Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Links between oestrogen receptor activation and proteolysis: relevance to hormone-regulated cancer therapy

A Corrigendum to this article was published on 23 December 2013

This article has been updated

Key Points

  • When oestrogen binds to the oestrogen receptor (ER), the ER dimerizes and translocates into the nucleus, where it recruits co-activators or co-repressors, as well as chromatin-remodelling factors, to oestrogen response elements (EREs) on target gene promoters in order to activate or repress transcription.

  • Multiple signalling pathways downstream of receptor tyrosine kinases (such as ERBB2, epidermal growth factor receptor 1 and insulin-like growth factor 1 receptor) coordinately regulate the dynamics of ER-mediated transcriptional regulation.

  • The availability of ER co-activators and ER co-repressors and their post-translational modifications determine the selectivity and timing of target gene expression. Many ER co-activators have enzymatic activities, including acetylation, methylation, demethylation and phosphorylation.

  • Several ER co-activators also regulate ubiquitin-dependent proteolysis and modify ER. For example, MAPK mediates ER phosphorylation at S294 and cyclin E–cyclin-dependent kinase 2 (CDK2) phosphorylates ER at S341 to prime the interaction of ER with S-phase kinase-associated protein 2, which is the substrate- recognition subunit of the SKP1–cullin 1–F-box protein ubiquitin ligase complex. This drives target gene transcription and mediates ubiquitin-dependent ER proteolysis.

  • These findings provide considerable insight into the subtleties of hormone-regulated steroid receptor stability and function that could ultimately lead to novel therapeutic strategies based on the manipulation of hormone receptor stability.

Abstract

Oestrogen receptor-α (ERα) is a master transcription factor that regulates cell proliferation and homeostasis in many tissues. Despite beneficial ERα functions, sustained oestrogenic exposure increases the risk and/or the progression of various cancers, including those of the breast, endometrium and ovary. Oestrogen–ERα interaction can trigger post-translational ERα modifications through crosstalk with signalling pathways to promote transcriptional activation and ubiquitin-mediated ERα proteolysis, with co-activators that have dual roles as ubiquitin ligases. These processes are reviewed herein. The elucidation of mechanisms whereby oestrogen drives both ERα transactivation and receptor proteolysis might have important therapeutic implications not only for breast cancer but also potentially for other hormone-regulated cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ER co-activators and ER E3 ligases.
Figure 2: ER cytoplasmic signalling cascades and nuclear target gene expression.
Figure 3: A model for ER proteolysis-coupled transcriptional activations of target genes.

Similar content being viewed by others

Change history

  • 23 December 2013

    In Figure 2 on page 30 of this Review the oestrogen receptor (ER) dimer on the left-hand side was erroneously shown to simultaneously bind to SP1 and AP1 transcription factors. The ubiquitylated ER that enters the proteasome is most likely an unliganded monomer and not an oestrogen-bound ER dimer as originally shown in the figure. Tyrosine phosphorylation of ER was shown as being Y357 instead of Y537 and the text in the central blue box which stated “Dual role co-activators mediate ER degradation coupled to target gene activation” should have read “Dual role ER co-activators promote ER target gene activation coupled to ER proteolysis”. All of these corrections have been made online.

References

  1. Mangelsdorf, D. J. et al. The nuclear receptor superfamily: the second decade. Cell 83, 835–839 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Aranda, A. & Pascual, A. Nuclear hormone receptors and gene expression. Physiol. Rev. 81, 1269–1304 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Folkerd, E. J. & Dowsett, M. Influence of sex hormones on cancer progression. J. Clin. Oncol. 28, 4038–4044 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Jordan, V. C. Selective estrogen receptor modulation: concept and consequences in cancer. Cancer Cell 5, 207–213 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Rao, B. R. & Slotman, B. J. Endocrine role in ovarian cancer. Endocr. Relat. Cancer 3, 309–326 (1996).

    Article  Google Scholar 

  6. Simpkins, F. et al. New insights on the role of hormonal therapy in ovarian cancer. Steroids 78, 530–537 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Green, S. et al. Human oestrogen receptor cDNA: sequence, expression and homology to v-erb-A. Nature 320, 134–139 (1986).

    Article  CAS  PubMed  Google Scholar 

  8. Greene, G. L. et al. Sequence and expression of human estrogen receptor complementary DNA. Science 231, 1150–1154 (1986).

    Article  CAS  PubMed  Google Scholar 

  9. Mosselman, S. et al. ERβ: identification and characterization of a novel human estrogen receptor. FEBS Lett. 392, 49–53 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Musgrove, E. A. et al. Cyclin D as a therapeutic target in cancer. Nature Rev. Cancer 11, 558–572 (2011).

    Article  CAS  Google Scholar 

  11. Dong, L. et al. Mechanisms of transcriptional activation of bcl-2 gene expression by 17β-estradiol in breast cancer cells. J. Biol. Chem. 274, 32099–32107 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Pike, C. J. Estrogen modulates neuronal Bcl-xl expression and β-amyloid-induced apoptosis. J. Neurochem. 72, 1552–1563 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Seeger, H. et al. Different effects of estradiol and various antiestrogens on TNF-α-induced changes of biochemical markers for growth and invasion of human breast cancer cells. Life Sci. 78, 1464–1468 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Klinge, C. M. Estrogen receptor interaction with co-activators and co-repressors. Steroids 65, 227–251 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Lonard, D. M. & O'Malley, B. W. Nuclear receptor coregulators: judges, juries, and executioners of cellular regulation. Mol. Cell 27, 691–700 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Hu, X. & Lazar, M. A. The CoRNR motif controls the recruitment of corepressors by nuclear hormone receptors. Nature 402, 93–96 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Le Romancer, M. et al. Cracking the estrogen receptor's posttranslational code in breast tumors. Endocr. Rev. 32, 597–622 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Musgrove, E. A. & Sutherland, R. L. Biological determinants of endocrine resistance in breast cancer. Nature Rev. Cancer 9, 631–643 (2009).

    Article  CAS  Google Scholar 

  19. Simpkins, F. et al. Src inhibition with saracatinib reverses fulvestrant resistance in ER-positive ovarian cancer models in vitro and in vivo. Clin. Cancer Res. 18, 5911–5923 (2012). This paper shows that SRC inhibition enhances the antitumour efficacy of fulvestrant in ER+ ovarian cancer by increasing cell cycle arrest and cell death and decreasing ER target gene expression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ferguson, A. T. et al. Role of estrogen receptor gene demethylation and DNA methyltransferase DNA adduct formation in 5-Aza-2′-deoxycytidine-induced cytotoxicity in human breast cancer cells. J. Cell Biochem. 272, 32260–32266 (1997).

    CAS  Google Scholar 

  21. Roodi, N. et al. Estrogen receptor gene analysis in estrogen receptor-positive and receptor-negative primary breast cancer. J. Natl Cancer Inst. 87, 446–451 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Pandey, D. P. & Picard, D. miR-22 inhibits estrogen signaling by directly targeting the estrogen receptor α mRNA. Mol. Cell. Biol. 29, 3783–3790 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhao, J. J. et al. MicroRNA-221/222 negatively regulates estrogen receptor α and is associated with tamoxifen resistance in breast cancer. J. Biol. Chem. 283, 31079–31086 (2008). This paper shows that miR-221 and miR-222 target ESR1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Adams, B. D. et al. The micro-ribonucleic acid (miRNA) miR-206 targets the human estrogen receptor-α (ERα) and represses ERα messenger RNA and protein expression in breast cancer cell lines. Mol. Endocrinol. 21, 1132–1147 (2007). This paper shows that miR-206 targets ESR1.

    Article  CAS  PubMed  Google Scholar 

  25. Liu, W. H. et al. MicroRNA-18a prevents estrogen receptor-α expression, promoting proliferation of hepatocellular carcinoma cells. Gastroenterology 136, 683–693 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Yoshimoto, N. et al. Distinct expressions of microRNAs that directly target estrogen receptor α in human breast cancer. Breast Cancer Res. Treat. 130, 331–339 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Ottaviano, Y. L. et al. Methylation of the estrogen receptor gene CpG island marks loss of estrogen receptor expression in human breast cancer cells. Cancer Res. 54, 2552–2555 (1994).

    CAS  PubMed  Google Scholar 

  28. Lapidus, R. G. et al. Methylation of estrogen and progesterone receptor gene 5′ CpG islands correlates with lack of estrogen and progesterone receptor gene expression in breast tumors. Clin. Cancer Res. 2, 805–810 (1996). Although ESR1 promoter methylation is common in ER breast cancer cell lines, this analysis of primary ER cancers showed that ESR1 promoter methylation was present in only 9 out of 39 cancers (23%).

    CAS  PubMed  Google Scholar 

  29. Bayliss, J. et al. Reversal of the estrogen receptor negative phenotype in breast cancer and restoration of antiestrogen response. Clin. Cancer Res. 13, 7029–7036 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Creighton, C. J. et al. Activation of mitogen-activated protein kinase in estrogen receptor α-positive breast cancer cells in vitro induces an in vivo molecular phenotype of estrogen receptor α-negative human breast tumors. Cancer Res. 66, 3903–3911 (2006). In this study, a MAPK hyperactivation gene expression signature was defined in breast cancer cell lines and shown to be more common in ER cancers.

    Article  CAS  PubMed  Google Scholar 

  31. Van't Veer, L. J. et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536 (2002).

    Article  CAS  Google Scholar 

  32. Gruvberger, S. et al. Estrogen receptor status in breast cancer is associated with remarkably distinct gene expression patterns. Cancer Res. 61, 5979–5984 (2001).

    CAS  PubMed  Google Scholar 

  33. West, M. et al. Predicting the clinical status of human breast cancer by using gene expression profiles. Proc. Natl Acad. Sci. USA 98, 11462–11467 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Prat, A. et al. Molecular characterization of basal-like and non-basal-like triple-negative breast cancer. Oncologist 18, 123–133 (2013). This recent analysis of TNBCs shows that a subset of clinically ER basal type primary breast cancers expresses significant amounts of ESR1 mRNA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Iwao, K. et al. Quantitative analysis of estrogen receptor-α and -β messenger RNA expression in breast carcinoma by real-time polymerase chain reaction. Cancer 89, 1732–1738 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Chu, I. et al. Src promotes estrogen-dependent estrogen receptor α proteolysis in human breast cancer. J. Clin. Invest. 117, 2205–2215 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ma, X. J. et al. The HOXB13:IL17BR expression index is a prognostic factor in early-stage breast cancer. J. Clin. Oncol. 24, 4611–4619 (2006). References 35–37 all show that ER primary breast cancers express a broad range of ESR1 mRNA, with levels that overlap with those observed in primary ER+ breast cancers.

    Article  CAS  PubMed  Google Scholar 

  38. Baehner, F. L. et al. Quantitative RT-PCR analysis of ER & PR by Oncotype DX indicates distinct and different associations with prognosis and prediction of tamoxifen benefit. Abst. nr 45 in: Proceedings of the 29th Annual San Antonio Breast Cancer Symposium. (2006)

    Google Scholar 

  39. Shak, S. et al. Subtypes of breast cancer defined by standardized quantitative RT-PCR analysis of 10,618 tumors: Updated analysis with 20,050 tumors. Abst. nr 6118 in: Proceedings of the 29th Annual San Antonio Breast Cancer Symposium (2006). This abstract describes a large patient cohort analysed by Oncotype Dx showing that ESR1 mRNA levels are generally lower in ER breast cancers than in ER+ cancers.

    Google Scholar 

  40. Paik, S. et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med. 351, 2817–2826 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Drury, S. et al. Feasibility of using tissue microarray cores of paraffin-embedded breast cancer tissue for measurement of gene expression: a proof-of-concept study. J. Clin. Pathol. 63, 513–517 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Badve, S. S. et al. Estrogen- and progesterone-receptor status in ECOG 2197: comparison of immunohistochemistry by local and central laboratories and quantitative reverse transcription polymerase chain reaction by central laboratory. J. Clin. Oncol. 26, 2473–2481 (2008). This paper describes Oncotype DX analysis of primary breast cancers from a clinical trial, which showed that 14% of cases that are determined to be ER by IHC had ESR1 mRNA levels that are similar to those in ER+ cancers.

    Article  PubMed  Google Scholar 

  43. Perou, C. M. et al. Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proc. Natl Acad. Sci. USA 96, 9212–9217 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Iwao, K. et al. Quantitative analysis of estrogen receptor-β mRNA and its variants in human breast cancers. Int. J. Cancer. 88, 733–736 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Koos, R. D., Minireview: putting physiology back into estrogens' mechanism of action. Endocrinology 152, 4481–4488 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Castoria, G. et al. Integrating signals between cAMP and MAPK pathways in breast cancer. Front. Biosci. 13, 1318–1327 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Coleman, K. M. & Smith, C. L. Intracellular signaling pathways: nongenomic actions of estrogens and ligand-independent activation of estrogen receptors. Front. Biosci. 6, D1379–D1391 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Migliaccio, A. et al. Steroid-induced androgen receptor-oestradiol receptor β-Src complex triggers prostate cancer cell proliferation. EMBO J. 19, 5406–5417 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Song, R. X. et al. The role of Shc and insulin-like qrowth factor 1 receptor in mediating the translocation of estrogen receptor a to the plasma membrane. Proc. Natl Acad. Sci. USA 101, 2076–2081 (2004). This paper describes oestrogen-stimulated ER colocalization with SHC and IGF1R, and recruitment and activation of SRC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wong, C. W. et al. Estrogen receptor-interacting protein that modulates its nongenomic activity-crosstalk with Src/Erk phosphorylation cascade. Proc. Natl Acad. Sci. USA 99, 14783–14788 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Song, R. X. D. et al. Linkage of rapid estrogen action to MAPK activation by ER α-Shc association and Shc pathway activation. Mol. Endocrinol. 16, 116–127 (2002).

    CAS  PubMed  Google Scholar 

  52. Castoria, G. et al. PI3-kinase in concert with Src promotes the S-phase entry of oestradiol-stimulated MCF-7 cells. EMBO J. 20, 6050–6059 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tsutsui, S. et al. Prognostic value of epidermal growth factor receptor (EGFR) and its relationship to the estrogen receptor status in 1029 patients with breast cancer. Breast Cancer Res. Treat. 71, 67–75 (2002).

    Article  PubMed  Google Scholar 

  54. Slamon, D. J. et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235, 177–182 (1987).

    Article  CAS  PubMed  Google Scholar 

  55. Parisot, J. P. et al. Altered expression of the IGF-1 receptor in a tamoxifen-resistant human breast cancer cell line. Br. J. Cancer 79, 693–700 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Li, J. et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275, 1943–1947 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Markman, B. et al. Status of PI3K inhibition and biomarker development in cancer therapeutics. Ann. Oncol. 21, 683–691 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. McKenna, N. J. & O'Malley, B. W., Combinatorial control of gene expression by nuclear receptors and coregulators. Cell 108, 465–474 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Shao, W. et al. Coactivator AIB1 links estrogen receptor transcriptional activity and stability. Proc. Natl Acad. Sci. USA 101, 11599–11604 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Campbell, R. A. et al. Phosphatidylinositol 3-kinase/AKT-mediated activation of estrogen receptor α: a new model for anti-estrogen resistance. J. Biol. Chem. 276, 9817–9824 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Rayala, S. K. et al. P21-activated kinase 1 regulation of estrogen receptor-α activation involves serine 305 activation linked with serine 118 phosphorylation. Cancer Res. 66, 1694–1701 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Le Goff, P. L. et al. Phosphorylation of the human estrogen receptor. J. Biol. Chem. 269, 4458–4466 (1994).

    Article  CAS  PubMed  Google Scholar 

  63. Likhite, V. S. et al. Kinase-specific phosphorylation of the estrogen receptor changes receptor interactions with ligand, DNA, and coregulators associated with alterations in estrogen and tamoxifen activity. Mol. Endocrinol. 20, 3120–3132 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Tansey, W. P. Transcriptional activation: risky business. Genes Dev. 15, 1045–1050 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Geng, F. et al. Ubiquitin and proteasomes in transcription. Annu. Rev. Biochem. 81, 177–201 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shen, T. et al. Transcriptional hyperactivity of human progesterone receptors is coupled to their ligand-dependent down-regulation by mitogen-activated protein kinase-dependent phosphorylation of serine 294. Mol. Cell. Biol. 21, 6122–6131 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lee, J. W. et al. Interaction of thyroid-hormone receptor with a conserved transcriptional mediator. Nature 374, 91–94 (1995).

    Article  CAS  PubMed  Google Scholar 

  68. Chymkowitch, P. et al. The phosphorylation of the androgen receptor by TFIIH directs the ubiquitin/proteasome process. EMBO J. 30, 468–479 (2011). This paper is among the first showing that androgen activates AR proteolysis coupled to transcriptional activation of AR target genes.

    Article  CAS  PubMed  Google Scholar 

  69. Sun, J. et al. ERα phosphorylation at Y537 by src triggers E6-AP-ERα binding, ERα ubiquitylation, promoter occupancy, and target gene expression. Mol. Endocrinol. 26, 1567–1577 (2012). This paper provides mechanistic evidence that oestrogen activates SRC-mediated ER phosphorylation at Y537 to increase ER–E6AP binding, promote ER–E6AP binding to and activation of ER target genes and to drive ER proteolysis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhou, W. et al. ERα, SKP2 and E2F-1 form a feed forward loop driving late ERα targets and G1 cell cycle progression. Oncogene http://dx.doi.org/10.1038/onc.2013.197 (2013). In this study, oestrogen is shown to activate cyclin E–CDK2-mediated ER phosphorylation at S341, which recruits SCFSKP2 to promote ER proteolysis-coupled transcriptional activation of late ER target genes.

  71. Bhatt, S. et al. Phosphorylation by p38 mitogen-activated protein kinase promotes estrogen receptor α turnover and functional activity via the SCFSkp2 proteasomal complex. Mol. Cell. Biol. 32, 1928–1943 (2012). In this paper, SKP2 is shown to increase both MAPK-dependent ER proteolysis and ER transrepression of CDKN1A . High SPK2 levels were associated with low ER levels in primary breast cancers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Daniel, A. R. et al. Phosphorylation-dependent antagonism of sumoylation derepresses progesterone receptor action in breast cancer cells. Mol. Endocrinol. 21, 2890–2906 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Daniel, A. R. & Lange, C. A. Protein kinases mediate ligand-independent derepression of sumoylated progesterone receptors in breast cancer cells. Proc. Natl Acad. Sci. USA 106, 14287–14292 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Alarid, E. T. et al. Proteasome-mediated proteolysis of estrogen receptor: a novel component in autologous down-regulation. Mol. Endocrinol. 13, 1522–1534 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Nawaz, Z. et al. Proteasome-dependent degradation of the human estrogen receptor. Proc. Natl Acad. Sci. USA 96, 1858–1862 (1999). This study shows that oestrogen activates ER ubiquitylation and proteasomal degradation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Nirmala, P. B. & Thampan, R. V. Ubiquitination of the rat uterine estrogen receptor: dependence on estradiol. Biochem. Biophys. Res. Commun. 213, 24–31 (1995).

    Article  CAS  PubMed  Google Scholar 

  77. Wijayaratne, A. L. & McDonnell, D. P. The human estrogen receptor-α is a ubiquitinated protein whose stability is affected differentially by agonists, antagonists, and selective estrogen receptor modulators. J. Biol. Chem. 276, 35684–35692 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Reid, G. et al. Cyclic, proteasome-mediated turnover of unliganded and liganded ERα on responsive promoters is an integral feature of estrogen signaling. Mol. Cell. 11, 695–707 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Lonard, D. M. et al. The 26S proteasome is required for estrogen receptor-α and coactivator turnover and for efficient estrogen reeptor-α transactivation. Mol. Cell 5, 939–948 (2000). References 78 and 79 provide evidence that proteasome inhibitors increase ER levels but impair ER-driven transcription at certain ER target gene promoters.

    Article  CAS  PubMed  Google Scholar 

  80. Shang, Y. et al. Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription. Cell 103, 843–852 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Voges, D. et al. The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu. Rev. Biochem. 68, 1015–1068 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. Dizin, E. & Irminger-Finger, I. Negative feedback loop of BRCA1–BARD1 ubiquitin ligase on estrogen receptor α stability and activity antagonized by cancer-associated isoform of BARD1. Int. J. Biochem. Cell Biol. 42, 693–700 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. Eakin, C. M. et al. Estrogen receptor α is a putative substrate for the BRCA1 ubiquitin ligase. Proc. Natl Acad. Sci. USA 104, 5794–5799 (2007). This paper provides elegant in vitro data to show that BRCA1–BARD1 mediates ER ubiquitylation in vitro.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Fan, S. et al. BRCA1 inhibition of estrogen receptor signaling in transfected cells. Science 284, 1354–1356 (1999). In this study the E3 ligase BRCA1 is shown to function as an ER co-repressor.

    Article  CAS  PubMed  Google Scholar 

  85. Duong, V. et al. Differential regulation of estrogen receptor α turnover and transactivation by Mdm2 and stress-inducing agents. Cancer Res. 67, 5513–5521 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Saji, S. et al. MDM2 enhances the function of estrogen receptor α in human breast cancer cells. Biochem. Biophys. Res. Commun. 281, 259–265 (2001). In this study, the E3 ligase MDM2 is shown to function as an ER co-activator.

    Article  CAS  PubMed  Google Scholar 

  87. Nawaz, Z. et al. The Angelman syndrome-associated protein, E6-AP, is a coactivator for the nuclear hormone receptor superfamily. Mol. Cell. Biol. 19, 1182–1189 (1999). This paper provided the first evidence that the E3 ligase E6AP can also have a role as an ER co-activator.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ohtake, F. et al. Modulation of oestrogen receptor signalling by association with the activated dioxin receptor. Nature 423, 545–550 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Johnson, A. E. et al. Estrogen-dependent growth and estrogen receptor (ER)-α concentration in T47D breast cancer cells are inhibited by VACM-1, a cul 5 gene. Mol. Cell Biochem. 301, 13–20 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Verma, S. et al. The ubiquitin-conjugating enzyme UBCH7 acts as a coactivator for steroid hormone receptors. Mol. Cell. Biol. 24, 8716–8726 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gottlicher, M. et al. Interaction of the Ubc9 human homologue with c-Jun and with the glucocorticoid receptor. Steroids 61, 257–262 (1996).

    Article  CAS  PubMed  Google Scholar 

  92. Joazeiro, C. A. & Weissman, A. M. RING finger proteins: mediators of ubiquitin ligase activity. Cell 102, 549–552 (2000).

    Article  CAS  PubMed  Google Scholar 

  93. Huibregtse, J. M. et al. Localization of the E6-AP regions that direct human papillomavirus E6 binding, association with p53, and ubiquitination of associated proteins. Mol. Cell. Biol. 13, 4918–4927 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Huibregtse, J. M. et al. A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. Proc. Natl Acad. Sci. USA 92, 2563–2567 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ramamoorthy, S. et al. Isoform-specific degradation of PR-B by E6-AP is critical for normal mammary gland development. Mol. Endocrinol. 24, 2099–2113 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Khan, O. Y. et al. Multifunction steroid receptor coactivator, E6-associated protein, is involved in development of the prostate gland. Mol. Endocrinol. 20, 544–559 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Smith, C. L. et al. Genetic ablation of the steroid receptor coactivator-ubiquitin ligase, E6-AP, results in tissue-selective steroid hormone resistance and defects in reproduction. Mol. Cell. Biol. 22, 525–535 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Yudt, M. R. et al. Function of estrogen receptor tyrosine 537 in hormone binding, DNA binding, and transactivation. Biochem. J. 38, 14146–14156 (1999).

    Article  CAS  Google Scholar 

  99. Tremblay, G. B. et al. Ligand-independent activation of the estrogen receptors α and β by mutations of a conserved tyrosine can be abolished by antiestrogens. Cancer Res. 58, 877–881 (1998).

    CAS  PubMed  Google Scholar 

  100. Honda, R. et al. Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett. 420, 25–27 (1997).

    Article  CAS  PubMed  Google Scholar 

  101. Kim, K. et al. MDM2 regulates estrogen receptor α and estrogen responsiveness in breast cancer cells. J. Mol. Endocrinol. 46, 67–79 (2011). This paper shows that the E3 ligase MDM2 increases ER–SP1-mediated transcriptional activation.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Miki, Y. et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266, 66–71 (1994).

    Article  CAS  PubMed  Google Scholar 

  103. Scully, R. et al. Dynamic changes of BRCA1 subnuclear location and phosphorylation state are initiated by DNA damage. Cell 90, 425–435 (1997).

    Article  CAS  PubMed  Google Scholar 

  104. Fan, S. et al. Role of direct interaction in BRCA1 inhibition of estrogen receptor activity. Oncogene 20, 77–87 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Schultz-Norton, J. R. et al. ERα-associated protein networks. Trends Endocrinol. Metab. 22, 124–129 (2011).

    Article  CAS  PubMed  Google Scholar 

  106. Deng, C. X. & Brodie, S. G. Roles of BRCA1 and its interacting proteins. BioEssays 22, 728–737 (2000).

    Article  CAS  PubMed  Google Scholar 

  107. Hashizume, R. et al. The RING heterodimer BRCA1-BARD1 is a ubiquitin ligase inactivated by a breast cancer-derived mutation. J. Biol. Chem. 276, 14537–14540 (2001).

    Article  CAS  PubMed  Google Scholar 

  108. Fan, S. et al. p300 modulates the BRCA1 inhibition of estrogen receptor activity. Cancer Res. 62, 141–151 (2002).

    CAS  PubMed  Google Scholar 

  109. Crowe, D. & Lee, M. New role for nuclear hormone receptors and coactivators in regulation of BRCA1-mediated DNA repair in breast cancer cell lines. Breast Cancer Res. 8, R1 (2006).

    Article  PubMed  CAS  Google Scholar 

  110. Calvo, V. & Beato, M. BRCA1 counteracts progesterone action by ubiquitination leading to progesterone receptor degradation and epigenetic silencing of target promoters. Cancer Res. 71, 3422–3431 (2011).

    Article  CAS  PubMed  Google Scholar 

  111. Park, J. J. et al. Breast cancer susceptibility gene 1 (BRCA1) is a coactivator of the androgen receptor. Cancer Res. 60, 5946–5949 (2000).

    CAS  PubMed  Google Scholar 

  112. Yeh, S. et al. Increase of androgen-induced cell death and androgen receptor transactivation by BRCA1 in prostate cancer cells. Proc. Natl Acad. Sci. USA 97, 11256–11261 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Narod, S. A. & Offit, K. Prevention and management of hereditary breast cancer. J. Clin. Oncol. 23, 1656–1663 (2005).

    Article  PubMed  Google Scholar 

  114. Hosey, A. M. et al. Molecular basis for estrogen receptor α deficiency in BRCA1-linked breast cancer. J. Natl Cancer Inst. 99, 1683–1694 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. Kauff, N. D. et al. Risk-reducing salpingo-oophorectomy in women with a BRCA1 or BRCA2 mutation. N. Engl. J. Med. 346, 1609–1615 (2002).

    Article  PubMed  Google Scholar 

  116. Rebbeck, T. R. Prophylactic oophorectomy in BRCA1 and BRCA2 mutation carriers. Eur. J. Cancer 38 (Suppl. 6), 15–17 (2002).

    Article  Google Scholar 

  117. Frescas, D. & Pagano, M. Deregulated proteolysis by the F-box proteins SKP2 and β-TrCP: tipping the scales of cancer. Nature Rev. Cancer 8, 438–449 (2008).

    Article  CAS  Google Scholar 

  118. Cardozo, T. & Pagano, M. The SCF ubiquitin ligase: insights into a molecular machine. Nature Rev. Mol. Cell. Biol. 5, 739–751 (2004).

    Article  CAS  Google Scholar 

  119. Drobnjak, M. et al. Altered expression of p27 and Skp2 proteins in prostate cancer of African-American patients. Clin. Cancer Res. 9, 2613–2619 (2003).

    CAS  PubMed  Google Scholar 

  120. Fukuchi, M. et al. Inverse correlation between expression levels of p27 and the ubiquitin ligase subunit Skp2 in early esophageal squamous cell carcinoma. Anticancer Res. 24, 777–784 (2004).

    CAS  PubMed  Google Scholar 

  121. Li, Q. et al. Skp2 and p27kip1 expression in melanocytic nevi and melanoma: an inverse relationship. J. Cutan. Pathol. 31, 633–642 (2004).

    Article  PubMed  Google Scholar 

  122. Gstaiger, M. et al. Skp2 is oncogenic and overexpressed in human cancers. Proc. Natl Acad. Sci. USA 98, 5043–5048 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Signoretti, S. et al. Oncogenic role of the ubiquitin ligase subunit Skp2 in human breast cancer. J. Clin. Invest. 110, 633–641 (2002). This paper provides the first evidence that SKP2 overexpression is more frequent in ER than ER+ primary breast cancers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Carrano, A. C. et al. SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nature Cell Biol. 1, 193–199 (1999).

    Article  CAS  PubMed  Google Scholar 

  125. Dyson, N. The regulation of E2F by pRB-family proteins. Genes Dev. 12, 2245–2262 (1998).

    Article  CAS  PubMed  Google Scholar 

  126. Zhuang, M. et al. Structures of SPOP-substrate complexes: insights into molecular architectures of BTB-Cul3 ubiquitin ligases. Mol. Cell 36, 39–50 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Byun, B. & Jung, Y. Repression of transcriptional activity of estrogen receptor α by a Cullin3/SPOP ubiquitin E3 ligase complex. Mol. Cells 25, 289–293 (2008).

    CAS  PubMed  Google Scholar 

  128. Li, C. et al. Tumor-suppressor role for the SPOP ubiquitin ligase in signal-dependent proteolysis of the oncogenic co-activator SRC-3/AIB1. Oncogene 30, 4350–4364 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Higa, L. A. et al. CUL4-DDB1 ubiquitin ligase interacts with multiple WD40-repeat proteins and regulates histone methylation. Nature Cell Biol. 8, 1277–1283 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. Burnatowska-Hledin, M. A. et al. T47D breast cancer cell growth is inhibited by expression of VACM-1, a cul-5 gene. Biochem. Biophys. Res. Commun. 319, 817–825 (2004).

    Article  CAS  PubMed  Google Scholar 

  131. Juang, Y. C. et al. OTUB1 co-opts Lys48-linked ubiquitin recognition to suppress E2 enzyme function. Mol. Cell 45, 384–397 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Stanisic, V. et al. OTU domain-containing ubiquitin aldehyde-binding protein 1 (OTUB1) deubiquitinates estrogen receptor (ER) α and affects ERα transcriptional activity. J. Biol. Chem. 284, 16135–16145 (2009). This paper provides evidence that a DUB, OTUB1, deubiquitylates ER and decreases ER transcriptional activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Mani, A. et al. E6AP mediates regulated proteasomal degradation of the nuclear receptor coactivator amplified in breast cancer 1 in immortalized cells. Cancer Res. 66, 8680–8686 (2006). This paper provides the first evidence that E6AP can ubiquitylate the ER co-activator SRC3 to mediate SRC3 proteolysis and ER co-activator exchange.

    Article  CAS  PubMed  Google Scholar 

  134. Nawaz, Z. & O'Malley, B. W. Urban renewal in the nucleus: is protein turnover by proteasomes absolutely required for nuclear receptor-regulated transcription? Mol. Endocrinol. 18, 493–499 (2004).

    Article  CAS  PubMed  Google Scholar 

  135. Perissi, V. & Rosenfeld, M. G. Controlling nuclear receptors: the circular logic of cofactor cycles. Nature Rev. Mol. Cell. Biol. 6, 542–554 (2005).

    Article  CAS  Google Scholar 

  136. Higgins, M. J. & Baselga, J. Targeted therapies for breast cancer. J. Clin. Invest. 121, 3797–3803 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Chen, Y. et al. Combined Src and aromatase inhibition impairs human breast cancer growth in vivo and bypass pathways are activated in AZD0530-resistant tumors. Clin. Cancer Res. 15, 3396–3405 (2009).

    Article  CAS  PubMed  Google Scholar 

  138. Chen, Y. et al. Combined Src and ER blockade impairs human breast cancer proliferation in vitro and in vivo. Breast Cancer Res. Treat. 128, 69–78 (2010).

    Article  PubMed  CAS  Google Scholar 

  139. Herynk, M. H. et al. Cooperative action of tamoxifen and c-Src inhibition in preventing the growth of estrogen receptor-positive human breast cancer cells. Mol. Cancer Ther. 5, 3023–3031 (2006). References 137–139 show that SRC inhibition restores anti-oestrogen responsiveness and cooperates with aromatase inhibition or ER blockade, respectively, to impair breast cancer growth in vivo.

    Article  CAS  PubMed  Google Scholar 

  140. Wu, L. et al. Specific small molecule inhibitors of Skp2-mediated p27 degradation. Chem. Biol. 19, 1515–1524 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Chan, C. H. et al. Pharmacological inactivation of Skp2 SCF ubiquitin ligase restricts cancer stem cell traits and cancer progression. Cell 154, 556–568 (2013).

    Article  CAS  PubMed  Google Scholar 

  142. Davies, C. et al. Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet 378, 771–784 (2011).

    Article  CAS  PubMed  Google Scholar 

  143. Holloway, J. N. et al. A cytoplasmic substrate of mitogen-activated protein kinase is responsible for estrogen receptor-α down-regulation in breast cancer cells: the role of nuclear factor-κB. Mol. Endocrinol. 18, 1396–1410 (2004).

    Article  CAS  PubMed  Google Scholar 

  144. Oh, A. S. et al. Hyperactivation of MAPK induces loss of ERα expression in breast cancer cells. Mol. Endocrinol. 15, 1344–1359 (2001).

    CAS  PubMed  Google Scholar 

  145. Zhou, Z. X. et al. Specificity of ligand-dependent androgen receptor stabilization: receptor domain interactions influence ligand dissociation and receptor stability. Mol. Endocrinol. 9, 208–218 (1995).

    CAS  PubMed  Google Scholar 

  146. Lin, H. K. et al. Proteasome activity is required for androgen receptor transcriptional activity via regulation of androgen receptor nuclear translocation and interaction with coregulators in prostate cancer cells. J. Biol. Chem. 277, 36570–36576 (2002).

    Article  CAS  PubMed  Google Scholar 

  147. Qi, J. et al. The E3-ubiquitin ligase Siah2 contributes to castration-resistant prostate cancer by regulation of androgen receptor transcriptional activity. Cancer Cell 23, 332–346 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Bunone, G. et al. Activation of the unliganded estrogen receptor by EGF involves the MAP kinase pathway and direct phosphorylation. EMBO J. 15, 2174–2183 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Kato, S. et al. Activation of the estrogen receptor through phosphorylation by mitogen- activated protein kinase. Science 270, 1491–1494 (1995).

    Article  CAS  PubMed  Google Scholar 

  150. Valley, C. C. et al. Differential regulation of estrogen-inducible proteolysis and transcription by the estrogen receptor α N terminus. Mol. Cell. Biol. 25, 5417–5428 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Migliaccio, A. et al. Tyrosine kinas/p21ras/MAP-kinase pathway activation by estradiol receptor complex in MCF-7 cells. EMBO J. 15, 1292–1300 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Lobenhofer, E. K. et al. Inhibition of mitogen-activated protein kinase and phosphatidylinositol 3-kinase activity in MCF-7 cells prevents estrogen-induced mitogenesis. Cell Growth Differ. 11, 99–110 (2000).

    CAS  PubMed  Google Scholar 

  153. Kousteni, S. et al. Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity. Cell 104, 719–730 (2001).

    CAS  PubMed  Google Scholar 

  154. Longo, M. et al. Interaction of estrogen receptor α with protein kinase C α and c-Src in osteoblasts during differentiation. Bone 34, 100–111 (2004).

    Article  CAS  PubMed  Google Scholar 

  155. Eritja, N. et al. ERα-mediated repression of pro-inflammatory cytokine expression by glucocorticoids reveals a crucial role for TNFα and IL1α in lumen formation and maintenance. J. Cell Sci. 125, 1929–1944 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Abe, N. et al. Significance of nuclear p-Akt in endometrial carcinogenesis: rapid translocation of p-Akt into the nucleus by estrogen, possibly resulting in inhibition of apoptosis. Int. J. Gynecol. Cancer 21, 194–202 (2011).

    Article  PubMed  Google Scholar 

  157. Watson, C. S. et al. Rapid actions of estrogens in GH3/B6 pituitary tumor cells via a plasma membrane version of estrogen receptor-α. Steroids 64, 5–13 (1999).

    Article  CAS  PubMed  Google Scholar 

  158. Mize, A. L. et al. Estrogen receptor-mediated neuroprotection from oxidative stress requires activation of the mitogen-activated protein kinase pathway. Endocrinology 144, 306–312 (2003).

    Article  CAS  PubMed  Google Scholar 

  159. Haynes, L. E. et al. 17β-oestradiol attenuates dexamethasone-induced lethal and sublethal neuronal damage in the striatum and hippocampus. Neuroscience 120, 799–806 (2003).

    Article  CAS  PubMed  Google Scholar 

  160. Boland, R. et al. 17β-estradiol signaling in skeletal muscle cells and its relationship to apoptosis. Steroids 73, 859–863 (2008).

    Article  CAS  PubMed  Google Scholar 

  161. Danesh, S. M. et al. Distinct transcriptional regulation of human large conductance voltage- and calcium-activated K+ channel gene (hSlo1) by activated estrogen receptor α and c-Src tyrosine kinase. J. Biol. Chem. 286, 31064–31071 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Haynes, M. P. et al. Rapid vascular cell responses to estrogen and membrane receptors. Vascul. Pharmacol. 38, 99–108 (2002).

    Article  CAS  PubMed  Google Scholar 

  163. Williams, C. et al. Identification of four novel phosphorylation sites in estrogen receptor α: impact on receptor-dependent gene expression and phosphorylation by protein kinase CK2. BMC Biochem. 10, 36 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. He, X. et al. c-Abl regulates estrogen receptor α transcription activity through its stabilization by phosphorylation. Oncogene 29, 2238–2251 (2010).

    Article  CAS  PubMed  Google Scholar 

  165. Joel, P. B. et al. Estradiol and phorbol ester cause phosphorylation of serine 118 in the human estrogen receptor. Mol. Endocrinol. 9, 1041–1052 (1995).

    CAS  PubMed  Google Scholar 

  166. Rogatsky, I. et al. Potentiation of human estrogen receptor α transcriptional activation through phosphorylation of serines 104 and 106 by the cyclin A-CDK2 complex. J. Biol. Chem. 274, 22296–22302 (1999).

    Article  CAS  PubMed  Google Scholar 

  167. Chen, D. et al. Activation of estrogen receptor α by S118 phosphorylation involves a ligand-dependent interaction with TFIIH and participation of CDK7. Mol. Cell 6, 127–137 (2000).

    Article  CAS  PubMed  Google Scholar 

  168. Joel, P. B. et al. pp90rsk1 regulates estrogen receptor-mediated transcription through phosphorylation of Ser-167. Mol. Cell. Biol. 18, 1978–1984 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Thomas, R. S. et al. Phosphorylation at serines 104 and 106 by Erk1/2 MAPK is important for estrogen receptor-α activity. J. Mol. Endocrinol. 40, 173–184 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Weitsman, G. E. et al. Estrogen receptor-α phosphorylated at Ser118 is present at the promoters of estrogen-regulated genes and is not altered due to HER-2 overexpression. Cancer Res. 66, 10162–10170 (2006).

    Article  CAS  PubMed  Google Scholar 

  171. Park, K. J. et al. Formation of an IKKα-dependent transcription complex is required for estrogen receptor-mediated gene activation. Mol. Cell 18, 71–82 (2005).

    Article  CAS  PubMed  Google Scholar 

  172. Yamnik, R. L. & Holz, M. K. mTOR/S6K1 and MAPK/RSK signaling pathways coordinately regulate estrogen receptor α serine 167 phosphorylation. FEBS Lett. 584, 124–128 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Guo, J. P. et al. IKKε phosphorylation of estrogen receptor α Ser-167 and contribution to tamoxifen resistance in breast cancer. J. Biol. Chem. 285, 3676–3684 (2010).

    Article  CAS  PubMed  Google Scholar 

  174. Shindo, S. et al. Phosphorylation of serine 212 confers novel activity to human estrogen receptor α. Steroids 77, 448–453 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Chen, D. et al. Phosphorylation of human estrogen receptor α by protein kinase A regulates dimerization. Mol. Cell. Biol. 19, 1002–1015 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Al-Dhaheri, M. H. & Rowan, B. G. Protein kinase A exhibits selective modulation of estradiol-dependent transcription in breast cancer cells that is associated with decreased ligand binding, altered estrogen receptor α promoter interaction, and changes in receptor phosphorylation. Mol. Endocrinol. 21, 439–456 (2007).

    Article  CAS  PubMed  Google Scholar 

  177. Skliris, G. P. et al. A phosphorylation code for oestrogen receptor-α predicts clinical outcome to endocrine therapy in breast cancer. Endocr. Relat. Cancer 17, 589–597 (2010).

    Article  CAS  PubMed  Google Scholar 

  178. Lucchetti, C. et al. The prolyl isomerase Pin1 acts synergistically with CDK2 to regulate the basal activity of estrogen receptor α in breast cancer. PLoS ONE 8, e55355 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Wang, R. A. et al. P21-activated kinase-1 phosphorylates and transactivates estrogen receptor-α and promotes hyperplasia in mammary epithelium. EMBO J. 21, 5437–5447 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Bostner, J. et al. Estrogen receptor-α phosphorylation at serine 305, nuclear p21-activated kinase 1 expression, and response to tamoxifen in postmenopausal breast cancer. Clin. Cancer Res. 16, 1624–1633 (2010).

    Article  CAS  PubMed  Google Scholar 

  181. Cui, Y. et al. Phosphorylation of estrogen receptor α blocks its acetylation and regulates estrogen sensitivity. Cancer Res. 64, 9199–9208 (2004).

    Article  CAS  PubMed  Google Scholar 

  182. Zwart, W. et al. PKA-induced resistance to tamoxifen is associated with an altered orientation of ERα towards co-activator SRC-1. EMBO J. 26, 3534–3544 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Lee, H. & Bai, W. Regulation of estrogen receptor nuclear export by ligand-induced and p38-mediated receptor phosphorylation. Mol. Cell. Biol. 22, 5835–5845 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Arnold, S. F. et al. Phosphorylation of tyrosine 537 on the human estrogen receptor is required for binding to an estrogen response element. J. Biol. Chem. 270, 30205–30212 (1995).

    Article  CAS  PubMed  Google Scholar 

  185. Fan, M. et al. CHIP (carboxyl terminus of Hsc70-interacting protein) promotes basal and geldanamycin-induced degradation of estrogen receptor-α. Mol. Endocrinol. 19, 2901–2914 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health grant R01CA123415 (J.M.S.) and by US Department of Defense pre-doctoral grant W81XWH-11-1-0097 (W.Z.). The authors thank M. Lippman, D. El-Ashry, Z. Nawaz, C. Perou and laboratory members for helpful discussions. The authors apologize for omissions in citations and coverage: strict space and citation limits preclude the inclusion of many important past and recent works.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joyce M. Slingerland.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, W., Slingerland, J. Links between oestrogen receptor activation and proteolysis: relevance to hormone-regulated cancer therapy. Nat Rev Cancer 14, 26–38 (2014). https://doi.org/10.1038/nrc3622

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3622

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer