Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Melanoma metastasis: new concepts and evolving paradigms

Abstract

Melanoma progression is typically depicted as a linear and stepwise process in which metastasis occurs relatively late in disease progression. Significant evidence suggests that in a subset of melanomas, progression is much more complex and less linear in nature. Epidemiologic and experimental observations in melanoma metastasis are reviewed here and are incorporated into a comprehensive model for melanoma metastasis, which takes into account the varied natural history of melanoma formation and progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Little EG, Eide MJ . Update on the current state of melanoma incidence. Dermatol Clin 2012; 30: 355–361.

    CAS  PubMed  Google Scholar 

  2. Bedrosian I, Faries MB, Guerry Dt, Elenitsas R, Schuchter L, Mick R et al. Incidence of sentinel node metastasis in patients with thin primary melanoma (< or=1 mm) with vertical growth phase. Ann Surg Oncol 2000; 7: 262–267.

    CAS  PubMed  Google Scholar 

  3. Balch CM, Houghton AN, Sober AJ, Soong SJ . Cutaneous Melanoma, 4th edn. Quality Medical Publishing, St. Louis, MO, USA, 2003.

  4. Balch CM, Gershenwald JE, Soong SJ, Thompson JF, Atkins MB, Byrd DR et al. Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol 2009; 27: 6199–6206.

    PubMed  PubMed Central  Google Scholar 

  5. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 2011; 364: 2507–2516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010; 363: 711–723.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Clark WH Jr, Elder DE, Guerry Dt, Epstein MN, Greene MH, Van Horn M . A study of tumor progression: the precursor lesions of superficial spreading and nodular melanoma. Hum Pathol 1984; 15: 1147–1165.

    PubMed  Google Scholar 

  8. Miller AJ, Mihm MC Jr . Melanoma. N Engl J Med. 2006; 355: 51–65.

    CAS  PubMed  Google Scholar 

  9. Balch CM, Urist MM, Karakousis CP, Smith TJ, Temple WJ, Drzewiecki K et al. Efficacy of 2-cm surgical margins for intermediate-thickness melanomas (1 to 4 mm). Results of a multi-institutional randomized surgical trial. Ann Surg 1993; 218: 262–267 (discussion 7–9).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Crowley NJ, Seigler HF . Late recurrence of malignant melanoma. Analysis of 168 patients. Ann Surg 1990; 212: 173–177.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Slingluff CL Jr, Dodge RK, Stanley WE, Seigler HF . The annual risk of melanoma progression. Implications for the concept of cure. Cancer 1992; 70: 1917–1927.

    PubMed  Google Scholar 

  12. Pierard GE, Pierard-Franchimont C, Reginster MA, Quatresooz P . Smouldering malignant melanoma and metastatic dormancy: an update and review. Dermatol Res Pract 2012; 2012: 461278.

    PubMed  Google Scholar 

  13. Koebel CM, Vermi W, Swann JB, Zerafa N, Rodig SJ, Old LJ et al. Adaptive immunity maintains occult cancer in an equilibrium state. Nature 2007; 450: 903–907.

    CAS  PubMed  Google Scholar 

  14. Eyles J, Puaux AL, Wang X, Toh B, Prakash C, Hong M et al. Tumor cells disseminate early, but immunosurveillance limits metastatic outgrowth, in a mouse model of melanoma. J Clin Invest 2010; 120: 2030–2039.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Folkman J . Role of angiogenesis in tumor growth and metastasis. Semin Oncol 2002; 29 (6 Suppl 16): 15–18.

    CAS  PubMed  Google Scholar 

  16. Ossowski L, Aguirre-Ghiso JA . Dormancy of metastatic melanoma. Pigment Cell Melanoma Res 2010; 23: 41–56.

    PubMed  Google Scholar 

  17. Bissell MJ, Hines WC . Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat Med 2011; 17: 320–329.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Izraely S, Sagi-Assif O, Klein A, Meshel T, Tsarfaty G, Pasmanik-Chor M et al. The metastatic microenvironment: brain-residing melanoma metastasis and dormant micrometastasis. Int J Cancer 2012; 131: 1071–1082.

    CAS  PubMed  Google Scholar 

  19. Paget S . The distribution of secondary growths in cancer of the breast. Lancet 1889; 133: 571–573.

    Google Scholar 

  20. Bakalian S, Marshall JC, Logan P, Faingold D, Maloney S, Di Cesare S et al. Molecular pathways mediating liver metastasis in patients with uveal melanoma. Clin Cancer Res 2008; 14: 951–956.

    CAS  PubMed  Google Scholar 

  21. Damsky WE, Rosenbaum LE, Bosenberg M . Decoding melanoma metastasis. Cancers 2010; 3: 126–163.

    PubMed  PubMed Central  Google Scholar 

  22. Eskelin S, Pyrhonen S, Summanen P, Hahka-Kemppinen M, Kivela T . Tumor doubling times in metastatic malignant melanoma of the uvea: tumor progression before and after treatment. Ophthalmology 2000; 107: 1443–1449.

    CAS  PubMed  Google Scholar 

  23. Husemann Y, Geigl JB, Schubert F, Musiani P, Meyer M, Burghart E et al. Systemic spread is an early step in breast cancer. Cancer Cell 2008; 13: 58–68.

    PubMed  Google Scholar 

  24. Rhim AD, Mirek ET, Aiello NM, Maitra A, Bailey JM, McAllister F et al. EMT and dissemination precede pancreatic tumor formation. Cell 2012; 148: 349–361.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Podsypanina K, Du YC, Jechlinger M, Beverly LJ, Hambardzumyan D, Varmus H . Seeding and propagation of untransformed mouse mammary cells in the lung. Science 2008; 321: 1841–1844.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Das Gupta T, Brasfield R . Metastatic melanoma: a clinicopathologic study. Cancer 1964; 17: 1323–1339.

    CAS  Google Scholar 

  27. Giuliano AE, Moseley HS, Morton DL . Clinical aspects of unknown primary melanoma. Ann Surg 1980; 191: 98–104.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Reintgen DS, McCarty KS, Woodard B, Cox E, Seigler HF . Metastatic malignant melanoma with an unknown primary. Surg Gynecol Obstet 1983; 156: 335–340.

    CAS  PubMed  Google Scholar 

  29. Bautista NC, Cohen S, Anders KH . Benign melanocytic nevus cells in axillary lymph nodes. A prospective incidence and immunohistochemical study with literature review. Am J Clin Pathol 1994; 102: 102–108.

    CAS  PubMed  Google Scholar 

  30. Carson KF, Wen DR, Li PX, Lana AM, Bailly C, Morton DL et al. Nodal nevi and cutaneous melanomas. Am J Surg Pathol 1996; 20: 834–840.

    CAS  PubMed  Google Scholar 

  31. Fisher CJ, Hill S, Millis RR . Benign lymph node inclusions mimicking metastatic carcinoma. J Clin Pathol 1994; 47: 245–247.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. McCarthy SW, Palmer AA, Bale PM, Hirst E . Naevus cells in lymph nodes. Pathology 1974; 6: 351–358.

    CAS  PubMed  Google Scholar 

  33. Taube JM, Begum S, Shi C, Eshleman JR, Westra WH . Benign nodal nevi frequently harbor the activating V600E BRAF mutation. Am J Surg Pathol 2009; 33: 568–571.

    PubMed  Google Scholar 

  34. Kumar R, Angelini S, Snellman E, Hemminki K . BRAF mutations are common somatic events in melanocytic nevi. J Invest Dermatol 2004; 122: 342–348.

    CAS  PubMed  Google Scholar 

  35. Ross AL, Sanchez MI, Grichnik JM . Nevogenesis: a benign metastatic process? ISRN Dermatol 2011; 2011: 813513.

    PubMed  PubMed Central  Google Scholar 

  36. Stoecklein NH, Klein CA . Genetic disparity between primary tumours, disseminated tumour cells, and manifest metastasis. Int J Cancer 2010; 126: 589–598.

    CAS  PubMed  Google Scholar 

  37. Klein CA . Parallel progression of primary tumours and metastases. Nat Rev Cancer 2009; 9: 302–312.

    CAS  PubMed  Google Scholar 

  38. Gartner JJ, Davis S, Wei X, Lin JC, Trivedi NS, Teer JK et al. Comparative exome sequencing of metastatic lesions provides insights into the mutational progression of melanoma. BMC Genomics 2012; 13: 505.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Turajlic S, Furney SJ, Lambros MB, Mitsopoulos C, Kozarewa I, Geyer FC et al. Whole genome sequencing of matched primary and metastatic acral melanomas. Genome Res 2012; 22: 196–207.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Pleasance ED, Cheetham RK, Stephens PJ, McBride DJ, Humphray SJ, Greenman CD et al. A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 2010; 463: 191–196.

    CAS  PubMed  Google Scholar 

  41. Valastyan S, Weinberg RA . Tumor metastasis: molecular insights and evolving paradigms. Cell 2011; 147: 275–292.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kalluri R, Weinberg RA . The basics of epithelial-mesenchymal transition. J Clin Invest 2009; 119: 1420–1428.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Tarin D, Thompson EW, Newgreen DF . The fallacy of epithelial mesenchymal transition in neoplasia. Cancer Res 2005; 65: 5996–6000 (discussion-1).

    CAS  PubMed  Google Scholar 

  44. Ernfors P . Cellular origin and developmental mechanisms during the formation of skin melanocytes. Exp Cell Res 2010; 316: 1397–1407.

    CAS  PubMed  Google Scholar 

  45. Mitra D, Fisher DE . Transcriptional regulation in melanoma. Hematol Oncol Clin North Am 2009; 23: 447–465.

    PubMed  Google Scholar 

  46. Widlund HR, Horstmann MA, Price ER, Cui J, Lessnick SL, Wu M et al. Beta-catenin-induced melanoma growth requires the downstream target Microphthalmia-associated transcription factor. J Cell Biol 2002; 158: 1079–1087.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hari L, Brault V, Kleber M, Lee HY, Ille F, Leimeroth R et al. Lineage-specific requirements of beta-catenin in neural crest development. J Cell Biol 2002; 159: 867–880.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Rabbani P, Takeo M, Chou W, Myung P, Bosenberg M, Chin L et al. Coordinated activation of Wnt in epithelial and melanocyte stem cells initiates pigmented hair regeneration. Cell 2011; 145: 941–955.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Garraway LA, Widlund HR, Rubin MA, Getz G, Berger AJ, Ramaswamy S et al. Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 2005; 436: 117–122.

    CAS  PubMed  Google Scholar 

  50. Bertolotto C, Lesueur F, Giuliano S, Strub T, de Lichy M, Bille K et al. A SUMOylation-defective MITF germline mutation predisposes to melanoma and renal carcinoma. Nature 2011; 480: 94–98.

    CAS  PubMed  Google Scholar 

  51. Yokoyama S, Woods SL, Boyle GM, Aoude LG, MacGregor S, Zismann V et al. A novel recurrent mutation in MITF predisposes to familial and sporadic melanoma. Nature 2011; 480: 99–103.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Demunter A, Libbrecht L, Degreef H, De Wolf-Peeters C, van den Oord JJ . Loss of membranous expression of beta-catenin is associated with tumor progression in cutaneous melanoma and rarely caused by exon 3 mutations. Mod Pathol 2002; 15: 454–461.

    PubMed  Google Scholar 

  53. Forbes SA, Tang G, Bindal N, Bamford S, Dawson E, Cole C et al. COSMIC (the Catalogue of Somatic Mutations in Cancer): a resource to investigate acquired mutations in human cancer. Nucleic Acids Res 2010; 38: (Database issue) D652–D657.

    CAS  PubMed  Google Scholar 

  54. Omholt K, Platz A, Ringborg U, Hansson J . Cytoplasmic and nuclear accumulation of beta-catenin is rarely caused by CTNNB1 exon 3 mutations in cutaneous malignant melanoma. Int J Cancer 2001; 92: 839–842.

    CAS  PubMed  Google Scholar 

  55. Hodis E, Watson IR, Kryukov GV, Arold ST, Imielinski M, Theurillat JP et al. A landscape of driver mutations in melanoma. Cell 2012; 150: 251–263.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Larue L, Delmas V . The WNT/Beta-catenin pathway in melanoma. Front Biosci 2006; 11: 733–742.

    CAS  PubMed  Google Scholar 

  57. Rimm DL, Caca K, Hu G, Harrison FB, Fearon ER . Frequent nuclear/cytoplasmic localization of beta-catenin without exon 3 mutations in malignant melanoma. Am J Pathol 1999; 154: 325–329.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Nazarian RM, Prieto VG, Elder DE, Duncan LM . Melanoma biomarker expression in melanocytic tumor progression: a tissue microarray study. J Cutan Pathol 2010; 37 (Suppl 1): 41–47.

    PubMed  Google Scholar 

  59. Makhzami S, Rambow F, Delmas V, Larue L . Efficient gene expression profiling of laser-microdissected melanoma metastases. Pigment Cell Melanoma Res 2012; 25: 783–791.

    CAS  PubMed  Google Scholar 

  60. Ugurel S, Houben R, Schrama D, Voigt H, Zapatka M, Schadendorf D et al. Microphthalmia-associated transcription factor gene amplification in metastatic melanoma is a prognostic marker for patient survival, but not a predictive marker for chemosensitivity and chemotherapy response. Clin Cancer Res 2007; 13: 6344–6350.

    CAS  PubMed  Google Scholar 

  61. Gradilone A, Gazzaniga P, Ribuffo D, Bottoni U, Frati L, Aglian AM et al. Prognostic significance of tyrosinase expression in sentinel lymph node biopsy for ultra-thin, thin, and thick melanomas. Eur Rev Med Pharmacol Sci 2012; 16: 1367–1376.

    CAS  PubMed  Google Scholar 

  62. Journe F, Id Boufker H, Van Kempen L, Galibert MD, Wiedig M, Sales F et al. TYRP1 mRNA expression in melanoma metastases correlates with clinical outcome. Br J Cancer 2011; 105: 1726–1732.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Meyer S, Fuchs TJ, Bosserhoff AK, Hofstadter F, Pauer A, Roth V et al. A seven-marker signature and clinical outcome in malignant melanoma: a large-scale tissue-microarray study with two independent patient cohorts. PLoS One 2012; 7: e38222.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Gould Rothberg BE, Berger AJ, Molinaro AM, Subtil A, Krauthammer MO, Camp RL et al. Melanoma prognostic model using tissue microarrays and genetic algorithms. J Clin Oncol 2009; 27: 5772–5780.

    PubMed  PubMed Central  Google Scholar 

  65. Kageshita T, Hamby CV, Ishihara T, Matsumoto K, Saida T, Ono T . Loss of beta-catenin expression associated with disease progression in malignant melanoma. Br J Dermatol 2001; 145: 210–216.

    CAS  PubMed  Google Scholar 

  66. Kielhorn E, Provost E, Olsen D, D’Aquila TG, Smith BL, Camp RL et al. Tissue microarray-based analysis shows phospho-beta-catenin expression in malignant melanoma is associated with poor outcome. Int J Cancer 2003; 103: 652–656.

    CAS  PubMed  Google Scholar 

  67. Tucci MG, Lucarini G, Brancorsini D, Zizzi A, Pugnaloni A, Giacchetti A et al. Involvement of E-cadherin, beta-catenin, Cdc42 and CXCR4 in the progression and prognosis of cutaneous melanoma. Br J Dermatol 2007; 157: 1212–1216.

    CAS  PubMed  Google Scholar 

  68. Webster MR, Weeraratna AT . A Wnt-er migration: the confusing role of beta-catenin in melanoma metastasis. Sci Signal 2013; 6: pe11.

    PubMed  Google Scholar 

  69. McGill GG, Haq R, Nishimura EK, Fisher DE . c-Met expression is regulated by Mitf in the melanocyte lineage. J Biol Chem 2006; 281: 10365–10373.

    CAS  PubMed  Google Scholar 

  70. Seong I, Min HJ, Lee JH, Yeo CY, Kang DM, Oh ES et al. Sox10 controls migration of B16F10 melanoma cells through multiple regulatory target genes. PLoS One 2012; 7: e31477.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Arozarena I, Bischof H, Gilby D, Belloni B, Dummer R, Wellbrock C . In melanoma, beta-catenin is a suppressor of invasion. Oncogene 2011; 30: 4531–4543.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Carreira S, Goodall J, Denat L, Rodriguez M, Nuciforo P, Hoek KS et al. Mitf regulation of Dia1 controls melanoma proliferation and invasiveness. Genes Dev 2006; 20: 3426–3439.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Javelaud D, Alexaki VI, Pierrat MJ, Hoek KS, Dennler S, Van Kempen L et al. GLI2 and M-MITF transcription factors control exclusive gene expression programs and inversely regulate invasion in human melanoma cells. Pigment Cell Melanoma Res 2011; 24: 932–943.

    CAS  PubMed  Google Scholar 

  74. Cheli Y, Giuliano S, Fenouille N, Allegra M, Hofman V, Hofman P et al. Hypoxia and MITF control metastatic behaviour in mouse and human melanoma cells. Oncogene 2012; 31: 2461–2470.

    CAS  PubMed  Google Scholar 

  75. Yang PT, Anastas JN, Toroni RA, Shinohara MM, Goodson JM, Bosserhoff AK et al. WLS inhibits melanoma cell proliferation through the beta-catenin signalling pathway and induces spontaneous metastasis. EMBO Mol Med 2012; 4: 1294–1307.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Takahashi Y, Nishikawa M, Suehara T, Takiguchi N, Takakura Y . Gene silencing of beta-catenin in melanoma cells retards their growth but promotes the formation of pulmonary metastasis in mice. Int J Cancer 2008; 123: 2315–2320.

    CAS  PubMed  Google Scholar 

  77. Sinnberg T, Menzel M, Kaesler S, Biedermann T, Sauer B, Nahnsen S et al. Suppression of casein kinase 1alpha in melanoma cells induces a switch in beta-catenin signaling to promote metastasis. Cancer Res 2010; 70: 6999–7009.

    CAS  PubMed  Google Scholar 

  78. Grossmann AH, Yoo JH, Clancy J, Sorensen LK, Sedgwick A, Tong Z et al. The small GTPase ARF6 stimulates beta-catenin transcriptional activity during WNT5A-mediated melanoma invasion and metastasis. Sci Signal 2013; 6: ra14.

    PubMed  PubMed Central  Google Scholar 

  79. Yajima I, Kumasaka MY, Thang ND, Goto Y, Takeda K, Iida M et al. Molecular network associated with MITF in Skin Melanoma development and progression. J Skin Cancer 2011; 2011: 730170.

    PubMed  PubMed Central  Google Scholar 

  80. Pinner S, Jordan P, Sharrock K, Bazley L, Collinson L, Marais R et al. Intravital imaging reveals transient changes in pigment production and Brn2 expression during metastatic melanoma dissemination. Cancer Res 2009; 69: 7969–7977.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Eichhoff OM, Weeraratna A, Zipser MC, Denat L, Widmer DS, Xu M et al. Differential LEF1 and TCF4 expression is involved in melanoma cell phenotype switching. Pigment Cell Melanoma Res 2011; 24: 631–642.

    CAS  PubMed  Google Scholar 

  82. Hoek KS, Goding CR . Cancer stem cells versus phenotype-switching in melanoma. Pigment Cell Melanoma Res 2010; 23: 746–759.

    CAS  PubMed  Google Scholar 

  83. Tsai JH, Donaher JL, Murphy DA, Chau S, Yang J . Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell 2012; 22: 725–736.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Ocana OH, Corcoles R, Fabra A, Moreno-Bueno G, Acloque H, Vega S et al. Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer prrx1. Cancer Cell 2012; 22: 709–724.

    CAS  PubMed  Google Scholar 

  85. Gallagher SJ, Rambow F, Kumasaka M, Champeval D, Bellacosa A, Delmas V et al. Beta-catenin inhibits melanocyte migration but induces melanoma metastasis. Oncogene 2013; 32: 2230–2238.

    CAS  PubMed  Google Scholar 

  86. Damsky WE, Curley DP, Santhanakrishnan M, Rosenbaum LE, Platt JT, Gould Rothberg BE et al. Beta-catenin signaling controls metastasis in Braf-activated Pten-deficient melanomas. Cancer Cell 2011; 20: 741–754.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Yaguchi T, Goto Y, Kido K, Mochimaru H, Sakurai T, Tsukamoto N et al. Immune suppression and resistance mediated by constitutive activation of Wnt/beta-catenin signaling in human melanoma cells. J Immunol 2012; 189: 2110–2117.

    CAS  PubMed  Google Scholar 

  88. Wirtz D, Konstantopoulos K, Searson PC . The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat Rev Cancer 2011; 11: 512–522.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Parlakian A, Gomaa I, Solly S, Arandel L, Mahale A, Born G et al. Skeletal muscle phenotypically converts and selectively inhibits metastatic cells in mice. PLoS One 2010; 5: e9299.

    PubMed  PubMed Central  Google Scholar 

  90. Hendrix MJ, Seftor EA, Seftor RE, Kasemeier-Kulesa J, Kulesa PM, Postovit LM . Reprogramming metastatic tumour cells with embryonic microenvironments. Nat Rev Cancer 2007; 7: 246–255.

    CAS  PubMed  Google Scholar 

  91. Luzzi KJ, MacDonald IC, Schmidt EE, Kerkvliet N, Morris VL, Chambers AF et al. Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am J Pathol 1998; 153: 865–873.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Bhowmick NA, Chytil A, Plieth D, Gorska AE, Dumont N, Shappell S et al. TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 2004; 303: 848–851.

    CAS  PubMed  Google Scholar 

  93. Carmi Y, Rinott G, Dotan S, Elkabets M, Rider P, Voronov E et al. Microenvironment-derived IL-1 and IL-17 interact in the control of lung metastasis. J Immunol 2011; 186: 3462–3471.

    CAS  PubMed  Google Scholar 

  94. Qian BZ, Pollard JW . Macrophage diversity enhances tumor progression and metastasis. Cell 2010; 141: 39–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Jensen TO, Schmidt H, Moller HJ, Hoyer M, Maniecki MB, Sjoegren P et al. Macrophage markers in serum and tumor have prognostic impact in American Joint Committee on Cancer stage I/II melanoma. J Clin Oncol 2009; 27: 3330–3337.

    PubMed  Google Scholar 

  96. Melnikova VO, Bar-Eli M . Inflammation and melanoma metastasis. Pigment Cell Melanoma Res 2009; 22: 257–267.

    CAS  PubMed  Google Scholar 

  97. Peinado H, Lavotshkin S, Lyden D . The secreted factors responsible for pre-metastatic niche formation: old sayings and new thoughts. Semin Cancer Biol 2011; 21: 139–146.

    CAS  PubMed  Google Scholar 

  98. Hood JL, San RS, Wickline SA . Exosomes released by melanoma cells prepare sentinel lymph nodes for tumor metastasis. Cancer Res 2011; 71: 3792–3801.

    CAS  PubMed  Google Scholar 

  99. Peinado H, Aleckovic M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 2012; 18: 883–891.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. McAllister SS, Gifford AM, Greiner AL, Kelleher SP, Saelzler MP, Ince TA et al. Systemic endocrine instigation of indolent tumor growth requires osteopontin. Cell 2008; 133: 994–1005.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Demicheli R, Retsky MW, Hrushesky WJ, Baum M . Tumor dormancy and surgery-driven interruption of dormancy in breast cancer: learning from failures. Nat Clin Pract Oncol 2007; 4: 699–710.

    PubMed  Google Scholar 

  102. Rothwell PM, Wilson M, Price JF, Belch JF, Meade TW, Mehta Z . Effect of daily aspirin on risk of cancer metastasis: a study of incident cancers during randomised controlled trials. Lancet 2012; 379: 1591–1601.

    CAS  PubMed  Google Scholar 

  103. Algra AM, Rothwell PM . Effects of regular aspirin on long-term cancer incidence and metastasis: a systematic comparison of evidence from observational studies versus randomised trials. Lancet Oncol 2012; 13: 518–527.

    CAS  PubMed  Google Scholar 

  104. Karnezis T, Shayan R, Caesar C, Roufail S, Harris NC, Ardipradja K et al. VEGF-D promotes tumor metastasis by regulating prostaglandins produced by the collecting lymphatic endothelium. Cancer Cell 2012; 21: 181–195.

    CAS  PubMed  Google Scholar 

  105. Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ . Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med 2003; 348: 1625–1638.

    PubMed  Google Scholar 

  106. Haakinson DJ, Leeds SG, Dueck AC, Gray RJ, Wasif N, Stucky CC et al. The impact of obesity on breast cancer: a retrospective review. Ann Surg Oncol 2012; 19: 3012–3018.

    PubMed  Google Scholar 

  107. Wu C, Aronson WJ, Terris MK, Presti JC Jr, Kane CJ, Amling CL et al. Diabetes predicts metastasis after radical prostatectomy in obese men: results from the SEARCH database. BJU Int (e-pub ahead of print 10 January 2013; doi: 10.1111/j.1464-410X.2012.11687.x).

    PubMed  Google Scholar 

  108. Nagel G, Bjorge T, Stocks T, Manjer J, Hallmans G, Edlinger M et al. Metabolic risk factors and skin cancer in the Metabolic Syndrome and Cancer Project (Me-Can). Br J Dermatol 2012; 167: 59–67.

    CAS  PubMed  Google Scholar 

  109. Njauw CN, Kim I, Piris A, Gabree M, Taylor M, Lane AM et al. Germline BAP1 inactivation is preferentially associated with metastatic ocular melanoma and cutaneous-ocular melanoma families. PLoS One 2012; 7: e35295.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Crawford NP, Ziogas A, Peel DJ, Hess J, Anton-Culver H, Hunter KW . Germline polymorphisms in SIPA1 are associated with metastasis and other indicators of poor prognosis in breast cancer. Breast Cancer Res 2006; 8: R16.

    PubMed  PubMed Central  Google Scholar 

  111. Faraji F, Pang Y, Walker RC, Nieves Borges R, Yang L, Hunter KW . Cadm1 is a metastasis susceptibility gene that suppresses metastasis by modifying tumor interaction with the cell-mediated immunity. PLoS Genet 2012; 8: e1002926.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Mervic L . Time course and pattern of metastasis of cutaneous melanoma differ between men and women. PLoS One 2012; 7: e32955.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Lopez-Bergami P . The role of mitogen- and stress-activated protein kinase pathways in melanoma. Pigment Cell Melanoma Res 2011; 24: 902–921.

    CAS  PubMed  Google Scholar 

  114. Bernards R, Weinberg RA . A progression puzzle. Nature 2002; 418: 823.

    CAS  PubMed  Google Scholar 

  115. Frahm SO, Schubert C, Parwaresch R, Rudolph P . High proliferative activity may predict early metastasis of thin melanomas. Hum Pathol 2001; 32: 1376–1381.

    CAS  PubMed  Google Scholar 

  116. Boni R, Doguoglu A, Burg G, Muller B, Dummer R . MIB-1 immunoreactivity correlates with metastatic dissemination in primary thick cutaneous melanoma. J Am Acad Dermatol 1996; 35 (3 Pt 1): 416–418.

    CAS  PubMed  Google Scholar 

  117. Colombino M, Capone M, Lissia A, Cossu A, Rubino C, De Giorgi V et al. BRAF/NRAS mutation frequencies among primary tumors and metastases in patients with melanoma. J Clin Oncol 2012; 30: 2522–2529.

    PubMed  Google Scholar 

  118. Rozenberg GI, Monahan KB, Torrice C, Bear JE, Sharpless NE . Metastasis in an orthotopic murine model of melanoma is independent of RAS/RAF mutation. Melanoma Res 2010; 20: 361–371.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Jakob JA, Bassett RL Jr, Ng CS, Curry JL, Joseph RW, Alvarado GC et al. NRAS mutation status is an independent prognostic factor in metastatic melanoma. Cancer 2012; 118: 4014–4023.

    CAS  PubMed  Google Scholar 

  120. El-Osta H, Falchook G, Tsimberidou A, Hong D, Naing A, Kim K et al. BRAF mutations in advanced cancers: clinical characteristics and outcomes. PLoS One 2011; 6: e25806.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Chin L, Pomerantz J, Polsky D, Jacobson M, Cohen C, Cordon-Cardo C et al. Cooperative effects of INK4a and ras in melanoma susceptibility in vivo. Genes Dev 1997; 11: 2822–2834.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Ackermann J, Frutschi M, Kaloulis K, McKee T, Trumpp A, Beermann F . Metastasizing melanoma formation caused by expression of activated N-RasQ61K on an INK4a-deficient background. Cancer Res 2005; 65: 4005–4011.

    CAS  PubMed  Google Scholar 

  123. Arozarena I, Sanchez-Laorden B, Packer L, Hidalgo-Carcedo C, Hayward R, Viros A et al. Oncogenic BRAF induces melanoma cell invasion by downregulating the cGMP-specific phosphodiesterase PDE5A. Cancer Cell 2011; 19: 45–57.

    CAS  PubMed  Google Scholar 

  124. Ferguson J, Arozarena I, Ehrhardt M, Wellbrock C . Combination of MEK and SRC inhibition suppresses melanoma cell growth and invasion. Oncogene 2013; 32: 86–96.

    CAS  PubMed  Google Scholar 

  125. Tsao H, Zhang X, Benoit E, Haluska FG . Identification of PTEN/MMAC1 alterations in uncultured melanomas and melanoma cell lines. Oncogene 1998; 16: 3397–3402.

    CAS  PubMed  Google Scholar 

  126. Zhou XP, Gimm O, Hampel H, Niemann T, Walker MJ, Eng C . Epigenetic PTEN silencing in malignant melanomas without PTEN mutation. Am J Pathol 2000; 157: 1123–1128.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Ko JM, Velez NF, Tsao H . Pathways to melanoma. Semin Cutan Med Surg 2010; 29: 210–217.

    CAS  PubMed  Google Scholar 

  128. Stahl JM, Sharma A, Cheung M, Zimmerman M, Cheng JQ, Bosenberg MW et al. Deregulated Akt3 activity promotes development of malignant melanoma. Cancer Res 2004; 64: 7002–7010.

    CAS  PubMed  Google Scholar 

  129. Madhunapantula SV, Robertson GP . The PTEN-AKT3 signaling cascade as a therapeutic target in melanoma. Pigment Cell Melanoma Res 2009; 22: 400–419.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Dankort D, Curley DP, Cartlidge RA, Nelson B, Karnezis AN, Damsky WE Jr et al. Braf(V600E) cooperates with Pten loss to induce metastatic melanoma. Nat Genet 2009; 41: 544–552.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Nogueira C, Kim KH, Sung H, Paraiso KH, Dannenberg JH, Bosenberg M et al. Cooperative interactions of PTEN deficiency and RAS activation in melanoma metastasis. Oncogene 2010; 29: 6222–6232.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Krauthammer M, Kong Y, Ha BH, Evans P, Bacchiocchi A, McCusker JP et al. Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nat Genet 2012; 44: 1006–1014.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Prickett TD, Wei X, Cardenas-Navia I, Teer JK, Lin JC, Walia V et al. Exon capture analysis of G protein-coupled receptors identifies activating mutations in GRM3 in melanoma. Nat Genet 2011; 43: 1119–1126.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Huang FW, Hodis E, Xu MJ, Kryukov GV, Chin L, Garraway LA . Highly recurrent TERT promoter mutations in human melanoma. Science 2013; 339: 957–959.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Lindsay CR, Lawn S, Campbell AD, Faller WJ, Rambow F, Mort RL et al. P-Rex1 is required for efficient melanoblast migration and melanoma metastasis. Nat Commun 2011; 2: 555.

    PubMed  Google Scholar 

  136. Harbour JW, Onken MD, Roberson ED, Duan S, Cao L, Worley LA et al. Frequent mutation of BAP1 in metastasizing uveal melanomas. Science 2010; 330: 1410–1413.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Kabbarah O, Nogueira C, Feng B, Nazarian RM, Bosenberg M, Wu M et al. Integrative genome comparison of primary and metastatic melanomas. PLoS One 2010; 5: e10770.

    PubMed  PubMed Central  Google Scholar 

  138. Valsesia A, Rimoldi D, Martinet D, Ibberson M, Benaglio P, Quadroni M et al. Network-guided analysis of genes with altered somatic copy number and gene expression reveals pathways commonly perturbed in metastatic melanoma. PLoS One 2011; 6: e18369.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Scott KL, Nogueira C, Heffernan TP, van Doorn R, Dhakal S, Hanna JA et al. Proinvasion metastasis drivers in early-stage melanoma are oncogenes. Cancer Cell 2011; 20: 92–103.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Timar J, Gyorffy B, Raso E . Gene signature of the metastatic potential of cutaneous melanoma: too much for too little? Clin Exp Metastasis 2010; 27: 371–387.

    CAS  PubMed  Google Scholar 

  141. Kim M, Gans JD, Nogueira C, Wang A, Paik JH, Feng B et al. Comparative oncogenomics identifies NEDD9 as a melanoma metastasis gene. Cell 2006; 125: 1269–1281.

    CAS  PubMed  Google Scholar 

  142. Clark EA, Golub TR, Lander ES, Hynes RO . Genomic analysis of metastasis reveals an essential role for RhoC. Nature 2000; 406: 532–535.

    CAS  PubMed  Google Scholar 

  143. Das SK, Bhutia SK, Kegelman TP, Peachy L, Oyesanya RA, Dasgupta S et al. MDA-9/syntenin: a positive gatekeeper of melanoma metastasis. Front Biosci 2012; 17: 1–15.

    CAS  Google Scholar 

  144. Jarrett SG, Novak M, Harris N, Merlino G, Slominski A, Kaetzel DM . NM23 deficiency promotes metastasis in a UV radiation-induced mouse model of human melanoma. Clin Exp Metastasis 2013; 30: 25–36.

    CAS  PubMed  Google Scholar 

  145. Riker AI, Samant RS . Location, location, location: The BRMS1 protein and melanoma progression. BMC Med 2012; 10: 19.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Orgaz JL, Sanz-Moreno V . Emerging molecular targets in melanoma invasion and metastasis. Pigment Cell Melanoma Res 2013; 26: 39–57.

    CAS  PubMed  Google Scholar 

  147. Butler TP, Gullino PM . Quantitation of cell shedding into efferent blood of mammary adenocarcinoma. Cancer Res 1975; 35: 512–516.

    CAS  PubMed  Google Scholar 

  148. Fidler IJ . Metastasis: guantitative analysis of distribution and fate of tumor embolilabeled with 125 I-5-iodo-2′-deoxyuridine. J Natl Cancer Inst 1970; 45: 773–782.

    CAS  PubMed  Google Scholar 

  149. Ireland A, Millward M, Pearce R, Lee M, Ziman M . Genetic factors in metastatic progression of cutaneous melanoma: the future role of circulating melanoma cells in prognosis and management. Clin Exp Metastasis 2011; 28: 327–336.

    CAS  PubMed  Google Scholar 

  150. De Giorgi V, Pinzani P, Salvianti F, Grazzini M, Orlando C, Lotti T et al. Circulating benign nevus cells detected by ISET technique: warning for melanoma molecular diagnosis. Arch Dermatol 2010; 146: 1120–1124.

    PubMed  Google Scholar 

  151. Clawson GA, Kimchi E, Patrick SD, Xin P, Harouaka R, Zheng S et al. Circulating tumor cells in melanoma patients. PLoS One 2012; 7: e41052.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Kienast Y, von Baumgarten L, Fuhrmann M, Klinkert WE, Goldbrunner R, Herms J et al. Real-time imaging reveals the single steps of brain metastasis formation. Nat Med 2010; 16: 116–122.

    CAS  PubMed  Google Scholar 

  153. Chambers AF, Groom AC, MacDonald IC . Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2002; 2: 563–572.

    CAS  PubMed  Google Scholar 

  154. Lee YT . Malignant melanoma: pattern of metastasis. CA Cancer J Clin 1980; 30: 137–142.

    CAS  PubMed  Google Scholar 

  155. Patel JK, Didolkar MS, Pickren JW, Moore RH . Metastatic pattern of malignant melanoma. A study of 216 autopsy cases. Am J Surg 1978; 135: 807–810.

    CAS  PubMed  Google Scholar 

  156. Schon CA, Gorg C, Ramaswamy A, Barth PJ . Splenic metastases in a large unselected autopsy series. Pathol Res Pract 2006; 202: 351–356.

    PubMed  Google Scholar 

  157. Borthwick NJ, Thombs J, Polak M, Gabriel FG, Hungerford JL, Damato B et al. The biology of micrometastases from uveal melanoma. J Clin Pathol 2011; 64: 666–671.

    PubMed  Google Scholar 

  158. van Akkooi AC, Nowecki ZI, Voit C, Schafer-Hesterberg G, Michej W, de Wilt JH et al. Sentinel node tumor burden according to the Rotterdam criteria is the most important prognostic factor for survival in melanoma patients: a multicenter study in 388 patients with positive sentinel nodes. Ann Surg 2008; 248: 949–955.

    PubMed  Google Scholar 

  159. van der Ploeg AP, van Akkooi AC, Schmitz PI, Koljenovic S, Verhoef C, Eggermont AM . EORTC Melanoma Group sentinel node protocol identifies high rate of submicrometastases according to Rotterdam Criteria. Eur J Cancer 2010; 46: 2414–2421.

    PubMed  Google Scholar 

  160. van der Ploeg AP, van Akkooi AC, Rutkowski P, Nowecki ZI, Michej W, Mitra A et al. Prognosis in patients with sentinel node-positive melanoma is accurately defined by the combined Rotterdam tumor load and Dewar topography criteria. J Clin Oncol 2011; 29: 2206–2214.

    PubMed  Google Scholar 

  161. Kingham TP, Panageas KS, Ariyan CE, Busam KJ, Brady MS, Coit DG . Outcome of patients with a positive sentinel lymph node who do not undergo completion lymphadenectomy. Ann Surg Oncol 2010; 17: 514–520.

    PubMed  PubMed Central  Google Scholar 

  162. Wong SL, Morton DL, Thompson JF, Gershenwald JE, Leong SP, Reintgen DS et al. Melanoma patients with positive sentinel nodes who did not undergo completion lymphadenectomy: a multi-institutional study. Ann Surg Oncol 2006; 13: 809–816.

    PubMed  Google Scholar 

  163. Coleman RE . Adjuvant bisphosphonates in breast cancer: are we witnessing the emergence of a new therapeutic strategy? Eur J Cancer 2009; 45: 1909–1915.

    CAS  PubMed  Google Scholar 

  164. Gnant M, Mlineritsch B, Schippinger W, Luschin-Ebengreuth G, Postlberger S, Menzel C et al. Endocrine therapy plus zoledronic acid in premenopausal breast cancer. N Engl J Med 2009; 360: 679–691.

    CAS  PubMed  Google Scholar 

  165. Bos PD, Nguyen DX, Massague J . Modeling metastasis in the mouse. Curr Opin Pharmacol 2010; 10: 571–577.

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Sharpless NE, Depinho RA . The mighty mouse: genetically engineered mouse models in cancer drug development. Nat Rev Drug Discov 2006; 5: 741–754.

    CAS  PubMed  Google Scholar 

  167. Damsky WE Jr, Bosenberg M . Mouse melanoma models and cell lines. Pigment Cell Melanoma Res 2010; 23: 853–859.

    CAS  PubMed  Google Scholar 

  168. Walker GJ, Soyer HP, Terzian T, Box NF . Modelling melanoma in mice. Pigment Cell Melanoma Res 2011; 24: 1158–1176.

    CAS  PubMed  Google Scholar 

  169. Liu W, Monahan KB, Pfefferle AD, Shimamura T, Sorrentino J, Chan KT et al. LKB1/STK11 inactivation leads to expansion of a prometastatic tumor subpopulation in melanoma. Cancer Cell 2012; 21: 751–764.

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Pittet MJ, Weissleder R . Intravital imaging. Cell 2011; 147: 983–991.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to W E Damsky or M Bosenberg.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Damsky, W., Theodosakis, N. & Bosenberg, M. Melanoma metastasis: new concepts and evolving paradigms. Oncogene 33, 2413–2422 (2014). https://doi.org/10.1038/onc.2013.194

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.194

Keywords

This article is cited by

Search

Quick links