Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Potent antibody therapeutics by design

This article has been updated

Key Points

  • Antibody therapeutics have become an important new drug class, with 17 antibodies now marketed for therapeutic use in the United States across diverse clinical settings: oncology, chronic inflammatory diseases, transplantation, infectious diseases and cardiovascular medicine.

  • Three powerful factors are converging to support the emergence of antibody therapeutics that are more potent and effective: a clinical imperative to achieve a better outcome for patients; the availability of established and emerging technologies to improve antibody performance; and the commercial drive to compete. Increased competition is inevitable, because many approved antibody drugs and antibody drugs under investigation target the same antigen and clinical indications.

  • Antibodies have numerous interdependent properties that can be tuned to improve their clinical potential. These include immunogenicity, antigen-binding specificity and affinity, effector functions and other biological activities, pharmacokinetics, molecular architecture, internalization after cell binding, and biophysical characteristics. Several of these properties can be modulated by engineering the interaction between IgG and one of its binding partners: that is, target antigen, IgG receptors (FcγRs), complement component 1q (C1q) and the salvage receptor FcRn.

  • Antibodies are commonly optimized by selection from genetically diverse display libraries of antibody-fragment variants. Alternatively, they can be optimized by structure-based design followed by expression, purification and functional characterization of individual variants. These selection and design strategies are complementary and are particularly powerful when used in combination.

  • The first major success in the design of antibodies for therapy was the advent of chimerization and humanization to address immunogenicity and other limitations of mouse monoclonal antibodies. Numerous high-potency humanized and human antibodies are now in preclinical and clinical development.

Abstract

Antibodies constitute the most rapidly growing class of human therapeutics and the second largest class of drugs after vaccines. The generation of potent antibody therapeutics, which I review here, is an iterative design process that involves the generation and optimization of antibodies to improve their clinical potential.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Iterative design of antibody therapeutics.
Figure 2: IgG structure and function.
Figure 3: Representative antibody formats.

Similar content being viewed by others

Change history

  • 18 April 2006

    Table 1 in this article has been amended. A new PDF has replaced the previous version.

References

  1. Reichert, J. M., Rosensweig, C. J., Faden, L. B. & Dewitz, M. C. Monoclonal antibody successes in the clinic. Nature Biotechnol. 23, 1073?1078 (2005).

    Article  CAS  Google Scholar 

  2. Kola, I. & Landis, J. Can the pharmaceutical industry reduce attrition rates? Nature Rev. Drug Discov. 3, 711?715 (2004).

    Article  CAS  Google Scholar 

  3. Quan, M. P. & Carter, P. in Lung Biology in Health and Disease (eds Jardieu, P. M. & Fick, R. Jr) 427?469 (Dekker, New York, 2001).

    Google Scholar 

  4. Carter, P. Improving the efficacy of antibody-based cancer therapies. Nature Rev. Cancer 1, 118?129 (2001).

    Article  CAS  Google Scholar 

  5. Presta, L. G. Engineering antibodies for therapy. Curr. Pharm. Biotechnol. 3, 237?256 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Chowdhury, P. S. & Wu, H. Tailor-made antibody therapeutics. Methods 36, 11?24 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Kontermann, R. E. Intrabodies as therapeutic agents. Methods 34, 163?170 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Stocks, M. R. Intrabodies: production and promise. Drug Discov. Today 9, 960?966 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Scott, C. T. The problem with potency. Nature Biotechnol. 23, 1037?1039 (2005).

    Article  CAS  Google Scholar 

  10. Steinman, L. Blocking adhesion molecules as therapy for multiple sclerosis: natalizumab. Nature Rev. Drug Discov. 4, 510?518 (2005).

    Article  CAS  Google Scholar 

  11. Adams, G. P. & Weiner, L. M. Monoclonal antibody therapy of cancer. Nature Biotechnol. 23, 1147?1157 (2005).

    Article  CAS  Google Scholar 

  12. Holliger, P. & Hudson, P. J. Engineered antibody fragments and the rise of single domains. Nature Biotechnol. 23, 1126?1136 (2005).

    Article  CAS  Google Scholar 

  13. Hoogenboom, H. R. Selecting and screening recombinant antibody libraries. Nature Biotechnol. 23, 1105?1116 (2005).

    Article  CAS  Google Scholar 

  14. Hurwitz, H. et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 350, 2335?2342 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Chadd, H. E. & Chamow, S. M. Therapeutic antibody expression technology. Curr. Opin. Biotechnol. 12, 188?194 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Kipriyanov, S. M. & Le Gall, F. Generation and production of engineered antibodies. Mol. Biotechnol. 26, 39?60 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Köhler, G. & Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495?497 (1975).

    Article  PubMed  Google Scholar 

  18. Ober, R. J., Radu, C. G., Ghetie, V. & Ward, E. S. Differences in promiscuity for antibody?FcRn interactions across species: implications for therapeutic antibodies. Int. Immunol. 13, 1551?1559 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Gonzales, N. R., De Pascalis, R., Schlom, J. & Kashmiri, S. V. Minimizing the immunogenicity of antibodies for clinical application. Tumour Biol. 26, 31?43 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Glennie, M. J. & van de Winkel, J. G. Renaissance of cancer therapeutic antibodies. Drug Discov. Today 8, 503?510 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Waldmann, T. A. Immunotherapy: past, present and future. Nature Med. 9, 269?277 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Morrison, S. L., Johnson, M. J., Herzenberg, L. A. & Oi, V. T. Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains. Proc. Natl Acad. Sci. USA 81, 6851?6855 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Boulianne, G. L., Hozumi, N. & Shulman, M. J. Production of functional chimaeric mouse/human antibody. Nature 312, 643?646 (1984).

    Article  CAS  PubMed  Google Scholar 

  24. Jones, P. T., Dear, P. H., Foote, J., Neuberger, M. S. & Winter, G. Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321, 522?525 (1986).

    Article  CAS  PubMed  Google Scholar 

  25. Verhoeyen, M., Milstein, C. & Winter, G. Reshaping human antibodies: grafting an antilysozyme activity. Science 239, 1534?1536 (1988).

    Article  CAS  PubMed  Google Scholar 

  26. Riechmann, L., Clark, M., Waldmann, H. & Winter, G. Reshaping human antibodies for therapy. Nature 332, 323?327 (1988).

    Article  CAS  PubMed  Google Scholar 

  27. Lonberg, N. Human antibodies from transgenic animals. Nature Biotechnol. 23, 1117?1125 (2005).

    Article  CAS  Google Scholar 

  28. Brändlein, S. & Vollmers, H. P. Natural IgM antibodies, the ignored weapons in tumour immunity. Histol. Histopathol. 19, 897?905 (2004).

    PubMed  Google Scholar 

  29. Illert, B. et al. Human antibody SC-1 reduces disseminated tumor cells in nude mice with human gastric cancer. Oncol. Rep. 13, 765?770 (2005).

    CAS  PubMed  Google Scholar 

  30. Lagerkvist, A. C., Furebring, C. & Borrebaeck, C. A. Single, antigen-specific B cells used to generate Fab fragments using CD40-mediated amplification or direct PCR cloning. Biotechniques 18, 862?869 (1995).

    CAS  PubMed  Google Scholar 

  31. Babcook, J. S., Leslie, K. B., Olsen, O. A., Salmon, R. A. & Schrader, J. W. A novel strategy for generating monoclonal antibodies from single, isolated lymphocytes producing antibodies of defined specificities. Proc. Natl Acad. Sci. USA 93, 7843?7848 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Green, L. L. et al. Antigen-specific human monoclonal antibodies from mice engineered with human Ig heavy and light chain YACs. Nature Genet. 7, 13?21 (1994).

    Article  CAS  PubMed  Google Scholar 

  33. Lonberg, N. et al. Antigen-specific human antibodies from mice comprising four distinct genetic modifications. Nature 368, 856?859 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. McCafferty, J., Griffiths, A. D., Winter, G. & Chiswell, D. J. Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348, 552?554 (1990).

    Article  CAS  PubMed  Google Scholar 

  35. Marks, J. D. et al. By-passing immunization. Human antibodies from V-gene libraries displayed on phage. J. Mol. Biol. 222, 581?597 (1991).

    Article  CAS  PubMed  Google Scholar 

  36. Bradbury, A. R. & Marks, J. D. Antibodies from phage antibody libraries. J. Immunol. Methods 290, 29?49 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Perelson, A. S. & Oster, G. F. Theoretical studies of clonal selection: minimal antibody repertoire size and reliability of self?non-self discrimination. J. Theor. Biol. 81, 645?670 (1979).

    Article  CAS  PubMed  Google Scholar 

  38. Lowe, D. & Jermutus, L. Combinatorial protein biochemistry for therapeutics and proteomics. Curr. Pharm. Biotechnol. 5, 17?27 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Popkov, M. et al. Human/mouse cross-reactive anti-VEGF receptor 2 recombinant antibodies selected from an immune b9 allotype rabbit antibody library. J. Immunol. Methods 288, 149?164 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Edwards, B. M. et al. The remarkable flexibility of the human antibody repertoire; isolation of over one thousand different antibodies to a single protein, BLyS. J. Mol. Biol. 334, 103?118 (2003). This study generated the largest panel of antibodies specific for a target protein that has so far been described.

    Article  CAS  PubMed  Google Scholar 

  41. Baker, K. P. et al. Generation and characterization of LymphoStat-B, a human monoclonal antibody that antagonizes the bioactivities of B lymphocyte stimulator. Arthritis Rheum. 48, 3253?3265 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Sarantopoulos, S., Kao, C. Y., Den, W. & Sharon, J. A method for linking VL and VH region genes that allows bulk transfer between vectors for use in generating polyclonal IgG libraries. J. Immunol. 152, 5344?5351 (1994).

    CAS  PubMed  Google Scholar 

  43. Persic, L. et al. An integrated vector system for the eukaryotic expression of antibodies or their fragments after selection from phage display libraries. Gene 187, 9?18 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Jostock, T. et al. Rapid generation of functional human IgG antibodies derived from Fab-on-phage display libraries. J. Immunol. Methods 289, 65?80 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Szymkowski, D. E. Creating the next generation of protein therapeutics through rational drug design. Curr. Opin. Drug Discov. Devel. 8, 590?600 (2005).

    CAS  PubMed  Google Scholar 

  46. Chirino, A. J., Ary, M. L. & Marshall, S. A. Minimizing the immunogenicity of protein therapeutics. Drug Discov. Today 9, 82?90 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Hwang, W. Y. & Foote, J. Immunogenicity of engineered antibodies. Methods 36, 3?10 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Clark, M. Antibody humanization: a case of the 'Emperor's new clothes'? Immunol. Today 21, 397?402 (2000).

    CAS  PubMed  Google Scholar 

  49. Lobo, E. D., Hansen, R. J. & Balthasar, J. P. Antibody pharmacokinetics and pharmacodynamics. J. Pharm. Sci. 93, 2645?2668 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Pendley, C., Schantz, A. & Wagner, C. Immunogenicity of therapeutic monoclonal antibodies. Curr. Opin. Mol. Ther. 5, 172?179 (2003).

    CAS  PubMed  Google Scholar 

  51. Fredericks, Z. L. et al. Identification of potent human anti-IL-1RI antagonist antibodies. Protein Eng. Des. Sel. 17, 95?106 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Werther, W. A. et al. Humanization of an anti-lymphocyte function-associated antigen (LFA)-1 monoclonal antibody and reengineering of the humanized antibody for binding to rhesus LFA-1. J. Immunol. 157, 4986?4995 (1996).

    CAS  PubMed  Google Scholar 

  53. Yang, W. -P. et al. CDR walking mutagenesis for the affinity maturation of a potent human anti-HIV-1 antibody into the picomolar range. J. Mol. Biol. 254, 392?403 (1995).

    Article  CAS  PubMed  Google Scholar 

  54. Schier, R. et al. Isolation of picomolar affinity anti-c-erbB-2 single-chain Fv by molecular evolution of the complementarity determining regions in the center of the antibody binding site. J. Mol. Biol. 263, 551?567 (1996). References 53 and 54 are pioneering studies of in vitro affinity maturation of antibodies from the nanomolar to the picomolar range.

    Article  CAS  PubMed  Google Scholar 

  55. Wells, J. A. Additivity of mutational effects in proteins. Biochemistry 29, 8509?8517 (1990).

    Article  CAS  PubMed  Google Scholar 

  56. Wu, H. et al. Ultra-potent antibodies against respiratory syncytial virus: effects of binding kinetics and binding valence on viral neutralization. J. Mol. Biol. 350, 126?144 (2005). Increases in association rate are shown to have an important role in the increased potency of affinity-matured palivizumab variants for the neutralization of RSV.

    Article  CAS  PubMed  Google Scholar 

  57. Razai, A. et al. Molecular evolution of antibody affinity for sensitive detection of botulinum neurotoxin type A. J. Mol. Biol. 351, 158?169 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Marvin, J. S. & Lowman, H. B. Redesigning an antibody fragment for faster association with its antigen. Biochemistry 42, 7077?7083 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Carter, P. et al. Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc. Natl Acad. Sci. USA 89, 4285?4289 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Adams, G. P. et al. Increased affinity leads to improved selective tumor delivery of single-chain Fv antibodies. Cancer Res. 58, 485?490 (1998).

    CAS  PubMed  Google Scholar 

  61. Adams, G. P. et al. High affinity restricts the localization and tumor penetration of single-chain Fv antibody molecules. Cancer Res. 61, 4750?4755 (2001). This is an important study of the influence of the antigen-binding affinity of scFvs on their ability to target tumours.

    CAS  PubMed  Google Scholar 

  62. Fujimori, K., Covell, D. G., Fletcher, J. E. & Weinstein, J. N. Modeling analysis of the global and microscopic distribution of immunoglobulin G, F(ab′)2, and Fab in tumors. Cancer Res. 49, 5656?5663 (1989).

    CAS  PubMed  Google Scholar 

  63. Nielsen, U. B., Adams, G. P., Weiner, L. M. & Marks, J. D. Targeting of bivalent anti-ErbB2 diabody antibody fragments to tumor cells is independent of the intrinsic antibody affinity. Cancer Res. 60, 6434?6440 (2000).

    CAS  PubMed  Google Scholar 

  64. Mejias, A. et al. Comparative effects of two neutralizing anti-respiratory syncytial virus (RSV) monoclonal antibodies in the RSV murine model: time versus potency. Antimicrob. Agents Chemother. 49, 4700?4707 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rao, B. M., Lauffenburger, D. A. & Wittrup, K. D. Integrating cell-level kinetic modeling into the design of engineered protein therapeutics. Nature Biotechnol. 23, 191?194 (2005).

    Article  CAS  Google Scholar 

  66. Cartron, G., Watier, H., Golay, J. & Solal-Celigny, P. From the bench to the bedside: ways to improve rituximab efficacy. Blood 104, 2635?2642 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Smith, S. L. Ten years of orthoclone OKT3 (muromonab-CD3): a review. J. Transpl. Coord. 6, 109?121 (1996).

    CAS  PubMed  Google Scholar 

  68. Chatenoud, L. Anti-CD3 antibodies: towards clinical antigen-specific immunomodulation. Curr. Opin. Pharmacol. 4, 403?407 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Kimball, J. A. et al. The OKT3 Antibody Response Study: a multicentre study of human anti-mouse antibody (HAMA) production following OKT3 use in solid organ transplantation. Transpl. Immunol. 3, 212?221 (1995).

    Article  CAS  PubMed  Google Scholar 

  70. Alegre, M. L. et al. A non-activating 'humanized' anti-CD3 monoclonal antibody retains immunosuppressive properties in vivo. Transplantation 57, 1537?1543 (1994).

    Article  CAS  PubMed  Google Scholar 

  71. Bolt, S. et al. The generation of a humanized, non-mitogenic CD3 monoclonal antibody which retains in vitro immunosuppressive properties. Eur. J. Immunol. 23, 403?411 (1993). References 70 and 71 are excellent early examples of the use of rational design to overcome the limitations of an existing antibody therapeutic.

    Article  CAS  PubMed  Google Scholar 

  72. Cole, M. S., Anasetti, C. & Tso, J. Y. Human IgG2 variants of chimeric anti-CD3 are nonmitogenic to T cells. J. Immunol. 159, 3613?3621 (1997).

    CAS  PubMed  Google Scholar 

  73. Xu, D. et al. In vitro characterization of five humanized OKT3 effector function variant antibodies. Cell. Immunol. 200, 16?26 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Woodle, E. S. et al. Phase I trial of a humanized, Fc receptor nonbinding OKT3 antibody, huOKT3γ1(Ala-Ala) in the treatment of acute renal allograft rejection. Transplantation 68, 608?616 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Friend, P. J. et al. Phase I study of an engineered aglycosylated humanized CD3 antibody in renal transplant rejection. Transplantation 68, 1632?1637 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Norman, D. J. et al. Phase I trial of HuM291, a humanized anti-CD3 antibody, in patients receiving renal allografts from living donors. Transplantation 70, 1707?1712 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Cartron, G. et al. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcγRIIIa gene. Blood 99, 754?758 (2002). This was the first study to show an association between responsiveness to antibody therapy and an FcγRIII polymorphism in patients. It strongly implicates an Fc-region?FcγR mechanism such as ADCC in the antitumour activity of rituximab.

    Article  CAS  PubMed  Google Scholar 

  78. Weng, W. K. & Levy, R. Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J. Clin. Oncol. 21, 3940?3947 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Koene, H. R. et al. FcγRIIIa-158V/F polymorphism influences the binding of IgG by natural killer cell FcγRIIIa, independently of the FcγRIIIa-48L/R/H phenotype. Blood 90, 1109?1114 (1997).

    Article  CAS  PubMed  Google Scholar 

  80. Shields, R. L. et al. High resolution mapping of the binding site on human IgG1 for FcγRI, FcγRII, FcγRIII, and FcRn and design of IgG1 variants with improved binding to the FcγR. J. Biol. Chem. 276, 6591?6604 (2001). This is the most detailed mutational analysis so far of human IgG Fc regions. The binding sites for various FcγRs and FcRn are assessed. Variants of the Fc region that are described include those with improved binding to FcγRIIIa and induce an increase in ADCC in vitro.

    Article  CAS  PubMed  Google Scholar 

  81. Farag, S. S. et al. FcγRIIIa and FcγRIIa polymorphisms do not predict response to rituximab in B-cell chronic lymphocytic leukemia. Blood 103, 1472?1474 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Umaña, P., Jean-Mairet, J., Moudry, R., Amstutz, H. & Bailey, J. E. Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity. Nature Biotechnol. 17, 176?180 (1999).

    Article  Google Scholar 

  83. Shields, R. L. et al. Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human FcγRIII and antibody-dependent cellular toxicity. J. Biol. Chem. 277, 26733?26740 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Shinkawa, T. et al. The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J. Biol. Chem. 278, 3466?3473 (2003). This paper provides a detailed analysis of the impact of Fc-region glycans on the ability of a humanized antibody to support ADCC, showing that lack of fucose has the most crucial role in increasing ADCC.

    Article  CAS  PubMed  Google Scholar 

  85. Niwa, R. et al. Enhancement of the antibody-dependent cellular cytotoxicity of low-fucose IgG1 is independent of FcγRIIIa functional polymorphism. Clin. Cancer Res. 10, 6248?6255 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Li, H. et al. Optimization of humanized IgGs in glycoengineered Pichia pastoris. Nature Biotechnol. 24, 210?215 (2006). Fine tailoring of IgG glycan structure through expression by engineered P. pastoris strains provides a way to improve effector functions.

    Article  CAS  Google Scholar 

  87. Lazar, G. A. et al. Engineered antibody Fc variants with enhanced effector function. Proc. Natl Acad. Sci. USA 103, 4005?4010 (2006). This paper describes a broadly applicable Fc-region engineering strategy that was used to create variants of several approved therapeutic antibodies, resulting in increases in the potency of effector function by more than 100-fold.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Vugmeyster, Y. et al. Depletion of B cells by a humanized anti-CD20 antibody PRO70769 in Macaca fascicularis. J. Immunother. 28, 212?219 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Amoroso, A. R., Alpaugh, R. K., Barth, M. W., McCall, A. M. & Weiner, L. M. Production and characterization of mice transgenic for the A and B isoforms of human FcγRIII. Cancer Immunol. Immunother. 48, 443?455 (1999).

    Article  CAS  PubMed  Google Scholar 

  90. Keler, T. et al. Targeting weak antigens to CD64 elicits potent humoral responses in human CD64 transgenic mice. J. Immunol. 165, 6738?6742 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Weng, W. K. & Levy, R. Expression of complement inhibitors CD46, CD55, and CD59 on tumor cells does not predict clinical outcome after rituximab treatment in follicular non-Hodgkin lymphoma. Blood 98, 1352?1357 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Di Gaetano, N. et al. Complement activation determines the therapeutic activity of rituximab in vivo. J. Immunol. 171, 1581?1587 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Cragg, M. S. & Glennie, M. J. Antibody specificity controls in vivo effector mechanisms of anti-CD20 reagents. Blood 103, 2738?2743 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Idusogie, E. E. et al. Mapping of the C1q binding site on rituxan, a chimeric antibody with a human IgG1 Fc. J. Immunol. 164, 4178?4184 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Idusogie, E. E. et al. Engineered antibodies with increased activity to recruit complement. J. Immunol. 166, 2571?2575 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Teeling, J. L. et al. Characterization of new human CD20 monoclonal antibodies with potent cytolytic activity against non-Hodgkin lymphomas. Blood 104, 1793?1800 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Ober, R. J., Martinez, C., Lai, X., Zhou, J. & Ward, E. S. Exocytosis of IgG as mediated by the receptor, FcRn: an analysis at the single-molecule level. Proc. Natl Acad. Sci. USA 101, 11076?11081 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ober, R. J., Martinez, C., Vaccaro, C., Zhou, J. & Ward, E. S. Visualizing the site and dynamics of IgG salvage by the MHC class I-related receptor, FcRn. J. Immunol. 172, 2021?2029 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. West, A. P. Jr & Bjorkman, P. J. Crystal structure and immunoglobulin G binding properties of the human major histocompatibility complex-related Fc receptor. Biochemistry 39, 9698?9708 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Ghetie, V. & Ward, E. S. Transcytosis and catabolism of antibody. Immunol. Res. 25, 97?113 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Ghetie, V. et al. Increasing the serum persistence of an IgG fragment by random mutagenesis. Nature Biotechnol. 15, 637?640 (1997).

    Article  CAS  Google Scholar 

  102. Hinton, P. R. et al. Engineered human IgG antibodies with longer serum half-lives in primates. J. Biol. Chem. 279, 6213?6216 (2004). This was the first study to show an increase in the serum half-life of an antibody in non-human primates. This was achieved by engineering the Fc region for improved binding to FcRn.

    Article  CAS  PubMed  Google Scholar 

  103. Kenanova, V. et al. Tailoring the pharmacokinetics and positron emission tomography imaging properties of anti-carcinoembryonic antigen single-chain Fv?Fc antibody fragments. Cancer Res. 65, 622?631 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Vaccaro, C., Zhou, J., Ober, R. J. & Ward, E. S. Engineering the Fc region of immunoglobulin G to modulate in vivo antibody levels. Nature Biotechnol. 23, 1283?1288 (2005). This was the first report of an engineered IgG that accelerates clearance of endogenous IgG in mice. Potential therapeutic applications include the reduction of IgG concentrations in patients with antibody-mediated diseases.

    Article  CAS  Google Scholar 

  105. Holliger, P., Wing, M., Pound, J. D., Bohlen, H. & Winter, G. Retargeting serum immunoglobulin with bispecific diabodies. Nature Biotechnol. 15, 632?636 (1997).

    Article  CAS  Google Scholar 

  106. Dennis, M. S. et al. Albumin binding as a general strategy for improving the pharmacokinetics of proteins. J. Biol. Chem. 277, 35035?35043 (2002).

    Article  CAS  PubMed  Google Scholar 

  107. Chapman, A. P. et al. Therapeutic antibody fragments with prolonged in vivo half-lives. Nature Biotechnol. 17, 780?783 (1999).

    Article  CAS  Google Scholar 

  108. Choy, E. H. et al. Efficacy of a novel PEGylated humanized anti-TNF fragment (CDP870) in patients with rheumatoid arthritis: a Phase II double-blinded, randomized, dose-escalating trial. Rheumatology (Oxford) 41, 1133?1137 (2002). This was the first human study to show that PEGylation can extend the terminal half-life of an antibody fragment to a half-life approaching that of the parent IgG.

    Article  CAS  Google Scholar 

  109. Schreiber, S. et al. A randomized, placebo-controlled trial of certolizumab pegol (CDP870) for treatment of Crohn's disease. Gastroenterology 129, 807?818 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Chapman, A. P. PEGylated antibodies and antibody fragments for improved therapy: a review. Adv. Drug Deliv. Rev. 54, 531?545 (2002).

    Article  CAS  PubMed  Google Scholar 

  111. Brooks, D. et al. Phase Ia trial of murine immunoglobulin A antitransferrin receptor antibody 42/6. Clin. Cancer Res. 1, 1259?1265 (1995).

    CAS  PubMed  Google Scholar 

  112. Ma, J. K. et al. Characterization of a recombinant plant monoclonal secretory antibody and preventive immunotherapy in humans. Nature Med. 4, 601?606 (1998).

    Article  CAS  PubMed  Google Scholar 

  113. Parlevliet, K. J. et al. In vivo effects of IgA and IgG2a anti-CD3 isotype switch variants. J. Clin. Invest. 93, 2519?2525 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Vollmers, H. P. et al. Adjuvant therapy for gastric adenocarcinoma with the apoptosis-inducing human monoclonal antibody SC-1: first clinical and histopathological results. Oncol. Rep. 5, 549?552 (1998).

    CAS  PubMed  Google Scholar 

  115. Vollmers, H. P. & Brändlein, S. Nature's best weapons to fight cancer. Revival of human monoclonal IgM antibodies. Hum. Antibodies 11, 131?142 (2002).

    Article  CAS  PubMed  Google Scholar 

  116. Wu, A. M. & Senter, P. D. Arming antibodies: prospects and challenges for immunoconjugates. Nature Biotechnol. 23, 1137?1146 (2005).

    Article  CAS  Google Scholar 

  117. Stuttle, A. W., Powling, M. J., Ritter, J. M. & Hardisty, R. M. Effects of a monoclonal antibody to glycoprotein IIb/IIIa (P256) and of enzymically derived fragments of P256 on human platelets. Thromb. Haemost. 65, 432?437 (1991).

    Article  CAS  PubMed  Google Scholar 

  118. Ward, E. S., Gussow, D., Griffiths, A. D., Jones, P. T. & Winter, G. Binding activities of a repertoire of single immunoglobulin variable domains secreted from Escherichia coli. Nature 341, 544?546 (1989).

    Article  CAS  PubMed  Google Scholar 

  119. Saphire, E. O. et al. Crystal structure of a neutralizing human IgG against HIV-1: a template for vaccine design. Science 293, 1155?1159 (2001).

    Article  CAS  PubMed  Google Scholar 

  120. Simmons, L. C. et al. Expression of full-length immunoglobulins in Escherichia coli: rapid and efficient production of aglycosylated antibodies. J. Immunol. Methods 263, 133?147 (2002). This was the first study to show that large amounts of IgG can be produced by E. coli.

    Article  CAS  PubMed  Google Scholar 

  121. Rosenfeld, P. J. et al. Maximum tolerated dose of a humanized anti-vascular endothelial growth factor antibody fragment for treating neovascular age-related macular degeneration. Ophthalmology 112, 1048?1053 (2005).

    Article  PubMed  Google Scholar 

  122. Begent, R. H. et al. Clinical evidence of efficient tumor targeting based on single-chain Fv antibody selected from a combinatorial library. Nature Med. 2, 979?984 (1996). This paper was the first to report treatment of patients with an scFv.

    Article  CAS  PubMed  Google Scholar 

  123. Mayer, A. et al. Radioimmunoguided surgery in colorectal cancer using a genetically engineered anti-CEA single-chain Fv antibody. Clin. Cancer Res. 6, 1711?1719 (2000).

    CAS  PubMed  Google Scholar 

  124. Rhee, P. et al. Recombinant humanized monoclonal antibody against CD18 (rhuMAb CD18) in traumatic hemorrhagic shock: results of a Phase II clinical trial. J. Trauma 49, 611?619 (2000).

    Article  CAS  PubMed  Google Scholar 

  125. Wong, J. Y. et al. Pilot trial evaluating an 123I-labeled 80-kilodalton engineered anticarcinoembryonic antigen antibody fragment (cT84.66 minibody) in patients with colorectal cancer. Clin. Cancer Res. 10, 5014?5021 (2004). This paper was the first to report treatment of patients with a minibody.

    Article  CAS  PubMed  Google Scholar 

  126. Schlereth, B. et al. T-cell activation and B-cell depletion in chimpanzees treated with a bispecific anti-CD19/anti-CD3 single-chain antibody construct. Cancer Immunol. Immunother. 55, 503?514 (2006).

    Article  CAS  PubMed  Google Scholar 

  127. Lambert, J. M. Drug-conjugated monoclonal antibodies for the treatment of cancer. Curr. Opin. Pharmacol. 5, 543?549 (2005).

    Article  CAS  PubMed  Google Scholar 

  128. Park, J. W., Benz, C. C. & Martin, F. J. Future directions of liposome- and immunoliposome-based cancer therapeutics. Semin. Oncol. 31, 196?205 (2004).

    Article  CAS  PubMed  Google Scholar 

  129. Liu, B., Conrad, F., Cooperberg, M. R., Kirpotin, D. B. & Marks, J. D. Mapping tumor epitope space by direct selection of single-chain Fv antibody libraries on prostate cancer cells. Cancer Res. 64, 704?710 (2004).

    Article  CAS  PubMed  Google Scholar 

  130. Poul, M. A., Becerril, B., Nielsen, U. B., Morisson, P. & Marks, J. D. Selection of tumor-specific internalizing human antibodies from phage libraries. J. Mol. Biol. 301, 1149?1161 (2000).

    Article  CAS  PubMed  Google Scholar 

  131. Klussman, K. et al. Secondary mAb?vcMMAE conjugates are highly sensitive reporters of antibody internalization via the lysosome pathway. Bioconjug. Chem. 15, 765?773 (2004).

    Article  CAS  PubMed  Google Scholar 

  132. Law, C. L. et al. Efficient elimination of B-lineage lymphomas by anti-CD20?auristatin conjugates. Clin. Cancer Res. 10, 7842?7851 (2004).

    Article  CAS  PubMed  Google Scholar 

  133. Austin, C. D. et al. Endocytosis and sorting of ErbB2 and the site of action of cancer therapeutics trastuzumab and geldanamycin. Mol. Biol. Cell 15, 5268?5282 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Jespers, L., Schon, O., Famm, K. & Winter, G. Aggregation-resistant domain antibodies selected on phage by heat denaturation. Nature Biotechnol. 22, 1161?1165 (2004).

    Article  CAS  Google Scholar 

  135. Graff, C. P., Chester, K., Begent, R. & Wittrup, K. D. Directed evolution of an anti-carcinoembryonic antigen scFv with a 4-day monovalent dissociation half-time at 37°C. Protein Eng. Des. Sel. 17, 293?304 (2004).

    Article  CAS  PubMed  Google Scholar 

  136. Ewert, S., Huber, T., Honegger, A. & Plückthun, A. Biophysical properties of human antibody variable domains. J. Mol. Biol. 325, 531?553 (2003).

    Article  CAS  PubMed  Google Scholar 

  137. Ewert, S., Honegger, A. & Plückthun, A. Stability improvement of antibodies for extracellular and intracellular applications: CDR grafting to stable frameworks and structure-based framework engineering. Methods 34, 184?199 (2004).

    Article  CAS  PubMed  Google Scholar 

  138. Willuda, J. et al. High thermal stability is essential for tumor targeting of antibody fragments: engineering of a humanized anti-epithelial glycoprotein-2 (epithelial cell adhesion molecule) single-chain Fv fragment. Cancer Res. 59, 5758?5767 (1999). This study shows that improvement in a biophysical property of an antibody ? in this case, thermal stability ? can translate into improved in vivo performance (in this case, tumour localization).

    CAS  PubMed  Google Scholar 

  139. Carson, K. L. Flexibility ? the guiding principle for antibody manufacturing. Nature Biotechnol. 23, 1054?1058 (2005).

    Article  CAS  Google Scholar 

  140. Glennie, M. J. & Johnson, P. W. Clinical trials of antibody therapy. Immunol. Today 21, 403?410 (2000).

    Article  CAS  PubMed  Google Scholar 

  141. Carter, P., Smith, L. & Ryan, M. Identification and validation of cell surface antigens for antibody targeting in oncology. Endocr. Relat. Cancer 11, 659?687 (2004).

    Article  CAS  PubMed  Google Scholar 

  142. Duncan, A. R., Woof, J. M., Partridge, L. J., Burton, D. R. & Winter, G. Localization of the binding site for the human high-affinity Fc receptor on IgG. Nature 332, 563?564 (1988).

    Article  CAS  PubMed  Google Scholar 

  143. Duncan, A. R. & Winter, G. The binding site for C1q on IgG. Nature 332, 738?740 (1988).

    Article  CAS  PubMed  Google Scholar 

  144. Cho, H. S. et al. Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature 421, 756?760 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank P. Senter for critical comment on this manuscript, C. McDonagh and B. Toki for help with figure 2, and P. Umaña and N. Damle for sharing unpublished observations.

In Table 1 and S1 of the AOP version of this article, Avastin was incorrectly noted to be an approved treatment for head and neck cancer. Instead, Erbitux is approved for treatment of these cancers. This error has since been corrected in the HTML and PDF versions of this article and will appear correctly in the May 2006 print issue.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Related links

Related links

FURTHER INFORMATION

Seattle Genetics Inc

Glossary

Adverse event

An untoward medical occurrence in a patient who has been administered a pharmaceutical product. This occurrence does not necessarily have a causal relationship with the treatment.

Partial response

In oncology, a response in which there is greater than or equal to a 50% reduction in total tumour size, with no new lesions or increase in size of an existing lesion. This is often calculated as the sum of the products of the perpendicular diameters of all measurable lesions.

Complete response

In oncology, a response in which no remaining tumour can be detected by visual inspection or by clinical imaging technologies. This does not necessarily indicate that the disease has been cured.

Response duration

The time from the first response until disease progression or death.

Effector functions

Fc-mediated antibody properties that are involved in the destruction of target cells: that is, antibody-dependent cell-mediated cytotoxicity (ADCC), complement-dependent cytotoxicity (CDC) and antibody-dependent cellular phagocytosis (ADCP).

Half-life

The time taken for the plasma concentration of a drug to decrease to half of its original value. Initial half-life and terminal half-life refer to the first (distribution) and second (elimination) phases of bi-exponential pharmacokinetics, respectively.

Complementarity-determining regions

(CDRs). The polypeptide loops in an antibody that are the main determinants of antigen binding. There are three CDRs in the variable domain of the immunoglobulin heavy chain and three in the variable domain of the immunoglobulin light chain.

Binding affinity

(Kd). For two interacting molecules, the ratio of their association (ka) and dissociation (kd) rate constants: that is, Kd = kd/ka.

Framework regions

The polypeptide segments in an antibody that together form a structural scaffold for presentation of the antigen-binding (complementarity-determining region) loops. There are four framework regions in the variable domain of the immunoglobulin heavy chain and four in the variable domain of the immunoglobulin light chain.

Phage-display technology

A technology for displaying a protein, such as an antibody fragment, on the surface of a bacteriophage that contains the gene(s) encoding the displayed protein(s), thereby physically linking the genotype and phenotype.

Affinity maturation

An in vitro or in vivo process for increasing the affinity of a binding interaction, such as that between an antibody and its cognate antigen.

Species crossreactive

For antibodies, this is often used to denote binding to the corresponding antigen from two or more species: for example, humans, non-human primates and rodents.

Single-chain V-domain antibody fragment

(scFv). A small antibody fragment that comprises the variable (V) domains of the immunoglobulin heavy and light chain in either order joined by a short (15 amino-acid residue) peptide linker.

Functional display-library size

The number of clones that is displayed with sufficient efficiency to be potentially selectable.

Epitope

The part of an antigen that interacts with an antibody.

Severe combined immunodeficient mice

(SCID mice). Mice that are homozygous for the scid allele of the gene that encodes the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs). These mice are severely deficient in functional B and T cells.

PEGylation

The chemical modification of a protein by conjugation to one or more molecules of polyethylene glycol (PEG).

Valency

For antibodies, the number of binding sites for the cognate antigen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carter, P. Potent antibody therapeutics by design. Nat Rev Immunol 6, 343–357 (2006). https://doi.org/10.1038/nri1837

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1837

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing