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3, 4, 5-trisphosphate. J. Biol. Chem. 273, 13375–13378 (1998). This study showed that PTEN is a lipid phosphatase.

    Article  CAS  PubMed  Google Scholar 

  28. Maehama, T. & Dixon, J. E. PTEN: a tumour suppressor that functions as a phospholipid phosphatase. Trends Cell Biol. 9, 125–128 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Sansal, I. & Sellers, W. R. The biology and clinical relevance of the PTEN tumor suppressor pathway. J. Clin. Oncol. 22, 2954–2963 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Podsypanina, K. et al. Mutation of Pten/Mmac1 in mice causes neoplasia in multiple organ systems. Proc. Natl Acad. Sci. USA 96, 1563–1568 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Trotman, L. C. et al. Pten dose dictates cancer progression in the prostate. PLoS Biol. 1, e59 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wang, S. et al. Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell 4, 209–221 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Nagata, Y. et al. PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell 6, 117–127 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Samuels, Y. et al. High frequency of mutations of the PIK3CA gene in human cancers. Science (2004). This study reported the discovery that somatic mutations in PIK3CA are a common event in human cancers.

  35. Velho, S. et al. BRAF, KRAS and PIK3CA mutations in colorectal serrated polyps and cancer: primary or secondary genetic events in colorectal carcinogenesis? BMC Cancer 8, 255 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Dunlap, J. et al. Phosphatidylinositol-3-kinase and AKT1 mutations occur early in breast carcinoma. Breast Cancer Res. Treat. 6 May 2009 (doi: 10.1007/s10549-009-0406-1).

  37. Engelman, J. A. et al. Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nature Med. 14, 1351–1356 (2008). This study showed that lung cancers that express oncogenic Kras are resistant to a dual PI3K–mTOR inhibitor in vivo , but they respond to a combination of a MEK inhibitor and a dual PI3K–mTOR inhibitor.

    Article  CAS  PubMed  Google Scholar 

  38. Yu, J., Wjasow, C. & Backer, J. M. Regulation of the p85/p110a phosphatidylinositol 3′-kinase. Distinct roles for the N-terminal and C-terminal SH2 domains. J. Biol. Chem. 273, 30199–30203 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Miled, N. et al. Mechanism of two classes of cancer mutations in the phosphoinositide 3-kinase catalytic subunit. Science 317, 239–242 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Huang, C. H. et al. The structure of a human p110a/p85a complex elucidates the effects of oncogenic PI3Ka mutations. Science 318, 1744–1748 (2007). References 39 and 40 provided the structural basis for the increased activity of PIK3CA mutants, particularly mutants in the helical domain of p110α.

    Article  CAS  PubMed  Google Scholar 

  41. Carson, J. D. et al. Effects of oncogenic p110a subunit mutations on the lipid kinase activity of phosphoinositide 3-kinase. Biochem. J. 409, 519–524 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Zhao, L. & Vogt, P. K. Helical domain and kinase domain mutations in p110a of phosphatidylinositol 3-kinase induce gain of function by different mechanisms. Proc. Natl Acad. Sci. USA 105, 2652–2657 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008).

  44. Philp, A. J. et al. The phosphatidylinositol 3′-kinase p85a gene is an oncogene in human ovarian and colon tumors. Cancer Res. 61, 7426–7429 (2001).

    CAS  PubMed  Google Scholar 

  45. Shekar, S. C. et al. Mechanism of constitutive PI 3-kinase activation by oncogenic mutants of the p85 regulatory subunit. J. Biol. Chem. 280, 27850–27855 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Carpten, J. D. et al. A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature 448, 439–444 (2007). This study identified and characterized the AKT1-E17K mutation associated with cancer.

    Article  CAS  PubMed  Google Scholar 

  47. Kim, M. S., Jeong, E. G., Yoo, N. J. & Lee, S. H. Mutational analysis of oncogenic AKT E17K mutation in common solid cancers and acute leukaemias. Br. J. Cancer 98, 1533–1535 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Malanga, D. et al. Activating E17K mutation in the gene encoding the protein kinase AKT1 in a subset of squamous cell carcinoma of the lung. Cell Cycle 7, 665–669 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Davies, M. A. et al. A novel AKT3 mutation in melanoma tumours and cell lines. Br. J. Cancer 99, 1265–1268 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Parsons, D. W. et al. Colorectal cancer: mutations in a signalling pathway. Nature 436, 792 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Brugge, J., Hung, M. C. & Mills, G. B. A new mutational AKTivation in the PI3K pathway. Cancer Cell 12, 104–107 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Shah, N. P. et al. Transient potent BCR–ABL inhibition is sufficient to commit chronic myeloid leukemia cells irreversibly to apoptosis. Cancer Cell 14, 485–493 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Bi, L., Okabe, I., Bernard, D. J., Wynshaw-Boris, A. & Nussbaum, R. L. Proliferative defect and embryonic lethality in mice homozygous for a deletion in the p110a subunit of phosphoinositide 3-kinase. J. Biol. Chem. 274, 10963–10968 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Bi, L., Okabe, I., Bernard, D. J. & Nussbaum, R. L. Early embryonic lethality in mice deficient in the p110b catalytic subunit of PI3-kinase. Mamm. Genome 13, 169–172 (2002).

    CAS  PubMed  Google Scholar 

  55. Hirsch, E. et al. Central role for G protein-coupled phosphoinositide 3-kinase g in inflammation. Science 287, 1049–1053 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Sasaki, T. et al. Function of PI3Kg in thymocyte development, T cell activation, and neutrophil migration. Science 287, 1040–1046 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Clayton, E. et al. A crucial role for the p110d subunit of phosphatidylinositol 3-kinase in B cell development and activation. J. Exp. Med. 196, 753–763 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Okkenhaug, K. et al. Impaired B and T cell antigen receptor signaling in p110d PI3-kinase mutant mice. Science 297, 1031–1034 (2002).

    CAS  PubMed  Google Scholar 

  59. Jou, S. T. et al. Essential, nonredundant role for the phosphoinositide 3-kinase p110d in signaling by the B-cell receptor complex. Mol. Cell. Biol. 22, 8580–8591 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jia, S. et al. Essential roles of PI(3)K–p110b in cell growth, metabolism and tumorigenesis. Nature 454, 776–779 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wee, S. et al. PTEN-deficient cancers depend on PIK3CB. Proc. Natl Acad. Sci. USA 105, 13057–13062 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhu, Q. et al. Phosphoinositide 3-OH kinase p85a and p110b are essential for androgen receptor transactivation and tumor progression in prostate cancers. Oncogene 27, 4569–4579 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Patrucco, E. et al. PI3Kg modulates the cardiac response to chronic pressure overload by distinct kinase-dependent and -independent effects. Cell 118, 375–387 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Vanhaesebroeck, B., Ali, K., Bilancio, A., Geering, B. & Foukas, L. C. Signalling by PI3K isoforms: insights from gene-targeted mice. Trends Biochem. Sci. 30, 194–204 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Rychahou, P. G. et al. Akt2 overexpression plays a critical role in the establishment of colorectal cancer metastasis. Proc. Natl Acad. Sci. USA 105, 20315–20320 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Irie, H. Y. et al. Distinct roles of Akt1 and Akt2 in regulating cell migration and epithelial–mesenchymal transition. J. Cell. Biol. 171, 1023–1034 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Maroulakou, I. G., Oemler, W., Naber, S. P. & Tsichlis, P. N. Akt1 ablation inhibits, whereas Akt2 ablation accelerates, the development of mammary adenocarcinomas in mouse mammary tumor virus (MMTV)-ErbB2/neu and MMTV-polyoma middle T transgenic mice. Cancer Res. 67, 167–177 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Fasolo, A. & Sessa, C. mTOR inhibitors in the treatment of cancer. Expert Opin. Investig. Drugs 17, 1717–1734 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Rini, B. I. Temsirolimus, an inhibitor of mammalian target of rapamycin. Clin. Cancer Res. 14, 1286–1290 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Easton, J. B. & Houghton, P. J. mTOR and cancer therapy. Oncogene 25, 6436–6446 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Abraham, R. T. & Gibbons, J. J. The mammalian target of rapamycin signaling pathway: twists and turns in the road to cancer therapy. Clin. Cancer Res. 13, 3109–3114 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Baldo, P. et al. mTOR pathway and mTOR inhibitors as agents for cancer therapy. Curr. Cancer Drug Targets 8, 647–665 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. O'Reilly, K. E. et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res. 66, 1500–1508 (2006). This study showed that mTORC1 signaling exerts a negative feedback on PI3K, and repression of PI3K activation is alleviated by rapamycin treatment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fan, Q. W. et al. A dual phosphoinositide-3-kinase a/mTOR inhibitor cooperates with blockade of epidermal growth factor receptor in PTEN-mutant glioma. Cancer Res. 67, 7960–7965 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Graupera, M. et al. Angiogenesis selectively requires the p110a isoform of PI3K to control endothelial cell migration. Nature 453, 662–666 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Torbett, N. E. et al. A chemical screen in diverse breast cancer cell lines reveals genetic enhancers and suppressors of sensitivity to PI3K isoform-selective inhibition. Biochem J. 415, 97–110 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Guerreiro, A. S. et al. Targeting the PI3K p110a isoform inhibits medulloblastoma proliferation, chemoresistance, and migration. Clin. Cancer Res. 14, 6761–6769 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Boller, D. et al. Targeting the phosphoinositide 3-kinase isoform p110d impairs growth and survival in neuroblastoma cells. Clin. Cancer Res. 14, 1172–1181 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Billottet, C., Banerjee, L., Vanhaesebroeck, B. & Khwaja, A. Inhibition of class I phosphoinositide 3-kinase activity impairs proliferation and triggers apoptosis in acute promyelocytic leukemia without affecting atra-induced differentiation. Cancer Res. 69, 1027–1036 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Sawyer, C. et al. Regulation of breast cancer cell chemotaxis by the phosphoinositide 3-kinase p110d. Cancer Res 63, 1667–1675 (2003).

    CAS  PubMed  Google Scholar 

  81. Sujobert, P. et al. Essential role for the p110d isoform in phosphoinositide 3-kinase activation and cell proliferation in acute myeloid leukemia. Blood 106, 1063–1066 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Billottet, C. et al. A selective inhibitor of the p110d isoform of PI 3-kinase inhibits AML cell proliferation and survival and increases the cytotoxic effects of VP16. Oncogene 25, 6648–6659 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Flinn, I. W. et al. Preliminary evidence of clinical activity in a phase I study of CAL-101, a selective inhibitor of the p1108 isoform of phosphatidylinositol 3-kinase (P13K), in patients with select hematologic malignancies. J. Clin. Oncol. 27 (Suppl.), 3543 (2009).

    Google Scholar 

  84. Stein, R. Prospects of phosphinositide 3-kinase inhibition as a cancer treatment. Endocrine Related Cancer 8, 237–248 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. She, Q. B. et al. Breast tumor cells with PI3K mutation or HER2 amplification are selectively addicted to Akt signaling. PLoS ONE 3, e3065 (2008). This study showed that breast cancers with ERBB2 amplification or PIK3CA mutations are sensitive to Akt inhibitors.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Han, E. K. et al. Akt inhibitor A-443654 induces rapid Akt Ser-473 phosphorylation independent of mTORC1 inhibition. Oncogene 26, 5655–5661 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. George, S. et al. A family with severe insulin resistance and diabetes due to a mutation in AKT2. Science 304, 1325–1328 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Cho, H. et al. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKBb). Science 292, 1728–1731 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Thoreen, C. C. et al. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J. Biol. Chem. 284, 8023–8032 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Feldman, M. E. et al. Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol. 7, e38 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Jacinto, E. et al. SIN1/MIP1 maintains rictor–mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell 127, 125–137 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Serra, V. et al. NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations. Cancer Res 68, 8022–8030 (2008). This study showed that breast cancers with PIK3CA mutations are sensitive to dual PI3K–mTOR inhibitors.

    Article  CAS  PubMed  Google Scholar 

  93. Raynaud, F. I. et al. Pharmacologic characterization of a potent inhibitor of class I phosphatidylinositide 3-kinases. Cancer Res. 67, 5840–5850 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Simi, L. et al. High-resolution melting analysis for rapid detection of KRAS, BRAF, and PIK3CA gene mutations in colorectal cancer. Am. J. Clin. Pathol. 130, 247–253 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Ogino, S. et al. PIK3CA mutation is associated with poor prognosis among patients with curatively resected colon cancer. J. Clin. Oncol. 27, 1477–1484 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Eichhorn, P. J. et al. Phosphatidylinositol 3-kinase hyperactivation results in lapatinib resistance that is reversed by the mTOR/phosphatidylinositol 3-kinase inhibitor NVP-BEZ235. Cancer Res. 68, 9221–9230 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Engelman, J. A. et al. Allelic dilution obscures detection of a biologically significant resistance mutation in EGFR-amplified lung cancer. J. Clin. Invest. 116, 2695–2706 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ogino, A. et al. Emergence of epidermal growth factor receptor T790M mutation during chronic exposure to gefitinib in a non small cell lung cancer cell line. Cancer Res. 67, 7807–7814 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Yamasaki, F. et al. Acquired resistance to erlotinib in A-431 epidermoid cancer cells requires down-regulation of MMAC1/PTEN and up-regulation of phosphorylated Akt. Cancer Res. 67, 5779–5788 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Ihle, N. T. et al. Mutations in the phosphatidylinositol-3-kinase pathway predict for antitumor activity of the inhibitor PX-866 whereas oncogenic Ras is a dominant predictor for resistance. Cancer Res. 69, 143–150 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gupta, S. et al. Binding of Ras to phosphoinositide 3-kinase p110a is required for Ras-driven tumorigenesis in mice. Cell 129, 957–968 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Yang, Y. et al. Phosphatidylinositol 3-kinase mediates bronchioalveolar stem cell expansion in mouse models of oncogenic K-ras-induced lung cancer. PLoS ONE 3, e2220 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Schnell, C. R. et al. Effects of the dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235 on the tumor vasculature: implications for clinical imaging. Cancer Res. 68, 6598–6607 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Yuan, T. L. et al. Class 1A PI3K regulates vessel integrity during development and tumorigenesis. Proc. Natl Acad. Sci. USA 105, 9739–9744 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lynch, T. J. et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129–2139 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Paez, J. G. et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304, 1497–1500 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Pao, W. et al. EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc. Natl Acad. Sci. USA 101, 13306–13311 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hu, J. et al. Non-parametric quantification of protein lysate arrays. Bioinformatics 23, 1986–1994 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Cutillas, P. R. et al. Ultrasensitive and absolute quantification of the phosphoinositide 3-kinase/Akt signal transduction pathway by mass spectrometry. Proc. Natl Acad. Sci. USA 103, 8959–8964 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Dowsett, M. et al. Biomarker changes during neoadjuvant anastrozole, tamoxifen, or the combination: influence of hormonal status and HER-2 in breast cancer — a study from the IMPACT trialists. J. Clin. Oncol. 23, 2477–2492 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Guix, M. et al. Short preoperative treatment with erlotinib inhibits tumor cell proliferation in hormone receptor-positive breast cancers. J. Clin. Oncol. 26, 897–906 (2008).

    Article  CAS  PubMed  Google Scholar 

  112. Nagrath, S. et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450, 1235–1239 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Maheswaran, S. et al. Detection of mutations in EGFR in circulating lung-cancer cells. N. Engl. J. Med. 359, 366–377 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Majumder, P. K. et al. mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF1-dependent pathways. Nature Med. 10, 594–601 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Taniguchi, C. M. et al. Divergent regulation of hepatic glucose and lipid metabolism by phosphoinositide 3-kinase via Akt and PKCl/z. Cell Metab. 3, 343–353 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. Ihle, N. T. et al. Peroxisome proliferator-activated receptor g agonist pioglitazone prevents the hyperglycemia caused by phosphatidylinositol 3-kinase pathway inhibition by PX-866 without affecting antitumor activity. Mol. Cancer Ther. 8, 94–100 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Carracedo, A. et al. Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J. Clin. Invest. 118, 3065–3074 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. She, Q. et al. The BAD protein integrates survival signaling by EGFR/MAPK and PI3K/Akt kinase pathways in PTEN-deficient tumor cells. Cancer Cell 8, 287–297 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zunder, E. R., Knight, Z. A., Houseman, B. T., Apsel, B. & Shokat, K. M. Discovery of drug-resistant and drug-sensitizing mutations in the oncogenic PI3K isoform p110 a. Cancer Cell 14, 180–192 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Sarbassov, D. D., Guertin, D. A., Ali, S. M. & Sabatini, D. M. Phosphorylation and regulation of Akt/PKB by the rictor–mTOR complex. Science 307, 1098–1101 (2005). This study identified the mTOR–RICTOR complex as the kinase that phosphorylates Akt S473.

    Article  CAS  PubMed  Google Scholar 

  122. Cantley, L. C. The phosphoinositide 3-kinase pathway. Science 296, 1655–1657 (2002).

    Article  CAS  PubMed  Google Scholar 

  123. Shaw, R. J. & Cantley, L. C. Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 441, 424–430 (2006).

    Article  CAS  PubMed  Google Scholar 

  124. Bader, A. G., Kang, S., Zhao, L. & Vogt, P. K. Oncogenic PI3K deregulates transcription and translation. Nature Rev. Cancer 5, 921–929 (2005).

    Article  CAS  Google Scholar 

  125. Manning, B. D. & Cantley, L. C. United at last: the tuberous sclerosis complex gene products connect the phosphoinositide 3-kinase/Akt pathway to mammalian target of rapamycin (mTOR) signalling. Biochem. Soc. Trans. 31, 573–578 (2003).

    Article  CAS  PubMed  Google Scholar 

  126. Garami, A. et al. Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol. Cell 11, 1457–1466 (2003).

    Article  CAS  PubMed  Google Scholar 

  127. Tee, A. R., Manning, B. D., Roux, P. P., Cantley, L. C. & Blenis, J. Tuberous sclerosis complex gene products, tuberin and hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr. Biol. 13, 1259–1268 (2003).

    Article  CAS  PubMed  Google Scholar 

  128. Zhang, Y. et al. Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nature Cell. Biol. 5, 578–581 (2003).

    Article  CAS  PubMed  Google Scholar 

  129. Inoki, K., Li, Y., Xu, T. & Guan, K. L. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev. 17, 1829–1834 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Huang, J. & Manning, B. D. The TSC1–TSC2 complex: a molecular switchboard controlling cell growth. Biochem. J. 412, 179–190 (2008).

    Article  CAS  PubMed  Google Scholar 

  131. Inoki, K., Li, Y., Zhu, T., Wu, J. & Guan, K. L. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nature Cell Biol. 4, 648–657 (2002).

    Article  CAS  PubMed  Google Scholar 

  132. Manning, B. D., Tee, A. R., Logsdon, M. N., Blenis, J. & Cantley, L. C. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/Akt pathway. Mol. Cell 10, 151–162 (2002).

    Article  CAS  PubMed  Google Scholar 

  133. DeYoung, M. P., Horak, P., Sofer, A., Sgroi, D. & Ellisen, L. W. Hypoxia regulates TSC1/2–mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling. Genes Dev. 22, 239–251 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Nobukuni, T. et al. Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. Proc. Natl Acad. Sci. USA 102, 14238–14243 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Byfield, M. P., Murray, J. T. & Backer, J. M. hVps34 is a nutrient-regulated lipid kinase required for activation of p70 S6 kinase. J. Biol. Chem. 280, 33076–33082 (2005).

    Article  CAS  PubMed  Google Scholar 

  136. Engelman, J. A. & Janne, P. A. Mechanisms of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer. Clin. Cancer Res. 14, 2895–2899 (2008).

    Article  PubMed  Google Scholar 

  137. Engelman, J. A. & Settleman, J. Acquired resistance to tyrosine kinase inhibitors during cancer therapy. Curr. Opin. Genet. Dev. 18, 73–79 (2008).

    Article  CAS  PubMed  Google Scholar 

  138. Pedrero, J. M. et al. Frequent genetic and biochemical alterations of the PI 3-K/AKT/PTEN pathway in head and neck squamous cell carcinoma. Int. J. Cancer 114, 242–248 (2005).

    Article  CAS  PubMed  Google Scholar 

  139. Woenckhaus, J. et al. Genomic gain of PIK3CA and increased expression of p110a are associated with progression of dysplasia into invasive squamous cell carcinoma. J. Pathol. 198, 335–342 (2002).

    Article  CAS  PubMed  Google Scholar 

  140. Massion, P. P. et al. Genomic copy number analysis of non-small cell lung cancer using array comparative genomic hybridization: implications of the phosphatidylinositol 3-kinase pathway. Cancer Res. 62, 3636–3640 (2002).

    CAS  PubMed  Google Scholar 

  141. Bjorkqvist, A. M. et al. DNA gains in 3q occur frequently in squamous cell carcinoma of the lung, but not in adenocarcinoma. Genes Chromosomes Cancer 22, 79–82 (1998).

    Article  CAS  PubMed  Google Scholar 

  142. Ma, Y. Y. et al. PIK3CA as an oncogene in cervical cancer. Oncogene 19, 2739–2744 (2000).

    Article  CAS  PubMed  Google Scholar 

  143. Byun, D. S. et al. Frequent monoallelic deletion of PTEN and its reciprocal associatioin with PIK3CA amplification in gastric carcinoma. Int. J. Cancer 104, 318–327 (2003).

    Article  CAS  PubMed  Google Scholar 

  144. Miller, C. T. et al. Gene amplification in esophageal adenocarcinomas and Barrett's with high-grade dysplasia. Clin. Cancer Res. 9, 4819–4825 (2003).

    CAS  PubMed  Google Scholar 

  145. Staal, S. P. Molecular cloning of the akt oncogene and its human homologues AKT1 and AKT2: amplification of AKT1 in a primary human gastric adenocarcinoma. Proc. Natl Acad. Sci. USA 84, 5034–5037 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Cheng, J. et al. Amplification of AKT2 in human pancreatic cells and inhibition of AKT2 expression and tumorigenicity by antisense RNA. Proc. Natl Acad. Sci. USA 93, 3636–3641 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Ruggeri, B., Huang, L., Wood, M., Cheng, J. & Testa, J. Amplification and overexpression of the AKT2 oncogene in a subset of human pancreatic ductal adenocarcinomas. Mol. Carcinog. 21, 81–86 (1998).

    Article  CAS  PubMed  Google Scholar 

  148. Bellacosa, A. et al. Molecular alterations of the AKT2 oncogene in ovarian and breast carcinomas. Int. J. Cancer 64, 280–285 (1995).

    Article  CAS  PubMed  Google Scholar 

  149. Maira, S. M. et al. Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol. Cancer Ther. 7, 1851–1863 (2008).

    Article  CAS  PubMed  Google Scholar 

  150. Garlich, J. R. et al. A vascular targeted pan phosphoinositide 3-kinase inhibitor prodrug, SF1126, with antitumor and antiangiogenic activity. Cancer Res. 68, 206–215 (2008).

    Article  CAS  PubMed  Google Scholar 

  151. Ihle, N. T. et al. Molecular pharmacology and antitumor activity of PX-866, a novel inhibitor of phosphoinositide-3-kinase signaling. Mol. Cancer Ther. 3, 763–772 (2004).

    CAS  PubMed  Google Scholar 

  152. Howes, A. L. et al. The phosphatidylinositol 3-kinase inhibitor, PX-866, is a potent inhibitor of cancer cell motility and growth in three-dimensional cultures. Mol. Cancer Ther. 6, 2505–2514 (2007).

    Article  CAS  PubMed  Google Scholar 

  153. Kondapaka, S. B., Singh, S. S., Dasmahapatra, G. P., Sausville, E. A. & Roy, K. K. Perifosine, a novel alkylphospholipid, inhibits protein kinase B activation. Mol. Cancer Ther. 2, 1093–1103 (2003).

    CAS  PubMed  Google Scholar 

  154. Hideshima, T. et al. Perifosine, an oral bioactive novel alkylphospholipid, inhibits Akt and induces in vitro and in vivo cytotoxicity in human multiple myeloma cells. Blood 107, 4053–4062 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Gills, J. J. & Dennis, P. A. Perifosine: update on a novel Akt inhibitor. Curr. Oncol. Rep. 11, 102–110 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Hennessy, B. T. et al. Pharmacodynamic markers of perifosine efficacy. Clin. Cancer Res. 13, 7421–7431 (2007).

    Article  CAS  PubMed  Google Scholar 

  157. Rhodes, N. et al. Characterization of an Akt kinase inhibitor with potent pharmacodynamic and antitumor activity. Cancer Res. 68, 2366–2374 (2008).

    Article  CAS  PubMed  Google Scholar 

  158. Heerding, D. A. et al. Identification of 4-(2-(4-amino-1, 2, 5-oxadiazol-3-yl)-1-ethyl-7-{[(3S)-3-piperidinylmethyl]o xy}-1H imidazo[4, 5-c]pyridin-4-yl)-2-methyl-3-butyn-2-ol (GSK690693), a novel inhibitor of AKT kinase. J. Med. Chem. 51, 5663–5679 (2008).

    Article  CAS  PubMed  Google Scholar 

  159. Vasudevan, K. M. et al. AKT-independent signaling downstream of oncogenic PIK3CA mutations in human cancer. Cancer Cell 16, 21–32 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

0I am grateful to L. Cantley and the members of his laboratory for discussions and insights regarding PI3K signalling. I thank my laboratory, P. Jänne's laboratory and J. Settleman's laboratory for discussions regarding oncogene addiction and resistance to targeted therapies. I apologize to the many authors whose work I could not cite directly because of space limitations. This work was supported by the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

Jeffrey Engelman is a consultant for Novartis, Millennium, Schering–Plough and AVEO, and on the scientific advisory board for Hoffman–La Roche.

Related links

Related links

DATABASES

National Cancer Institute Drug Dictionary 

[18F] 2-fluoro-2-deoxy-D-glucose

erlotinib

gefitinib

imatinib

pioglitazone

PX866

rapamycin

trastuzumab

FURTHER INFORMATION

Jeffrey Engelman's homepage:

Catalogue of Somatic Mutations in Cancer:

Glossary

Oncogene addiction

A cellular condition in which a cancer cell requires the activity of a specific oncogene or cellular process for growth and survival. Inhibition of that specific function leads to cell death.

Vasculogenesis

The process of blood vessel formation that occurs by the production of endothelial cells.

Pharmacodynamic

The study of the biochemical and physiological effects of drugs on the body, the mechanisms of drug action and the relationship between drug concentration and effect.

RECIST

RECIST (Response Evaluation Criteria In Solid Tumours) is a set of published rules that define when cancer patients improve, stay the same or progress during treatments.

Neoadjuvant

A cancer therapy that is delivered before a surgical procedure.

Insulin resistance

The condition in which normal amounts of insulin are inadequate for the production of a normal insulin response from fat, muscle and liver cells.

Hyperinsulinaemia

Increased insulin levels in the blood. This is often observed when a person becomes insulin resistant as their body attempts to control blood glucose levels.

Hyperglycaemia

Increased levels of glucose in the blood. This usually occurs in adult-onset diabetes because insulin-sensitive tissues become less responsive to insulin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Engelman, J. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer 9, 550–562 (2009). https://doi.org/10.1038/nrc2664

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2664

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing