Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

AH receptor agonist activity in human blood measured with a cell-based bioassay: Evidence for naturally occurring AH receptor ligands in vivo

Abstract

In the present study, an aryl hydrocarbon receptor (AHR)-driven reporter gene bioassay was used to measure the activity, measured as an induction equivalent (IEQ) as compared to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), or IEQ concentration in human blood samples from 10 volunteers under different dietary regimens. Blood concentrations of polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs) and polychlorinated biphenyls (PCBs), as determined by analytical chemistry (HR-GC/MS), and expressed as toxic equivalents (TEQs) with the use of TCDD equivalency factors (TEFs), were within a range that has been reported in the general US population, ranging from 0.022 to 0.119 ppt (whole blood basis). However, the human blood IEQ measured directly via bioassay ranged from 13.4 to 218 ppt (whole blood basis). These order of magnitude greater IEQs compared to the TEQs for dioxins, furans, and certain PCBs suggests that human blood contains a relatively high level of AHR agonists able to activate the CYP1A1 dioxin response element (DRE)-linked reporter gene bioassay and that this AHR activity is not accounted for by PCDDs/Fs and dioxin-like PCBs based on standard HR-GC/MS and TEF analysis. When study participants switched from a “baseline” to a high-vegetable diet, increases in bioassay IEQ were observed that were statistically significant (P<0.05). In addition, IEQ activity was elevated above levels observed following dietary intervention in two subjects given indole-3-carbinol (I3C) supplements. We conclude that a substantial portion of the IEQ activity occurred as a result of the increased intake of natural AHR agonists (NAHRAs) present in many fruits, vegetables. and herbs. Our findings also suggest that dietary NAHRAs constitute a substantial daily dietary intake of AHR-active compounds, and these NAHRAs could influence AHR status in humans and play a role in a basal level of AHR activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  • Aarts J.M., Denison M.S., Cox M.A., Schalk M.A., Garrison P.M., Tullis K., de Haan L.H., and Brouwer A. Species-specific antagonism of Ah receptor action by 2,2′,5,5′-tetrachloro- and 2,2′,3,3′4,4′-hexachlorobiphenyl. Eur J Pharmacol 1995: 293 (4): 463–474.

    Article  CAS  PubMed  Google Scholar 

  • Allen S.W., Mueller L., Williams S.N., Quattrochi L.C., and Raucy J. The use of a high-volume screening procedure to assess the effects of dietary flavonoids on human cyp1a1 expression. Drug Metab Dispos 2001: 29 (8): 1074–1079.

    CAS  PubMed  Google Scholar 

  • Amakura Y., Tsutsumi T., Nakamura M., Kitagawa H., Fujino J., Sasaki K., Yoshida T., and Toyoda M. Preliminary screening of the inhibitory effect of food extracts on activation of the aryl hydrocarbon receptor induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Biol Pharm Bull 2002: 25 (2): 272–274.

    Article  CAS  PubMed  Google Scholar 

  • Amakura Y., Tsutsumi T., Sasaki K., Yoshida T., and Maitani T. Screening of the inhibitory effect of vegetable constituents on the aryl hydrocarbon receptor-mediated activity induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Biol Pharm Bull 2003a: 26 (12): 1754–1760.

    Article  CAS  PubMed  Google Scholar 

  • Amakura Y., Tsutsumi T., Nakamura M., Kitagawa H., Fujino J., Sasaki K., Toyoda M., Yoshida T., and Maitani T. Activation of the aryl hydrocarbon receptor by some vegetable constituents determined using in vitro reporter gene assay. Biol Pharm Bull 2003b: 26 (4): 532–539.

    Article  CAS  PubMed  Google Scholar 

  • Anderton M.J., Jukes R., Lamb J.H., Manson M.M., Gescher A., Steward W.P., and Williams M.L. Liquid chromatographic assay for the simultaneous determination of indole-3-carbinol and its acid condensation products in plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2003: 787 (2): 281–291.

    Article  CAS  PubMed  Google Scholar 

  • Arneson D.W., Hurwitz A., Crowell J.A., and Mayo M.S. Pharmacokinetics of 3,3′-diindolylmethane following oral administration of indole-3-carbinol to human subjects. Proc Am Assoc Cancer Res 2001: 42: 868–869.

    Google Scholar 

  • Ashida H. Suppressive effects of flavonoids on dioxin toxicity. Biofactors 2000: 12 (1–4): 201–206.

    Article  CAS  PubMed  Google Scholar 

  • Ashida H., Fukuda I., Yamashita T., and Kanazawa K. Flavones and flavonols at dietary levels inhibit a transformation of aryl hydrocarbon receptor induced by dioxin. FEBS Lett 2000: 476 (3): 213–217.

    Article  CAS  PubMed  Google Scholar 

  • Bittinger M.A., Nguyen L.P., and Bradfield C.A. Aspartate aminotransferase generates proagonists of the aryl hydrocarbon receptor. Mol Pharmacol 2003: 64 (3): 550–556.

    Article  CAS  PubMed  Google Scholar 

  • Bjeldanes L.F., Kim J.Y., Grose K.R., Bartholomew J.C., and Bradfield C.A. Aromatic hydrocarbon responsiveness-receptor agonists generated from indole-3-carbinol in vitro and in vivo: comparisons with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Proc Natl Acad Sci USA 1991: 88 (21): 9543–9547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradfield C.A., and Bjeldanes L.F. Structure–activity relationships of dietary indoles: a proposed mechanism of action as modifiers of xenobiotic metabolism. J Toxicol Environ Health 1987: 21 (3): 311–323.

    Article  CAS  PubMed  Google Scholar 

  • Bradlow H.L., Michnovicz J.J., Halper M., Miller D.G., Wong G.Y., and Osborne M.P. Long-term responses of women to indole-3-carbinol or a high fiber diet. Cancer Epidemiol Biomarkers Prev 1994: 3 (7): 591–595.

    CAS  PubMed  Google Scholar 

  • Brown D.J., Chu M., Van Overmeire I., Chu A., and Clark G.C. Determination of REP values for the CALUX bioassay and comparison to the WHO TEF values. Organohal Compounds 2001: 53: 211.

    CAS  Google Scholar 

  • Burbach K.M., Poland A., and Bradfield C.A. Cloning of the Ah-receptor cDNA reveals a distinctive ligand-activated transcription factor. Proc Natl Acad Sci USA 1992: 89 (17): 8185–8189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casper R.F., Quesne M., Rogers I.M., Shirota T., Jolivet A., Milgrom E., and Savouret J.F. Resveratrol has antagonist activity on the aryl hydrocarbon receptor: implications for prevention of dioxin toxicity. Mol Pharmacol 1999: 56 (4): 784–790.

    CAS  PubMed  Google Scholar 

  • Ciolino H.P., and Yeh G.C. Inhibition of aryl hydrocarbon-induced cytochrome P-450 1A1 enzyme activity and CYP1A1 expression by resveratrol. Mol Pharmacol 1999: 56 (4): 760–767.

    CAS  PubMed  Google Scholar 

  • Ciolino H.P., Daschner P.J., and Yeh G.C. Dietary flavonols quercetin and kaempferol are ligands of the aryl hydrocarbon receptor that affect CYP1A1 transcription differentially. Biochem J 1999: 340 (Part 3): 715–722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Connor K.T., and Finley B.L. Naturally-occurring Ah-receptor agonists in foods: implications regarding dietary dioxin exposure and health risk. Human Ecol Risk Assess 2003: 9: 1747–1763.

    Article  Google Scholar 

  • Covaci A., Koppen G., Van Cleuvenbergen R., Schepens P., Winneke G., van Larebeke N., Nelen V., Vlietinck R., and Schoeters G. Persistent organochlorine pollutants in human serum of 50–65 years old women in the Flanders environmental and health study (FLEHS). Part 2: correlations among PCBs, PCDD/PCDFs and the use of predictive markers. Chemosphere 2002: 48 (8): 827–832.

    Article  CAS  PubMed  Google Scholar 

  • Crowell J.A., Page J.G., Levine B.S., Tomlinson M.J., and Hebert C.D. Indole-3-carbinol, but not its major digestive product 3,3′-diindolylmethane, induces reversible hepatocyte hypertrophy and cytochromes P450. Toxicol Appl Pharmacol 2005: 211 (2): 115–123.

    Article  PubMed  CAS  Google Scholar 

  • de Vries J.H., Hollman P.C., Meyboom S., Buysman M.N., Zock P.L., van Staveren W.A., and Katan M.B. Plasma concentrations and urinary excretion of the antioxidant flavonols quercetin and kaempferol as biomarkers for dietary intake. Am J Clin Nutr 1998: 68 (1): 60–65.

    Article  CAS  PubMed  Google Scholar 

  • Denison M.S., and Heath-Pagliuso S. The Ah receptor: a regulator of the biochemical and toxicological actions of structurally diverse chemicals. Bull Environ Contam Toxicol 1998: 61 (5): 557–568.

    Article  CAS  PubMed  Google Scholar 

  • Denison M.S., and Nagy S.R. Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annu Rev Pharmacol Toxicol 2003: 43: 309–334.

    Article  CAS  PubMed  Google Scholar 

  • Denison M.S., Zhao B., Baston D.S., Clark G.C., Murata H., and Han D.-H. Recombinant cell bioassay systems for the detection and relative quantitation of halogenated dioxins and related chemicals. Talanta 2004: 63: 1123–1133.

    Article  CAS  PubMed  Google Scholar 

  • Fukuda I., Sakane I., Yabushita Y., Kodoi R., Nishiumi S., Kakuda T., Sawamura S., Kanazawa K., and Ashida H. Pigments in green tea leaves (Camellia sinensis) suppress transformation of the aryl hydrocarbon receptor induced by dioxin. J Agric Food Chem 2004: 52 (9): 2499–2506.

    Article  CAS  PubMed  Google Scholar 

  • Garrison P.M., Tullis K., Aarts J.M., Brouwer A., Giesy J.P., and Denison M.S. Species-specific recombinant cell lines as bioassay systems for the detection of 2,3,7,8-tetrachlorodibenzo-p-dioxin-like chemicals. Fundam Appl Toxicol 1996: 30 (2): 194–203.

    Article  CAS  PubMed  Google Scholar 

  • Giesy J.P., Jude D.J., Tillitt D.E., Gale R.W., Meadows J.C., Zajicek J.L., et al. Polychlorinated dibenzo-p-dioxins, dibenzofurans, biphenyls and 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents in fishes from Saginaw Bay, Michigan. Environ Toxicol and Chem 1997: 16 (4): 713–724.

    Article  CAS  Google Scholar 

  • Gradelet S., Astorg P., Leclerc J., Chevalier J., Vernevaut M.F., and Siess M.H. Effects of canthaxanthin, astaxanthin, lycopene and lutein on liver xenobiotic-metabolizing enzymes in the rat. Xenobiotica 1996: 26 (1): 49–63.

    Article  CAS  PubMed  Google Scholar 

  • Guengerich F.P. Cytochrome P450: what have we learned and what are the future issues? Drug Metab Rev 2004: 36 (2): 159–197.

    Article  CAS  PubMed  Google Scholar 

  • Hamada M., Satsu H., Natsume Y., Nishiumi S., Fukuda I., Ashida H., and Shimizu M. TCDD-induced CYP1A1 expression, an index of dioxin toxicity, is suppressed by flavonoids permeating the human intestinal Caco-2 cell monolayers. J Agric Food Chem 2006: 54 (23): 8891–8898.

    Article  CAS  PubMed  Google Scholar 

  • Han D., Nagy S.R., and Denison M.S. Recombinant cell lines for the detection of dioxins and AHR ligands: not all assays are created equal. Organohal Compounds 2002: 58: 421–424.

    CAS  Google Scholar 

  • Heath-Pagliuso S., Rogers W.J., Tullis K., Seidel S.D., Cenijn P.H., Brouwer A., and Denison M.S. Activation of the Ah receptor by tryptophan and tryptophan metabolites. Biochemistry 1998: 37 (33): 11508–11515.

    Article  CAS  PubMed  Google Scholar 

  • HHS/USDA. Dietary Guidelines for Americans, Department of Health and Human Services (HHS), Department of Agriculture (USDA), Center for Nutrition Policy and Promotion, Dietary Guidelines Advisory Committee. http://www.usda.gov/cnpp/DG2005/, 2005.

  • Hu K., Bunce N., Chittim B., Tashiro C.H.M., Yeo B., Sharratt B.J., Campbell F.J., and Potter D.W. Screening assay for dioxin-like compounds based on competitive binding to the Ah receptor 2. Application to environmental samples. Environ Sci Technol 1995: 29: 2603–2609.

    Article  CAS  PubMed  Google Scholar 

  • Jain S., Maltepe E., Lu M.M., Simon C., and Bradfield C.A. Expression of ARNT, ARNT2, HIF1 alpha, HIF2 alpha and Ah receptor mRNAs in the developing mouse. Mech Dev 1998: 73 (1): 117–123.

    Article  CAS  PubMed  Google Scholar 

  • Jellinck P.H., Forkert P.G., Riddick D.S., Okey A.B., Michnovicz J.J., and Bradlow H.L. Ah receptor binding properties of indole carbinols and induction of hepatic estradiol hydroxylation. Biochem Pharmacol 1993: 45 (5): 1129–1136.

    Article  CAS  PubMed  Google Scholar 

  • Jeuken A., Keser B.J., Khan E., Brouwer A., Koeman J., and Denison M.S. Activation of the Ah receptor by extracts of dietary herbal supplements, vegetables, and fruits. J Agric Food Chem 2003: 51 (18): 5478–5487.

    Article  CAS  PubMed  Google Scholar 

  • Kleman M.I., Poellinger L., and Gustafsson J.A. Regulation of human dioxin receptor function by indolocarbazoles, receptor ligands of dietary origin. J Biol Chem 1994: 269 (7): 5137–5144.

    CAS  PubMed  Google Scholar 

  • Kociba R.J., Keyes D.G., Beyer J.E., Carreon R.M., Wade C.E., Dittenber D.A., et al. Results of a two-year chronic toxicity and oncogenicity study of 2,3,7,8-tetrachlorodibenzo-p-dioxin in rats. Toxicol Appl Pharmacol 1978: 46 (2): 279–303.

    Article  CAS  PubMed  Google Scholar 

  • Koppen G., Covaci A., Van Cleuvenbergen R., Schepens P., Winneke G., Nelen V., and Schoeters G. Comparison of CALUX-TEQ values with PCB and PCDD/F measurements in human serum of the Flanders Environmental and Health Study (FLEHS). Toxicol Lett 2001: 123 (1): 59–67.

    Article  CAS  PubMed  Google Scholar 

  • Koppen G., Covaci A., Van Cleuvenbergen R., Schepens P., Winneke G., Nelen V., van Larebeke N., Vlietinck R., and Schoeters G. Persistent organochlorine pollutants in human serum of 50–65 years old women in the Flanders Environmental and Health Study (FLEHS). Part 1: Concentrations and regional differences. Chemosphere 2002: 48 (8): 811–825.

    Article  CAS  PubMed  Google Scholar 

  • Lampe J.W., King I.B., Li S., Grate M.T., Barale K.V., Chen C., Feng Z., and Potter J.D. Brassica vegetables increase and apiaceous vegetables decrease cytochrome P450 1A2 activity in humans: changes in caffeine metabolite ratios in response to controlled vegetable diets. Carcinogenesis 2000: 21 (6): 1157–1162.

    Article  CAS  PubMed  Google Scholar 

  • Leibelt D.A., Hedstrom O.R., Fischer K.A., Pereira C.B., and Williams D.E. Evaluation of chronic dietary exposure to indole-3-carbinol and absorption-enhanced 3,3′-diindolylmethane in Sprague–Dawley rats. Toxicol Sci 2003: 74 (1): 10–21.

    Article  CAS  PubMed  Google Scholar 

  • Long W.P., Pray-Grant M., Tsai J.C., and Perdew G.H. Protein kinase C activity is required for aryl hydrocarbon receptor pathway-mediated signal transduction. Mol Pharmacol 1998: 53 (4): 691–700.

    Article  CAS  PubMed  Google Scholar 

  • Michnovicz J.J., Adlercreutz H., and Bradlow H.L. Changes in levels of urinary estrogen metabolites after oral indole-3-carbinol treatment in humans. J Natl Cancer Inst 1997: 89 (10): 718–723.

    Article  CAS  PubMed  Google Scholar 

  • Murk A.J., Legler J., Denison M.S., Giesy J.P., van de Guchte C., and Brouwer A. Chemical-activated luciferase gene expression (CALUX): a novel in vitro bioassay for Ah receptor active compounds in sediments and pore water. Fundam Appl Toxicol 1996: 33 (1): 149–160.

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa K., Okuda S., and Miyazawa T. Dose-dependent incorporation of tea catechins, (−)-epigallocatechin-3-gallate and (−)-epigallocatechin, into human plasma. Biosci Biotechnol Biochem 1997: 61 (12): 1981–1985.

    Article  CAS  PubMed  Google Scholar 

  • Nawrot T.S., Staessen J.A., Den Hond E.M., Koppen G., Schoeters G., Fagard R., Thijs L., Winneke G., and Roels H.A. Host and environmental determinants of polychlorinated aromatic hydrocarbons in serum of adolescents. Environ Health Perspect 2002: 110 (6): 583–589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • NCI. Clinical development plan: indole-3-carbinol. J Cell Biochem Suppl 1996: 26: 127–136.

    Google Scholar 

  • Nishie K., and Daxenbichler M.E. Toxicology of glucosinolates, related compounds (nitriles, R-goitrin, isothiocyanates) and vitamin U found in Cruciferae. Food Cosmet Toxicol 1980: 18 (2): 159–172.

    Article  CAS  PubMed  Google Scholar 

  • Oberg M., Bergander L., Hakansson H., Rannug U., and Rannug A. Identification of the tryptophan photoproduct 6-formylindolo[3,2-b]carbazole, in cell culture medium, as a factor that controls the background aryl hydrocarbon receptor activity. Toxicol Sci 2005: 85 (2): 935–943.

    Article  PubMed  CAS  Google Scholar 

  • Okey A.B., Riddick D.S., and Harper P.A. Molecular biology of the aromatic hydrocarbon (dioxin) receptor. Trends Pharmacol Sci 1994: 15 (7): 226–232.

    Article  CAS  PubMed  Google Scholar 

  • Paganga G., and Rice-Evans C.A. The identification of flavonoids as glycosides in human plasma. FEBS Lett 1997: 401 (1): 78–82.

    Article  CAS  PubMed  Google Scholar 

  • Park Y.K., Fukuda I., Ashida H., Nishiumi S., Guzman J.P., Sato H.H., and Pastore G.M. Suppression of dioxin mediated aryl hydrocarbon receptor transformation by ethanolic extracts of propolis. Biosci Biotechnol Biochem 2004: 68 (4): 935–938.

    Article  CAS  PubMed  Google Scholar 

  • Park Y.K., Fukuda I., Ashida H., Nishiumi S., Yoshida K., Daugsch A., Sato H.H., and Pastore G.M. Suppressive effects of ethanolic extracts from propolis and its main botanical origin on dioxin toxicity. J Agric Food Chem 2005: 53 (26): 10306–10309.

    Article  CAS  PubMed  Google Scholar 

  • Pauwels A., Cenijn P.H., Schepens P.J., and Brouwer A. Comparison of chemical-activated luciferase gene expression bioassay and gas chromatography for PCB determination in human serum and follicular fluid. Environ Health Perspect 2000: 108 (6): 553–557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pauwels A., Schepens P.J., D'Hooghe T., Delbeke L., Dhont M., Brouwer A., and Weyler J. The risk of endometriosis and exposure to dioxins and polychlorinated biphenyls: a case–control study of infertile women. Hum Reprod 2001: 16 (10): 2050–2055.

    Article  CAS  PubMed  Google Scholar 

  • Pohjanvirta R., Korkalainen M., McGuire J., Simanainen U., Juvonen R., Tuomisto J.T., et al. Comparison of acute toxicities of indolo[3,2-b]carbazole (ICZ) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in TCDD-sensitive rats. Food Chem Toxicol 2002: 40 (7): 1023–1032.

    Article  CAS  PubMed  Google Scholar 

  • Reed G.A., Peterson K.S., Smith H.J., Gray J.C., Sullivan D.K., Mayo M.S., Crowell J.A., and Hurwitz A. A phase I study of indole-3-carbinol in women: tolerability and effects. Cancer Epidemiol Biomarkers Prev 2005: 14 (8): 1953–1960.

    Article  CAS  PubMed  Google Scholar 

  • Rowlands J.C., and Gustafsson J.A. Aryl hydrocarbon receptor-mediated signal transduction. Crit Rev Toxicol 1997: 27 (2): 109–134.

    Article  CAS  PubMed  Google Scholar 

  • Safe S. Polychlorinated biphenyls (PCBs), dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), and related compounds: environmental and mechanistic considerations which support the development of toxic equivalency factors (TEFs). Crit Rev Toxicol 1990: 21 (1): 51–88.

    Article  CAS  PubMed  Google Scholar 

  • Schecter A.J., Sheu S.U., Birnbaum L.S., DeVito M.J., Denison M.S., and Papke O. A comparison and discussion of two different methods of measuring dioxin-like compounds: gas chromatography–mass spectrometry and the CALUX bioassay — implications for health studies. Organohal Compounds 1999: 40: 247–250.

    CAS  Google Scholar 

  • Seidel S.D., Li V., Winter G.M., Rogers W.J., Martinez E.I., and Denison M.S. Ah receptor-based chemical screening bioassays: application and limitations for the detection of Ah receptor agonists. Toxicol Sci 2000: 55 (1): 107–115.

    Article  CAS  PubMed  Google Scholar 

  • Slominski B.A., and Campbell L.D. Formation of indole glucosinolate breakdown products in autolyzed, steamed, and cooked Brassica vegetables. J Agric Food Chem 1989: 37 (5): 1297–1302.

    Article  CAS  Google Scholar 

  • Stephensen P.U., Bonnesen C., Schaldach C., Andersen O., Bjeldanes L.F., and Vang O. N-methoxyindole-3-carbinol is a more efficient inducer of cytochrome P-450 1A1 in cultured cells than indol-3-carbinol. Nutr Cancer 2000: 36 (1): 112–121.

    Article  CAS  PubMed  Google Scholar 

  • Stoner G., Casto B., Ralston S., Roebuck B., Pereira C., and Bailey G. Development of a multi-organ rat model for evaluating chemopreventive agents: efficacy of indole-3-carbinol. Carcinogenesis 2002: 23 (2): 265–272.

    Article  CAS  PubMed  Google Scholar 

  • Stresser D.M., Williams D.E., Griffin D.A., and Bailey G.S. Mechanisms of tumor modulation by indole-3-carbinol. Disposition and excretion in male Fischer 344 rats. Drug Metab Dispos 1995: 23 (9): 965–975.

    CAS  PubMed  Google Scholar 

  • Suzuki G., Takigami H., Kushi Y., and Sakai S. Evaluation of mixture effects in a crude extract of compost using the CALUX bioassay and HPLC fractionation. Environ Int 2004: 30 (8): 1055–1066.

    Article  CAS  PubMed  Google Scholar 

  • Tittlemier S.A. Dietary exposure to a group of naturally produced organohalogens (halogenated dimethyl bipyrroles) via consumption of fish and seafood. J Agric Food Chem 2004: 52 (7): 2010–2015.

    Article  CAS  PubMed  Google Scholar 

  • US EPA Method 4425. Screening Extracts of Environmental Samples for Planar Organic Compounds (PAHs, PCBs, PCDDs/PCDFs) by a Reporter Gene on a Human Cell Line. Draft Update IVB of SW-846, US Environmental Protection Agency. Office of Solid Waste: Washington, DC 2000.

  • van den Berg M., Birnbaum L., Denison M.S., De Vito M.J., Farland W., Feeley M., et al. The 2005 World Health Organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol Sci 2006: 93 (2): 223–241.

    Article  CAS  PubMed  Google Scholar 

  • Vang O., Jensen M.B., and Autrup H. Induction of cytochrome P450IA1 in rat colon and liver by indole-3-carbinol and 5,6-benzoflavone. Carcinogenesis 1990: 11 (8): 1259–1263.

    Article  CAS  PubMed  Google Scholar 

  • Verhoeven D.T., Goldbohm R.A., van Poppel G., Verhagen H., and van den Brandt P.A. Epidemiological studies on Brassica vegetables and cancer risk. Cancer Epidemiol Biomarkers Prev 1996: 5 (9): 733–748.

    CAS  PubMed  Google Scholar 

  • Warner M., Eskenazi B., Patterson D.G., Clark G., Turner W.E., Bonsignore L., Mocarelli P., and Gerthoux P.M. Dioxin-Like TEQ of women from the Seveso, Italy area by ID-HRGC/HRMS and CALUX. J Expo Anal Environ Epidemiol 2005: 15 (4): 310–318.

    Article  CAS  PubMed  Google Scholar 

  • Wilker C., Johnson L., and Safe S. Effects of developmental exposure to indole-3-carbinol or 2,3,7,8-tetrachlorodibenzo-p-dioxin on reproductive potential of male rat offspring. Toxicol Appl Pharmacol 1996: 141 (1): 68–75.

    Article  CAS  PubMed  Google Scholar 

  • William D.E., Bailey G.S., Reddy A., Hendricks J.D., Oganesian A., Orner G.A., Pereira C.B., and Swenberg J.A. The rainbow trout (Oncorhynchus mykiss) tumor model: recent applications in low-dose exposures to tumor initiators and promoters. Toxicol Pathol 2003: 31 (Suppl): 58–61.

    PubMed  Google Scholar 

  • Windal I., Denison M.S., Birnbaum L.S., Van Wouwe N., Baeyens W., and Goeyens L. Chemically activated luciferase gene expression (CALUX) cell bioassay analysis for the estimation of dioxin-like activity: critical parameters of the CALUX procedure that impact assay results. Environ Sci Technol 2005: 39 (19): 7357–7364.

    Article  CAS  PubMed  Google Scholar 

  • Zhang S., Qin C., and Safe S.H. Flavonoids as aryl hydrocarbon receptor agonists/antagonists: effects of structure and cell context. Environ Health Perspect 2003: 111 (16): 1877–1882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the Research Foundation for Health and Environmental Effects (American Chemistry Council, Arlington, VA, USA). We thank Axel Goetz, Mark Roberts, Lesa Aylward, Michael Denison, and Stephen Safe for helpful comments on the study protocol, and Michael Halpern and Jordana Schmier for assistance in seeking informed consent from participants and in the IRB review process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin T Connor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Connor, K., Harris, M., Edwards, M. et al. AH receptor agonist activity in human blood measured with a cell-based bioassay: Evidence for naturally occurring AH receptor ligands in vivo. J Expo Sci Environ Epidemiol 18, 369–380 (2008). https://doi.org/10.1038/sj.jes.7500607

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.jes.7500607

Keywords

This article is cited by

Search

Quick links