Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Converging pathways in neurodegeneration, from genetics to mechanisms

Abstract

Neurodegenerative diseases cause progressive loss of cognitive and/or motor function and pose major challenges for societies with rapidly aging populations. Human genetics studies have shown that disease-causing rare mutations and risk-associated common alleles overlap in different neurodegenerative disorders. Here we review the intricate genotype–phenotype relationships and common cellular pathways emerging from recent genetic and mechanistic studies. Shared pathological mechanisms include defective protein quality-control and degradation pathways, dysfunctional mitochondrial homeostasis, stress granules, and maladaptive innate immune responses. Research efforts have started to bear fruit, as shown by recent treatment successes and an encouraging therapeutic outlook.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Primary brain regions affected in major neurodegenerative diseases.
Fig. 2: Common neuronal pathways altered in multiple neurodegenerative diseases, including protein quality control, the autophagy–lysosome pathway, mitochondria homeostasis, protein seeding and propagation of stress granules, and synaptic toxicity and network dysfunction.
Fig. 3: Innate immune pathways in neurodegenerative diseases.

Similar content being viewed by others

References

  1. Prince, M. et al. The global prevalence of dementia: a systematic review and metaanalysis. Alzheimers Dement. 9, 63–75.e2 (2013).

    PubMed  Google Scholar 

  2. Hurd, M. D., Martorell, P., Delavande, A., Mullen, K. J. & Langa, K. M. Monetary costs of dementia in the United States. N. Engl. J. Med. 368, 1326–1334 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Taylor, J. P., Hardy, J. & Fischbeck, K. H. Toxic proteins in neurodegenerative disease. Science 296, 1991–1995 (2002).

    CAS  PubMed  Google Scholar 

  4. Goedert, M., Eisenberg, D. S. & Crowther, R. A. Propagation of tau aggregates and neurodegeneration. Annu. Rev. Neurosci. 40, 189–210 (2017).

    CAS  PubMed  Google Scholar 

  5. Selkoe, D. J. & Hardy, J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med. 8, 595–608 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Hardy, J. & Orr, H. The genetics of neurodegenerative diseases. J. Neurochem. 97, 1690–1699 10 (2006).

    CAS  PubMed  Google Scholar 

  7. DeJesus-Hernandez, M. et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72, 245–256 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Renton, A. E. et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72, 257–268 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Weishaupt, J. H., Hyman, T. & Dikic, I. Common molecular pathways in amyotrophic lateral sclerosis and frontotemporal dementia. Trends Mol. Med. 22, 769–783 (2016).

    CAS  PubMed  Google Scholar 

  10. Park, H., Kim, H. J. & Jeon, B. S. Parkinsonism in spinocerebellar ataxia. BioMed Res. Int. 2015, 125273 (2015).

    PubMed  PubMed Central  Google Scholar 

  11. Schöls, L. et al. No Parkinsonism in SCA2 and SCA3 despite severe neurodegeneration of the dopaminergic substantia nigra. Brain 138, 3316–3326 (2015).

    PubMed  Google Scholar 

  12. Zimprich, A. et al. Mutations in LRRK2 cause autosomal-dominant Parkinsonism with pleomorphic pathology. Neuron 44, 601–607 10 (2004).

    CAS  PubMed  Google Scholar 

  13. Paisán-Ruíz, C. et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron 44, 595–600 (2004).

    PubMed  Google Scholar 

  14. Chang, D. et al. A meta-analysis of genome-wide association studies identifies 17 new Parkinson’s disease risk loci. Nat. Genet. 49, 1511–1516 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Scholz, S. W. et al. SNCA variants are associated with increased risk for multiple system atrophy. Ann. Neurol. 65, 610–614 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Bras, J. et al. Genetic analysis implicates APOE, SNCA and suggests lysosomal dysfunction in the etiology of dementia with Lewy bodies. Hum. Mol. Genet. 23, 6139–6146 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Guerreiro, R. et al. Investigating the genetic architecture of dementia with Lewy bodies: a two-stage genome-wide association study. Lancet Neurol. 17, 64–74 (2018).

    PubMed  Google Scholar 

  18. Huang, Y. & Mahley, R. W. Apolipoprotein E: structure and function in lipid metabolism, neurobiology, and Alzheimer’s diseases. Neurobiol. Dis. 72(Pt A), 3–12 (2014).

    CAS  PubMed  Google Scholar 

  19. Höglinger, G. U. et al. Identification of common variants influencing risk of the tauopathy progressive supranuclear palsy. Nat. Genet. 43, 699–705 (2011).

    PubMed  PubMed Central  Google Scholar 

  20. Kouri, N. et al. Genome-wide association study of corticobasal degeneration identifies risk variants shared with progressive supranuclear palsy. Nat. Commun. 6, 7247 (2015).

    CAS  PubMed  Google Scholar 

  21. Simón-Sánchez, J. et al. Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat. Genet. 41, 1308–1312 (2009).

    PubMed  PubMed Central  Google Scholar 

  22. Jones, L. et al. Genetic evidence implicates the immune system and cholesterol metabolism in the aetiology of Alzheimer’s disease. PLoS One 5, e13950 (2010).

    PubMed  PubMed Central  Google Scholar 

  23. Zhang, B. et al. Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer’s disease. Cell 153, 707–720 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Holmans, P. et al. A pathway-based analysis provides additional support for an immune-related genetic susceptibility to Parkinson’s disease. Hum. Mol. Genet. 22, 1039–1049 (2013).

    CAS  PubMed  Google Scholar 

  25. Moskvina, V. et al. Analysis of genome-wide association studies of Alzheimer disease and of Parkinson disease to determine if these 2 diseases share a common genetic risk. JAMA Neurol. 70, 1268–1276 (2013).

    PubMed  PubMed Central  Google Scholar 

  26. Genetic Modifiers of Huntington’s Disease (GeM-HD) Consortium. Identification of genetic factors that modify clinical onset of Huntington’s disease. Cell 162, 516–526 (2015).

    Google Scholar 

  27. Jiang, B., Glover, J. N. & Weinfeld, M. Neurological disorders associated with DNA strand-break processing enzymes. Mech. Ageing Dev. 161(Pt A), 130–140 (2017).

    CAS  PubMed  Google Scholar 

  28. Kalia, L. V. et al. Clinical correlations with Lewy body pathology in LRRK2-related Parkinson disease. JAMA Neurol. 72, 100–105 (2015).

    PubMed  PubMed Central  Google Scholar 

  29. Healy, D. G. et al. Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: a case-control study. Lancet Neurol. 7, 583–590 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Sidransky, E. et al. Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. N. Engl. J. Med. 361, 1651–1661 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Lwin, A., Orvisky, E., Goker-Alpan, O., LaMarca, M. E. & Sidransky, E. Glucocerebrosidase mutations in subjects with Parkinsonism. Mol. Genet. Metab. 81, 70–73 (2004).

    CAS  PubMed  Google Scholar 

  32. Robak, L. A. et al. Excessive burden of lysosomal storage disorder gene variants in Parkinson’s disease. Brain 140, 3191–3203 (2017).

    PubMed  PubMed Central  Google Scholar 

  33. Boeynaems, S., Bogaert, E., Van Damme, P. & Van Den Bosch, L. Inside out: the role of nucleocytoplasmic transport in ALS and FTLD. Acta Neuropathol. 132, 159–173 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Gao, F. B., Richter, J. D. & Cleveland, D. W. Rethinking unconventional translation in neurodegeneration. Cell 171, 994–1000 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Lackie, R. E. et al. The Hsp70/Hsp90 chaperone machinery in neurodegenerative diseases. Front. Neurosci. 11, 254 (2017).

    PubMed  PubMed Central  Google Scholar 

  36. Lindberg, I. et al. Chaperones in neurodegeneration. J. Neurosci. 35, 13853–13859 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Shorter, J. Engineering therapeutic protein disaggregases. Mol. Biol. Cell 27, 1556–1560 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Gomez-Pastor, R. et al. Abnormal degradation of the neuronal stress-protective transcription factor HSF1 in Huntington’s disease. Nat. Commun. 8, 14405 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Spiess, C., Meyer, A. S., Reissmann, S. & Frydman, J. Mechanism of the eukaryotic chaperonin: protein folding in the chamber of secrets. Trends Cell Biol. 14, 598–604 5 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Nollen, E. A. et al. Genome-wide RNA interference screen identifies previously undescribed regulators of polyglutamine aggregation. Proc. Natl. Acad. Sci. USA 101, 6403–6408 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Sontag, E. M. et al. Exogenous delivery of chaperonin subunit fragment ApiCCT1 modulates mutant Huntingtin cellular phenotypes. Proc. Natl. Acad. Sci. USA 110, 3077–3082 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Noormohammadi, A. et al. Somatic increase of CCT8 mimics proteostasis of human pluripotent stem cells and extends C. elegans lifespan. Nat. Commun. 7, 13649 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Hara, T. et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441, 885–889 (2006).

    CAS  PubMed  Google Scholar 

  44. Komatsu, M. et al. Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration. Proc. Natl. Acad. Sci. USA. 104, 14489–14494 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Menzies, F. M. et al. Autophagy and neurodegeneration: pathogenic mechanisms and therapeutic opportunities. Neuron 93, 1015–1034 (2017).

    CAS  PubMed  Google Scholar 

  46. Ashkenazi, A. et al. Polyglutamine tracts regulate beclin 1-dependent autophagy. Nature 545, 108–111 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Cortes, C. J. et al. Polyglutamine-expanded androgen receptor interferes with TFEB to elicit autophagy defects in SBMA. Nat. Neurosci. 17, 1180–1189 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Ochaba, J. et al. Potential function for the Huntingtin protein as a scaffold for selective autophagy. Proc. Natl. Acad. Sci. USA 111, 16889–16894 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Abeliovich, A. & Gitler, A. D. Defects in trafficking bridge Parkinson’s disease pathology and genetics. Nature 539, 207–216 (2016).

    PubMed  Google Scholar 

  50. Taylor, J. P., Brown, R. H. Jr. & Cleveland, D. W. Decoding ALS: from genes to mechanism. Nature 539, 197–206 (2016).

    PubMed  PubMed Central  Google Scholar 

  51. Wang, C., Telpoukhovskaia, M. A., Bahr, B. A., Chen, X. & Gan, L. Endo-lysosomal dysfunction: a converging mechanism in neurodegenerative diseases. Curr. Opin. Neurobiol. 48, 52–58 (2018).

    CAS  PubMed  Google Scholar 

  52. Settembre, C., Fraldi, A., Medina, D. L. & Ballabio, A. Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nat. Rev. Mol. Cell Biol. 14, 283–296 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Golpich, M. et al. Mitochondrial dysfunction and biogenesis in neurodegenerative diseases: pathogenesis and treatment. CNS Neurosci. Ther. 23, 5–22 (2017).

    PubMed  Google Scholar 

  54. Dauer, W. & Przedborski, S. Parkinson’s disease: mechanisms and models. Neuron 39, 889–909 (2003).

    CAS  PubMed  Google Scholar 

  55. Beal, M. F. et al. Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid. J. Neurosci. 13, 4181–4192 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Dickey, A. S. et al. PPAR-δ is repressed in Huntington’s disease, is required for normal neuronal function and can be targeted therapeutically. Nat. Med. 22, 37–45 (2016).

    CAS  PubMed  Google Scholar 

  57. Chaturvedi, R. K. et al. Impaired PGC-1alpha function in muscle in Huntington’s disease. Hum. Mol. Genet. 18, 3048–3065 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Cui, L. et al. Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell 127, 59–69 (2006).

    CAS  PubMed  Google Scholar 

  59. Shin, J. H. et al. PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in Parkinson’s disease. Cell 144, 689–702 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Weydt, P. et al. Thermoregulatory and metabolic defects in Huntington’s disease transgenic mice implicate PGC-1alpha in Huntington’s disease neurodegeneration. Cell Metab. 4, 349–362 (2006).

    CAS  PubMed  Google Scholar 

  61. Zheng, B. et al. PGC-1α, a potential therapeutic target for early intervention in Parkinson’s disease. Sci. Transl. Med. 2, 52ra73 (2010).

    PubMed  PubMed Central  Google Scholar 

  62. Batlevi, Y. & La Spada, A. R. Mitochondrial autophagy in neural function, neurodegenerative disease, neuron cell death, and aging. Neurobiol. Dis. 43, 46–51 (2011).

    CAS  PubMed  Google Scholar 

  63. Burté, F., Carelli, V., Chinnery, P. F. & Yu-Wai-Man, P. Disturbed mitochondrial dynamics and neurodegenerative disorders. Nat. Rev. Neurol. 11, 11–24 (2015).

    PubMed  Google Scholar 

  64. Burbulla, L. F. et al. Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson’s disease. Science 357, 1255–1261 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Sugiura, A., McLelland, G. L., Fon, E. A. & McBride, H. M. A new pathway for mitochondrial quality control: mitochondrial-derived vesicles. EMBO J. 33, 2142–2156 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Cuervo, A. M. Autophagy and aging: keeping that old broom working. Trends Genet. 24, 604–612 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Sorrentino, V. et al. Enhancing mitochondrial proteostasis reduces amyloid-β proteotoxicity. Nature 552, 187–193 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Clavaguera, F. et al. Transmission and spreading of tauopathy in transgenic mouse brain. Nat. Cell Biol. 11, 909–913 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Frost, B., Ollesch, J., Wille, H. & Diamond, M. I. Conformational diversity of wild-type Tau fibrils specified by templated conformation change. J. Biol. Chem. 284, 3546–3551 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Guo, J. L. & Lee, V. M. Seeding of normal Tau by pathological Tau conformers drives pathogenesis of Alzheimer-like tangles. J. Biol. Chem. 286, 15317–15331 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Braak, H. & Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82, 239–259 (1991).

    CAS  PubMed  Google Scholar 

  72. de Calignon, A. et al. Propagation of tau pathology in a model of early Alzheimer’s disease. Neuron 73, 685–697 (2012).

    PubMed  PubMed Central  Google Scholar 

  73. Luk, K. C. et al. Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338, 949–953 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Guo, J. L. et al. Distinct α-synuclein strains differentially promote tau inclusions in neurons. Cell 154, 103–117 (2013).

    CAS  PubMed  Google Scholar 

  75. Jucker, M. & Walker, L. C. Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 501, 45–51 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Fitzpatrick, A. W. P. et al. Cryo-EM structures of tau filaments from Alzheimer’s disease. Nature 547, 185–190 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Vanderweyde, T. et al. Contrasting pathology of the stress granule proteins TIA-1 and G3BP in tauopathies. J. Neurosci. 32, 8270–8283 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Liu-Yesucevitz, L. et al. Tar DNA binding protein-43 (TDP-43) associates with stress granules: analysis of cultured cells and pathological brain tissue. PLoS One 5, e13250 (2010).

    PubMed  PubMed Central  Google Scholar 

  79. Anderson, P. & Kedersha, N. Stress granules: the Tao of RNA triage. Trends Biochem. Sci. 33, 141–150 (2008).

    CAS  PubMed  Google Scholar 

  80. Kedersha, N. L., Gupta, M., Li, W., Miller, I. & Anderson, P. RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress granules. J. Cell Biol. 147, 1431–1442 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Boyce, M. et al. A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science 307, 935–939 (2005).

    CAS  PubMed  Google Scholar 

  82. Mazroui, R., Di Marco, S., Kaufman, R. J. & Gallouzi, I. E. Inhibition of the ubiquitin-proteasome system induces stress granule formation. Mol. Biol. Cell 18, 2603–2618 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Kawai, T., Fan, J., Mazan-Mamczarz, K. & Gorospe, M. Global mRNA stabilization preferentially linked to translational repression during the endoplasmic reticulum stress response. Mol. Cell. Biol. 24, 6773–6787 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Gopal, P. P., Nirschl, J. J., Klinman, E. & Holzbaur, E. L. Amyotrophic lateral sclerosis-linked mutations increase the viscosity of liquid-like TDP-43 RNP granules in neurons. Proc. Natl. Acad. Sci. USA 114, E2466–E2475 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Patel, A. et al. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162, 1066–1077 (2015).

    CAS  PubMed  Google Scholar 

  86. Molliex, A. et al. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163, 123–133 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Vanderweyde, T. et al. Interaction of tau with the RNA-binding protein TIA1 regulates tau pathophysiology and toxicity. Cell Rep. 15, 1455–1466 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Apicco, D. J. et al. Reducing the RNA binding protein TIA1 protects against tau-mediated neurodegeneration in vivo. Nat. Neurosci. 21, 72–80 (2018).

    CAS  PubMed  Google Scholar 

  89. Johnson, J. O. et al. Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron 68, 857–864 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Buchan, J. R., Kolaitis, R. M., Taylor, J. P. & Parker, R. Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function. Cell 153, 1461–1474 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Mackenzie, I. R. et al. TIA1 mutations in amyotrophic lateral sclerosis and frontotemporal dementia promote phase separation and alter stress granule dynamics. Neuron 95, 808–816.e9 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Seguin, S. J. et al. Inhibition of autophagy, lysosome and VCP function impairs stress granule assembly. Cell Death Differ. 21, 1838–1851 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Cirulli, E. T. et al. Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways. Science 347, 1436–1441 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Lee, K. H. et al. C9orf72 dipeptide repeats impair the assembly, dynamics, and function of membrane-less organelles. Cell 167, 774–788.e17 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Lin, Y. et al. Toxic PR poly-dipeptides encoded by the C9orf72 repeat expansion target LC domain polymers. Cell 167, 789–802.e12 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Boeynaems, S. et al. Phase separation of C9orf72 dipeptide repeats perturbs stress granule dynamics. Mol. Cell 65, 1044–1055.e5 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Masliah, E., Hansen, L., Albright, T., Mallory, M. & Terry, R. D. Immunoelectron microscopic study of synaptic pathology in Alzheimer’s disease. Acta Neuropathol. 81, 428–433 (1991).

    CAS  PubMed  Google Scholar 

  98. Ossenkoppele, R. et al. Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer’s disease. Brain 139, 1551–1567 (2016).

    PubMed  PubMed Central  Google Scholar 

  99. Spires-Jones, T. L. & Hyman, B. T. The intersection of amyloid beta and tau at synapses in Alzheimer’s disease. Neuron 82, 756–771 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Santacruz, K. et al. Tau suppression in a neurodegenerative mouse model improves memory function. Science 309, 476–481 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Hoover, B. R. et al. Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration. Neuron 68, 1067–1081 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Tracy, T. E. et al. Acetylated tau obstructs KIBRA-mediated signaling in synaptic plasticity and promotes tauopathy-related memory loss. Neuron 90, 245–260 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhao, X. et al. Caspase-2 cleavage of tau reversibly impairs memory. Nat. Med. 22, 1268–1276 (2016).

    CAS  PubMed  Google Scholar 

  104. Zhao, Y. et al. Appoptosin-mediated caspase cleavage of tau contributes to progressive supranuclear palsy pathogenesis. Neuron 87, 963–975 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Okamoto, S. et al. Balance between synaptic versus extrasynaptic NMDA receptor activity influences inclusions and neurotoxicity of mutant huntingtin. Nat. Med. 15, 1407–1413 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Palop, J. J. & Mucke, L. Network abnormalities and interneuron dysfunction in Alzheimer disease. Nat. Rev. Neurosci. 17, 777–792 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Verret, L. et al. Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model. Cell 149, 708–721 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Iaccarino, H. F. et al. Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature 540, 230–235 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Medzhitov, R. Origin and physiological roles of inflammation. Nature 454, 428–435 (2008).

    CAS  PubMed  Google Scholar 

  110. Jonsson, T. et al. Variant of TREM2 associated with the risk of Alzheimer’s disease. N. Engl. J. Med. 368, 107–116 (2013).

    CAS  PubMed  Google Scholar 

  111. Guerreiro, R. et al. TREM2 variants in Alzheimer’s disease. N. Engl. J. Med. 368, 117–127 (2013).

    CAS  PubMed  Google Scholar 

  112. O’Rourke, J. G. et al. C9orf72 is required for proper macrophage and microglial function in mice. Science 351, 1324–1329 (2016).

    PubMed  PubMed Central  Google Scholar 

  113. Baker, M. et al. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 442, 916–919 (2006).

    CAS  PubMed  Google Scholar 

  114. Cruts, M., Kumar-Singh, S. & Van Broeckhoven, C. Progranulin mutations in ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Curr. Alzheimer Res. 3, 485–491 (2006).

    CAS  PubMed  Google Scholar 

  115. Yin, F. et al. Exaggerated inflammation, impaired host defense, and neuropathology in progranulin-deficient mice. J. Exp. Med. 207, 117–128 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Krabbe, G. et al. Microglial NFκB-TNFα hyperactivation induces obsessive-compulsive behavior in mouse models of progranulin-deficient frontotemporal dementia. Proc. Natl. Acad. Sci. USA 114, 5029–5034 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Crotti, A. et al. Mutant Huntingtin promotes autonomous microglia activation via myeloid lineage-determining factors. Nat. Neurosci. 17, 513–521 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Cribbs, D. H. et al. Extensive innate immune gene activation accompanies brain aging, increasing vulnerability to cognitive decline and neurodegeneration: a microarray study. J. Neuroinflammation 9, 179 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Gowers, I. R. et al. Age-related loss of CpG methylation in the tumour necrosis factor promoter. Cytokine 56, 792–797 (2011).

    CAS  PubMed  Google Scholar 

  120. Cho, S. H. et al. SIRT1 deficiency in microglia contributes to cognitive decline in aging and neurodegeneration via epigenetic regulation of IL-1β. J. Neurosci. 35, 807–818 (2015).

    PubMed  PubMed Central  Google Scholar 

  121. Ulrich, J. D., Ulland, T. K., Colonna, M. & Holtzman, D. M. Elucidating the role of TREM2 in Alzheimer’s disease. Neuron 94, 237–248 (2017).

    CAS  PubMed  Google Scholar 

  122. Oakes, J. A., Davies, M. C. & Collins, M. O. TBK1: a new player in ALS linking autophagy and neuroinflammation. Mol. Brain 10, 5 (2017).

    PubMed  PubMed Central  Google Scholar 

  123. Salter, M. W. & Stevens, B. Microglia emerge as central players in brain disease. Nat. Med. 23, 1018–1027 (2017).

    CAS  PubMed  Google Scholar 

  124. Parkhurst, C. N. et al. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155, 1596–1609 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841–845 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Wang, Y. et al. TREM2 lipid sensing sustains the microglial response in an Alzheimer’s disease model. Cell 160, 1061–1071 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Griciuc, A. et al. Alzheimer’s disease risk gene CD33 inhibits microglial uptake of amyloid beta. Neuron 78, 631–643 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Minami, S. S. et al. Progranulin protects against amyloid β deposition and toxicity in Alzheimer’s disease mouse models. Nat. Med. 20, 1157–1164 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Hong, S. et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 352, 712–716 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Lui, H. et al. Progranulin deficiency promotes circuit-specific synaptic pruning by microglia via complement activation. Cell 165, 921–935 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Stellwagen, D. & Malenka, R. C. Synaptic scaling mediated by glial TNF-alpha. Nature 440, 1054–1059 (2006).

    CAS  PubMed  Google Scholar 

  133. Barnes, S. J. et al. Deprivation-induced homeostatic spine scaling in vivo is localized to dendritic branches that have undergone recent spine loss. Neuron 96, 871–882.e5 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Gosselin, D. et al. An environment-dependent transcriptional network specifies human microglia identity. Science 356, eaal3222 (2017).

    PubMed  PubMed Central  Google Scholar 

  135. De Biase, L. M. et al. Local cues establish and maintain region-specific phenotypes of basal ganglia microglia. Neuron 95, 341–356.e6 (2017).

    PubMed  PubMed Central  Google Scholar 

  136. Kundaje, A. et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Sampson, T. R. et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167, 1469–1480.e12 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Blank, T. et al. Brain endothelial- and epithelial-specific Interferon Receptor Chain 1 drives virus-induced sickness behavior and cognitive impairment. Immunity 44, 901–912 (2016).

    CAS  PubMed  Google Scholar 

  139. Garré, J. M., Silva, H. M., Lafaille, J. J. & Yang, G. CX3CR1+ monocytes modulate learning and learning-dependent dendritic spine remodeling via TNF-α. Nat. Med. 23, 714–722 (2017).

    PubMed  PubMed Central  Google Scholar 

  140. Sulzer, D. et al. T cells from patients with Parkinson’s disease recognize α-synuclein peptides. Nature 546, 656–661 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Martínez, T., Wright, N., López-Fraga, M., Jiménez, A. I. & Pañeda, C. Silencing human genetic diseases with oligonucleotide-based therapies. Hum. Genet. 132, 481–493 (2013).

    PubMed  Google Scholar 

  142. Lu, X. H. & Yang, X. W. “Huntingtin holiday”: progress toward an antisense therapy for Huntington’s disease. Neuron 74, 964–966 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Finkel, R. S. et al. Nusinersen versus sham control in infantile-onset spinal muscular atrophy. N. Engl. J. Med. 377, 1723–1732 (2017).

    CAS  PubMed  Google Scholar 

  144. Mustonen, E. K., Palomäki, T. & Pasanen, M. Oligonucleotide-based pharmaceuticals: non-clinical and clinical safety signals and non-clinical testing strategies. Regul. Toxicol. Pharmacol. 90, 328–341 (2017).

    CAS  PubMed  Google Scholar 

  145. Sevigny, J. et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature 537, 50–56 (2016).

    CAS  PubMed  Google Scholar 

  146. Reiman, E. M. Alzheimer’s disease: attack on amyloid-β protein. Nature 537, 36–37 (2016).

    CAS  PubMed  Google Scholar 

  147. Wright, A. V., Nuñez, J. K. & Doudna, J. A. Biology and applications of CRISPR systems: harnessing nature’s toolbox for genome engineering. Cell 164, 29–44 (2016).

    CAS  PubMed  Google Scholar 

  148. Kordasiewicz, H. B. et al. Sustained therapeutic reversal of Huntington’s disease by transient repression of huntingtin synthesis. Neuron 74, 1031–1044 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Batra, R. et al. Elimination of toxic microsatellite repeat expansion RNA by RNA-targeting Cas9. Cell 170, 899–912.e10 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Pinto, B. S. et al. Impeding transcription of expanded microsatellite repeats by deactivated Cas9. Mol. Cell 68, 479–490.e5 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Gan, Mark R. Cookson, Leonard Petrucelli or Albert R. La Spada.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gan, L., Cookson, M.R., Petrucelli, L. et al. Converging pathways in neurodegeneration, from genetics to mechanisms. Nat Neurosci 21, 1300–1309 (2018). https://doi.org/10.1038/s41593-018-0237-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-018-0237-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing