Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Are bloodstream leukocytes Trojan Horses for the metastasis of Staphylococcus aureus?

Abstract

Staphylococcus aureus bacteraemia remains very difficult to treat, and a large proportion of cases result in potentially lethal metastatic infection. Unpredictable and persistent bacteraemia in the face of highly active, usually bactericidal antibiotics is the strongest predictor of death or disseminated disease. Although S. aureus has conventionally been considered an extracellular pathogen, much evidence demonstrates that it can survive intracellularly. In this Opinion article, we propose that phagocytes, and specifically neutrophils, represent a privileged site for S. aureus in the bloodstream, offering protection from most antibiotics and providing a mechanism by which the bacterium can travel to and infect distant sites. Furthermore, we suggest how this can be experimentally confirmed and how it may prompt a change in the current paradigm of S. aureus bacteraemia and identify better treatment options for improved clinical outcomes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Progression of Staphylococcus aureus from an infected or contaminated source through the bloodstream to a metastatic target.
Figure 2: Staphylococcus aureus defences against antimicrobial factors in the host phagosome.

Similar content being viewed by others

References

  1. Lowy, F. D. Staphylococcus aureus infections. N. Engl. J. Med. 339, 520–532 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Gorwitz, R. J. et al. Changes in the prevalence of nasal colonization with Staphylococcus aureus in the United States, 2001–2004. J. Infect. Dis. 197, 1226–1234 (2008).

    PubMed  Google Scholar 

  3. Wenzel, R. P. & Perl, T. M. The significance of nasal carriage of Staphylococcus aureus and the incidence of postoperative wound infection. J. Hosp. Infect. 31, 13–24 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Shorr, A. F. et al. Healthcare-associated bloodstream infection: A distinct entity? Insights from a large US database. Crit. Care Med. 34, 2588–2595 (2006).

    Article  PubMed  Google Scholar 

  5. Health Protection Agency. Summary points on April to June 2009 quarterly data and financial year (April 2008 to March 2009) for MRSA bacteraemia Mandatory Surveillance data, September 2009. Health Protection Agency [online] http://www.hpa.org.uk/web/HPAwebFile/HPAweb_C/1229502459877 (2009).

  6. Wyllie, D. H., Crook, D. W. & Peto, T. E. Mortality after Staphylococcus aureus bacteraemia in two hospitals in Oxfordshire, 1997–2003: cohort study. BMJ 333, 281 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chang, F. Y. et al. A prospective multicenter study of Staphylococcus aureus bacteremia: incidence of endocarditis, risk factors for mortality, and clinical impact of methicillin resistance. Medicine (Baltimore) 82, 322–332 (2003).

    Article  Google Scholar 

  8. Fowler, V. G. Jr et al. Clinical identifiers of complicated Staphylococcus aureus bacteremia. Arch. Intern. Med. 163, 2066–2072 (2003).

    Article  PubMed  Google Scholar 

  9. Khatib, R. et al. Persistence in Staphylococcus aureus bacteremia: incidence, characteristics of patients and outcome. Scand. J. Infect. Dis. 38, 7–14 (2006).

    Article  PubMed  Google Scholar 

  10. Chu, V. H. et al. Staphylococcus aureus bacteremia in patients with prosthetic devices: costs and outcomes. Am. J. Med. 118, 1416 (2005).

    Article  PubMed  Google Scholar 

  11. Lalani, T. et al. Clinical outcomes and costs among patients with Staphylococcus aureus bacteremia and orthopedic device infections. Scand. J. Infect. Dis. 40, 973–977 (2008).

    Article  PubMed  Google Scholar 

  12. Cosgrove, S. E. & Fowler, V. G. Jr. Management of methicillin-resistant Staphylococcus aureus bacteremia. Clin. Infect. Dis. 46 (Suppl. 5), S386–S393 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Turnidge, J. D. et al. Staphylococcus aureus bacteraemia: a major cause of mortality in Australia and New Zealand. Med. J. Aust. 191, 368–373 (2009).

    PubMed  Google Scholar 

  14. Khatib, R. et al. Persistent Staphylococcus aureus bacteremia: incidence and outcome trends over time. Scand. J. Infect. Dis. 41, 4–9 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Alexander, E. H. & Hudson, M. C. Factors influencing the internalization of Staphylococcus aureus and impacts on the course of infections in humans. Appl. Microbiol. Biotechnol. 56, 361–366 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Garzoni, C. & Kelley, W. L. Staphylococcus aureus: new evidence for intracellular persistence. Trends Microbiol. 17, 59–65 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Sinha, B. & Fraunholz, M. Staphylococcus aureus host cell invasion and post-invasion events. Int. J. Med. Microbiol. 300, 170–175 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Sinha, B. & Herrmann, M. Mechanism and consequences of invasion of endothelial cells by Staphylococcus aureus. Thromb. Haemost. 94, 266–277 (2005).

    CAS  PubMed  Google Scholar 

  19. Lowy, F. D. Is Staphylococcus aureus an intracellular pathogen? Trends Microbiol. 8, 341–343 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Sendi, P. & Proctor, R. A. Staphylococcus aureus as an intracellular pathogen: the role of small colony variants. Trends Microbiol. 17, 54–58 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Hall-Stoodley, L. & Stoodley, P. Evolving concepts in biofilm infections. Cell. Microbiol. 11, 1034–1043 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Foster, T. J. Immune evasion by staphylococci. Nature Rev. Microbiol. 3, 948–958 (2005).

    Article  CAS  Google Scholar 

  23. DeLeo, F. R., Diep, B. A. & Otto, M. Host defense and pathogenesis in Staphylococcus aureus infections. Infect. Dis. Clin. North Am. 23, 17–34 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Anwar, S., Prince, L. R., Foster, S. J., Whyte, M. K. & Sabroe, I. The rise and rise of Staphylococcus aureus: laughing in the face of granulocytes. Clin. Exp. Immunol. 157, 216–224 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Van de Velde, H. Etude sur le mécanisme de la virulence du staphylocoque pyogène. La Cellule 10, 401–460 (1894) (in French).

    Google Scholar 

  26. Rogers, D. E. & Tompsett, R. The survival of staphylococci within human leukocytes. J. Exp. Med. 95, 209–230 (1952).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kapral, F. A. & Shayegani, M. G. Intracellular survival of staphylococci. J. Exp. Med. 110, 123–138 (1959).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Melly, M. A., Thomison, J. B. & Rogers, D. E. Fate of staphylococci within human leukocytes. J. Exp. Med. 112, 1121–1130 (1960).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rogers, D. E. & Melly, M. A. Further observations on the behavior of staphylococci within human leukocytes. J. Exp. Med. 111, 533–558 (1960).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kubica, M. et al. A potential new pathway for Staphylococcus aureus dissemination: the silent survival of S. aureus phagocytosed by human monocyte-derived macrophages. PLoS ONE 3, e1409 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rooijakkers, S. H., van Kessel, K. P. & van Strijp, J. A. Staphylococcal innate immune evasion. Trends Microbiol. 13, 596–601 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Serruto, D., Rappuoli, R., Scarselli, M., Gros, P. & van Strijp, J. A. Molecular mechanisms of complement evasion: learning from staphylococci and meningococci. Nature Rev. Microbiol. 8, 393–399 (2010).

    Article  CAS  Google Scholar 

  33. O'Riordan, K. & Lee, J. C. Staphylococcus aureus capsular polysaccharides. Clin. Microbiol. Rev. 17, 218–234 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Foster, T. J. Colonization and infection of the human host by staphylococci: adhesion, survival and immune evasion. Vet. Dermatol. 20, 456–470 (2009).

    Article  PubMed  Google Scholar 

  35. Das, D. & Bishayi, B. Staphylococcal catalase protects intracellularly survived bacteria by destroying H2O2 produced by the murine peritoneal macrophages. Microb. Pathog. 47, 57–67 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Olivier, A. C., Lemaire, S., Van Bambeke, F., Tulkens, P. M. & Oldfield, E. Role of rsbU and staphyloxanthin in phagocytosis and intracellular growth of Staphylococcus aureus in human macrophages and endothelial cells. J. Infect. Dis. 200, 1367–1370 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Liu, G. Y. et al. Staphylococcus aureus golden pigment impairs neutrophil killing and promotes virulence through its antioxidant activity. J. Exp. Med. 202, 209–215 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cheung, A. L., Bayer, A. S., Zhang, G., Gresham, H. & Xiong, Y. Q. Regulation of virulence determinants in vitro and in vivo in Staphylococcus aureus. FEMS Immunol. Med. Microbiol. 40, 1–9 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Cheung, A. L., Nishina, K. A., Trotonda, M. P. & Tamber, S. The SarA protein family of Staphylococcus aureus. Int. J. Biochem. Cell Biol. 40, 355–361 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Wesson, C. A. et al. Staphylococcus aureus Agr and Sar global regulators influence internalization and induction of apoptosis. Infect. Immun. 66, 5238–5243 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Shompole, S. et al. Biphasic intracellular expression of Staphylococcus aureus virulence factors and evidence for Agr-mediated diffusion sensing. Mol. Microbiol. 49, 919–927 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Heyer, G. et al. Staphylococcus aureus agr and sarA functions are required for invasive infection but not inflammatory responses in the lung. Infect. Immun. 70, 127–133 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Voyich, J. M. et al. The SaeR/S gene regulatory system is essential for innate immune evasion by Staphylococcus aureus. J. Infect. Dis. 199, 1698–1706 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Bayles, K. W. et al. Intracellular Staphylococcus aureus escapes the endosome and induces apoptosis in epithelial cells. Infect. Immun. 66, 336–342 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Lam, T. T. et al. Phagolysosomal integrity is generally maintained after Staphylococcus aureus invasion of nonprofessional phagocytes but is modulated by strain 6850. Infect. Immun. 78, 3392–3403 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Voyich, J. M. et al. Insights into mechanisms used by Staphylococcus aureus to avoid destruction by human neutrophils. J. Immunol. 175, 3907–3919 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Gresham, H. D. et al. Survival of Staphylococcus aureus inside neutrophils contributes to infection. J. Immunol. 164, 3713–3722 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Kobayashi, S. D. et al. Bacterial pathogens modulate an apoptosis differentiation program in human neutrophils. Proc. Natl Acad. Sci. USA 100, 10948–10953 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Koziel, J. et al. Phagocytosis of Staphylococcus aureus by macrophages exerts cytoprotective effects manifested by the upregulation of antiapoptotic factors. PLoS ONE 4, e5210 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ocana, M. G. et al. Autoregulation mechanism of human neutrophil apoptosis during bacterial infection. Mol. Immunol. 45, 2087–2096 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Craven, N. & Anderson, J. C. The location of Staphylococcus aureus in experimental chronic mastitis in the mouse and the effect on the action of sodium cloxacillin. Br. J. Exp. Pathol. 60, 453–459 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Craven, N. & Anderson, J. C. Antibiotic activity against intraleukocytic Staphylococcus aureus in vitro and in experimental mastitis in mice. Am. J. Vet. Res. 44, 709–712 (1983).

    CAS  PubMed  Google Scholar 

  53. McLoughlin, R. M. et al. CD4+ T cells and CXC chemokines modulate the pathogenesis of Staphylococcus aureus wound infections. Proc. Natl Acad. Sci. USA 103, 10408–10413 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Beam, T. R. Jr. Sequestration of staphylococci at an inaccessible focus. Lancet 2, 227–228 (1979).

    Article  PubMed  Google Scholar 

  55. Buggy, B. P., Schaberg, D. R. & Swartz, R. D. Intraleukocytic sequestration as a cause of persistent Staphylococcus aureus peritonitis in continuous ambulatory peritoneal dialysis. Am. J. Med. 76, 1035–1040 (1984).

    Article  CAS  PubMed  Google Scholar 

  56. Clement, S. et al. Evidence of an intracellular reservoir in the nasal mucosa of patients with recurrent Staphylococcus aureus rhinosinusitis. J. Infect. Dis. 192, 1023–1028 (2005).

    Article  PubMed  Google Scholar 

  57. Sachse, F., Becker, K., von Eiff, C., Metze, D. & Rudack, C. Staphylococcus aureus invades the epithelium in nasal polyposis and induces IL-6 in nasal epithelial cells in vitro. Allergy 65, 1430–1437 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Zautner, A. E. et al. Intracellular persisting Staphylococcus aureus is the major pathogen in recurrent tonsillitis. PLoS ONE 5, e9452 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Davis, J. M. & Ramakrishnan, L. The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell 136, 37–49 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Drevets, D. A. Dissemination of Listeria monocytogenes by infected phagocytes. Infect. Immun. 67, 3512–3517 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Rogers, D. E. Studies on bacteraemia, I. Mechanisms relating to the persistence of bacteraemia in rabbits following the intravenous injection of staphylococci. J. Exp. Med. 103, 713–742 (1956).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Derby, B. M. & Rogers, D. E. Studies on bacteriemia. V. The effect of simultaneous leukopenia and reticuloendothelial blockade on the early blood stream clearance of staphylococci and Escherichia coli. J. Exp. Med. 113, 1053–1066 (1961).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Velasco, E. et al. Comparative study of clinical characteristics of neutropenic and non-neutropenic adult cancer patients with bloodstream infections. Eur. J. Clin. Microbiol. Infect. Dis. 25, 1–7 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Venditti, M. et al. Staphylococcus aureus bacteremia in patients with hematologic malignancies: a retrospective case-control study. Haematologica 88, 923–930 (2003).

    PubMed  Google Scholar 

  65. Fowler, V. G. Jr et al. Persistent bacteremia due to methicillin-resistant Staphylococcus aureus infection is associated with agr dysfunction and low-level in vitro resistance to thrombin-induced platelet microbicidal protein. J. Infect. Dis. 190, 1140–1149 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Xiong, Y. Q. et al. Phenotypic and genotypic characteristics of persistent methicillin-resistant Staphylococcus aureus bacteremia in vitro and in an experimental endocarditis model. J. Infect. Dis. 199, 201–208 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Dhawan, V. K., Bayer, A. S. & Yeaman, M. R. In vitro resistance to thrombin-induced platelet microbicidal protein is associated with enhanced progression and hematogenous dissemination in experimental Staphylococcus aureus infective endocarditis. Infect. Immun. 66, 3476–3479 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Rous, P. & Jones, F. S. The protection of pathogenic microorganisms by living tissue cells. J. Exp. Med. 23, 601–612 (1916).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Magoffin, R. L. & Spink, W. W. The protection of intracellular brucella against streptomycin alone and in combination with other antibiotics. J. Lab. Clin. Med. 37, 924–930 (1951).

    CAS  PubMed  Google Scholar 

  70. Holmes, B., Quie, P. G., Windhorst, D. B., Pollara, B. & Good, R. A. Protection of phagocytized bacteria from the killing action of antibiotics. Nature 210, 1131–1132 (1966).

    Article  CAS  PubMed  Google Scholar 

  71. Van Bambeke, F., Barcia-Macay, M., Lemaire, S. & Tulkens, P. M. Cellular pharmacodynamics and pharmacokinetics of antibiotics: current views and perspectives. Curr. Opin. Drug Discov. Devel. 9, 218–230 (2006).

    CAS  PubMed  Google Scholar 

  72. Dobson, P. D. & Kell, D. B. Carrier-mediated cellular uptake of pharmaceutical drugs: an exception or the rule? Nature Rev. Drug Discov. 7, 205–220 (2008).

    Article  CAS  Google Scholar 

  73. Yancey, R. J., Sanchez, M. S. & Ford, C. W. Activity of antibiotics against Staphylococcus aureus within polymorphonuclear neutrophils. Eur. J. Clin. Microbiol. Infect. Dis. 10, 107–113 (1991).

    Article  CAS  PubMed  Google Scholar 

  74. Maurin, M. & Raoult, D. Use of aminoglycosides in treatment of infections due to intracellular bacteria. Antimicrob. Agents Chemother. 45, 2977–2986, (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Carryn, S. et al. Intracellular pharmacodynamics of antibiotics. Infect. Dis. Clin. North Am. 17, 615–634 (2003).

    Article  PubMed  Google Scholar 

  76. Lam, C. & Mathison, G. E. Effect of low intraphagolysosomal pH on antimicrobial activity of antibiotics against ingested staphylococci. J. Med. Microbiol. 16, 309–316 (1983).

    Article  CAS  PubMed  Google Scholar 

  77. Mandell, G. L. Uptake, transport, delivery, and intracellular activity of antimicrobial agents. Pharmacotherapy 25, 130S–133S (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Mandell, G. L. Interaction of intraleukocytic bacteria and antibiotics. J. Clin. Invest. 52, 1673–1679 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lam, C. & Mathison, G. E. Intraphagocytic protection of staphylococci from extracellular penicillin. J. Med. Microbiol. 15, 373–385 (1982).

    Article  CAS  PubMed  Google Scholar 

  80. Qazi, S. N., Harrison, S. E., Self, T., Williams, P. & Hill, P. J. Real-time monitoring of intracellular Staphylococcus aureus replication. J. Bacteriol. 186, 1065–1077 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Barcia-Macay, M., Seral, C., Mingeot-Leclercq, M. P., Tulkens, P. M. & Van Bambeke, F. Pharmacodynamic evaluation of the intracellular activities of antibiotics against Staphylococcus aureus in a model of THP-1 macrophages. Antimicrob. Agents Chemother. 50, 841–851 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lemaire, S. et al. Activities of ceftobiprole and other cephalosporins against extracellular and intracellular (THP-1 macrophages and keratinocytes) forms of methicillin-susceptible and methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 53, 2289–2297 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sandberg, A. et al. Intra- and extracellular activities of dicloxacillin against Staphylococcus aureus in vivo and in vitro. Antimicrob. Agents Chemother. 54, 2391–2400 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Jensen, A. G. et al. Treatment and outcome of Staphylococcus aureus bacteremia: a prospective study of 278 cases. Arch. Intern. Med. 162, 25–32 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Hughes, D. W. et al. Continuous versus intermittent infusion of oxacillin for treatment of infective endocarditis caused by methicillin-susceptible Staphylococcus aureus. Antimicrob. Agents Chemother. 53, 2014–2019 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bonventre, P. F., Hayes, R. & Imhoff, J. Autoradiographic evidence for the impermeability of mouse peritoneal macrophages to tritiated streptomycin. J. Bacteriol. 93, 445–450 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Bayer, A. S. & Murray, B. E. Initial low-dose aminoglycosides in Staphylococcus aureus bacteremia: good science, urban legend, or just plain toxic? Clin. Infect. Dis. 48, 722–724 (2009).

    Article  PubMed  Google Scholar 

  88. Baudoux, P. et al. Combined effect of pH and concentration on the activities of gentamicin and oxacillin against Staphylococcus aureus in pharmacodynamic models of extracellular and intracellular infections. J. Antimicrob. Chemother. 59, 246–253 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Mandell, G. L. & Vest, T. K. Killing of intraleukocytic Staphylococcus aureus by rifampin: in-vitro and in-vivo studies. J. Infect. Dis. 125, 486–490 (1972).

    Article  CAS  PubMed  Google Scholar 

  90. Tan, T. Q., Mason, E. O. Jr, Ou, C. N. & Kaplan, S. L. Use of intravenous rifampin in neonates with persistent staphylococcal bacteremia. Antimicrob. Agents Chemother. 37, 2401–2406 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ahmad, N. M. & Rojtman, A. D. Successful treatment of daptomycin-nonsusceptible methicillin-resistant Staphylococcus aureus bacteremia with the addition of rifampin to daptomycin. Ann. Pharmacother. 44, 918–921 (2010).

    Article  PubMed  Google Scholar 

  92. Pascual, A., Ballesta, S., Garcia, I. & Perea, E. J. Uptake and intracellular activity of linezolid in human phagocytes and nonphagocytic cells. Antimicrob. Agents Chemother. 46, 4013–4015 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Jang, H. C. et al. Salvage treatment for persistent methicillin-resistant Staphylococcus aureus bacteremia: efficacy of linezolid with or without carbapenem. Clin. Infect. Dis. 49, 395–401 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Elliott, T. S., Foweraker, J., Gould, F. K., Perry, J. D. & Sandoe, J. A. Guidelines for the antibiotic treatment of endocarditis in adults: report of the Working Party of the British Society for Antimicrobial Chemotherapy. J. Antimicrob. Chemother. 54, 971–981 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Gemmell, C. G. et al. Guidelines for the prophylaxis and treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections in the UK. J. Antimicrob. Chemother. 57, 589–608 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Mermel, L. A. et al. Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 update by the Infectious Diseases Society of America. Clin. Infect. Dis. 49, 1–45 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Deleo, F. R., Otto, M., Kreiswirth, B. N. & Chambers, H. F. Community-associated meticillin-resistant Staphylococcus aureus. Lancet 375, 1557–1568 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Gould, I. M. Clinical relevance of increasing glycopeptide MICs against Staphylococcus aureus. Int. J. Antimicrob. Agents 31 (Suppl. 2), 1–9 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Appelbaum, P. C. Reduced glycopeptide susceptibility in methicillin-resistant Staphylococcus aureus (MRSA). Int. J. Antimicrob. Agents 30, 398–408 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Tissari, P. et al. Accurate and rapid identification of bacterial species from positive blood cultures with a DNA-based microarray platform: an observational study. Lancet 375, 224–230 (2009).

    Article  CAS  PubMed  Google Scholar 

  101. Krause, R. et al. Comparison of fluorescence in situ hybridisation using peptide nucleic acid probes, Gram stain/acridine orange leukocyte cytospin and differential time to positivity methods for detection of catheter-related bloodstream infection in patients after haematopoietic stem cell transplantation. Clin. Microbiol. Infect. 16, 1591–1593 (2010).

    Article  CAS  PubMed  Google Scholar 

  102. Gordon, M. A. et al. Invasive non-typhoid salmonellae establish systemic intracellular infection in HIV-infected adults: an emerging disease pathogenesis. Clin. Infect. Dis. 50, 953–962 (2010).

    Article  CAS  PubMed  Google Scholar 

  103. British Society for Antimicrobial Chemotherapy. BSAC methods for antimicrobial susceptibility testing. Version 8 January 2009. BSAC [online] http://www.bsac.org.uk/Resources/BSAC/Version8-January2009.pdf (2009).

Download references

Acknowledgements

G.E.T. is a funded by an Intermediate Fellowship from the Wellcome Trust, UK. V.G. is partially funded by the UK University College London Hospitals NHS Foundation Trust–University College London Comprehensive Biomedical Research Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy E. Thwaites.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thwaites, G., Gant, V. Are bloodstream leukocytes Trojan Horses for the metastasis of Staphylococcus aureus?. Nat Rev Microbiol 9, 215–222 (2011). https://doi.org/10.1038/nrmicro2508

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2508

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing