Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Sensitivity and Resitance to Therapy

Resistance to cytarabine and gemcitabine and in vitro selection of transduced cells after retroviral expression of cytidine deaminase in human hematopoietic progenitor cells

Abstract

Overexpression of the detoxifying enzyme cytidine deaminase (CDD) renders normal and leukemic hematopoietic cells resistant to cytarabine (1-β-D-arabinofuranosylcytosine), and studies on murine cells have suggested transgenic CDD overexpression as a way to reduce the substantial myelotoxicity induced by the deoxycytidine analogs cytarabine and gemcitabine (2′,2′-difluorodeoxycytidine). We now have investigated CDD (over-)expression in the human hematopoietic system. Retroviral gene transfer significantly increased the resistance of CDD-transduced cord blood and peripheral blood-derived progenitor cells for doses ranging from 20–100 nM cytarabine and 8–10 nM gemcitabine. Protection was observed for progenitors of erythroid as well as myeloid differentiation, though the degree of protection varied for individual drugs. In addition, significant selection of CDD-transduced cells was obtained after a 4-day culture in 30–100 nM cytarabine. Thus, our data demonstrate that overexpression of CDD cDNA results in significant protection of human progenitors from cytarabine- as well as gemcitabine-induced toxicity, and allows in vitro selection of transduced cells. This strongly argues for a potential therapeutic role of CDD gene transfer in conjunction with dose-intensive cytarabine- or gemcitabine-containing chemotherapy regimen.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Weiss RB . Introduction: dose-intensive therapy for adult malignancies. Semin Oncol 1999; 26: 1–5.

    CAS  PubMed  Google Scholar 

  2. Moritz T, Williams DA . Marrow protection – transduction of hematopoietic cells with drug resistance genes. Cytotherapy 2001; 3: 67–84.

    Article  CAS  Google Scholar 

  3. Flasshove M, Moritz T, Bardenheuer W, Seeber S . Hematoprotection by transfer of drug-resistance genes. Acta Haematol 2003; 110: 93–106.

    Article  CAS  Google Scholar 

  4. Kufe DW, Spriggs DR . Biochemical and cellular pharmacology of cytosine arabinoside. Semin Oncol 1985; 12: 34–48.

    CAS  PubMed  Google Scholar 

  5. Huang P, Chubb S, Hertel LW, Grindey GB, Plunkett W . Action of 2′,2′-difluorodeoxycytidine on DNA synthesis. Cancer Res 1991; 51: 6110–6117.

    CAS  PubMed  Google Scholar 

  6. Laliberte J, Momparler RL . Human cytidine deaminase: purification of enzyme, cloning, and expression of its complementary DNA. Cancer Res 1994; 54: 5401–5407.

    CAS  PubMed  Google Scholar 

  7. Momparler RL, Laliberte J, Eliopoulos N, Beausejour C, Cournoyer D . Transfection of murine fibroblast cells with human cytidine deaminase cDNA confers resistance to cytosine arabinoside. Anticancer Drugs 1996; 7: 266–274.

    Article  CAS  Google Scholar 

  8. Schroder JK, Kirch C, Flasshove M, Kalweit H, Seidelmann M, Hilger R et al. Constitutive overexpression of the cytidine deaminase gene confers resistance to cytosine arabinoside in vitro. Leukemia 1996; 10: 1919–1924.

    CAS  PubMed  Google Scholar 

  9. Neff T, Blau CA . Forced expression of cytidine deaminase confers resistance to cytosine arabinoside and gemcitabine. Exp Hematol 1996; 24: 1340–1346.

    CAS  PubMed  Google Scholar 

  10. Sauerbrey A, McPherson JP, Zhao SC, Banerjee D, Bertino JR . Expression of a novel double-mutant dihydrofolate reductase-cytidine deaminase fusion gene confers resistance to both methotrexate and cytosine arabinoside. Hum Gene Ther 1999; 10: 2495–2504.

    Article  CAS  Google Scholar 

  11. Flasshove M, Frings W, Schroder JK, Moritz T, Schutte J, Seeber S . Transfer of the cytidine deaminase cDNA into hematopoietic cells. Leuk Res 1999; 23: 1047–1053.

    Article  CAS  Google Scholar 

  12. Momparler RL, Eliopoulos N, Bovenzi V, Letourneau S, Greenbaum M, Cournoyer D . Resistance to cytosine arabinoside by retrovirally mediated gene transfer of human cytidine deaminase into murine fibroblast and hematopoietic cells. Cancer Gene Ther 1996; 3: 331–338.

    CAS  PubMed  Google Scholar 

  13. Eliopoulos N, Cournoyer D, Momparler RL . Drug resistance to 5-aza-2′-deoxycytidine, 2′,2′-difluorodeoxycytidine, and cytosine arabinoside conferred by retroviral-mediated transfer of human cytidine deaminase cDNA into murine cells. Cancer Chemother Pharmacol 1998; 42: 373–378.

    Article  CAS  Google Scholar 

  14. Eliopoulos N, Al-Khaldi A, Beausejour CM, Momparler RL, Momparler LF, Galipeau J . Human cytidine deaminase as an ex vivo drug selectable marker in gene-modified primary bone marrow stromal cells. Gene Therapy 2002; 9: 452–462.

    Article  CAS  Google Scholar 

  15. Budak-Alpdogan T, Alpdogan O, Banerjee D, Wang E, Moore MA, Bertino JR . Methotrexate and cytarabine inhibit progression of human lymphoma in NOD/SCID mice carrying a mutant dihydrofolate reductase and cytidine deaminase fusion gene. Mol Ther 2004; 10: 574–584.

    Article  CAS  Google Scholar 

  16. Hildinger M, Abel KL, Ostertag W, Baum C . Design of 5′ untranslated sequences in retroviral vectors developed for medical use. J Virol 1999; 73: 4083–4089.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hildinger M, Fehse B, Hegewisch-Becker S, John J, Rafferty JR, Ostertag W et al. Dominant selection of hematopoietic progenitor cells with retroviral MDR1 co-expression vectors. Hum Gene Ther 1998; 9: 33–42.

    Article  CAS  Google Scholar 

  18. Flasshove M, Bardenheuer W, Schneider A, Hirsch G, Bach P, Bury C et al. Type and position of promoter elements in retroviral vectors have substantial effects on the expression level of an enhanced green fluorescent protein reporter gene. J Cancer Res Clin Oncol 2000; 126: 391–399.

    Article  CAS  Google Scholar 

  19. Kozak M . An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res 1987; 15: 8125–8148.

    Article  CAS  Google Scholar 

  20. Kobune M, Xu Y, Baum C, Kelley MR, Williams DA . Retrovirus-mediated expression of the base excision repair proteins, formamidopyrimidine DNA glycosylase or human oxoguanine DNA glycosylase, protects hematopoietic cells from N,N′,N′-triethylenethiophosphoramide (thioTEPA)-induced toxicity in vitro and in vivo. Cancer Res 2001; 61: 5116–5125.

    CAS  PubMed  Google Scholar 

  21. Kinsella TM, Nolan GP . Episomal vectors rapidly and stably produce high-titer recombinant retrovirus. Hum Gene Ther 1996; 7: 1405–1413.

    Article  CAS  Google Scholar 

  22. Miller AD, Garcia JV, von Suhr N, Lynch CM, Wilson C, Eiden MV . Construction and properties of retrovirus packaging cells based on gibbon ape leukemia virus. J Virol 1991; 65: 2220–2224.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Meisel R, Bardenheuer W, Strehblow C, Sorg UR, Elmaagacli A, Seeber S et al. Efficient protection from methotrexate toxicity and selection of transduced human hematopoietic cells following gene transfer of dihydrofolate reductase mutants. Exp Hematol 2003; 31: 1215–1222.

    Article  CAS  Google Scholar 

  24. Moritz T, Keller DC, Williams DA . Human cord blood cells as targets for gene transfer: potential use in genetic therapies of severe combined immunodeficiency disease. J Exp Med 1993; 178: 529–536.

    Article  CAS  Google Scholar 

  25. Eliopoulos N, Bovenzi V, Le NL, Momparler LF, Greenbaum M, Letourneau S et al. Retroviral transfer and long-term expression of human cytidine deaminase cDNA in hematopoietic cells following transplantation in mice. Gene Therapy 1998; 5: 1545–1551.

    Article  CAS  Google Scholar 

  26. Johnson SA . Clinical pharmacokinetics of nucleoside analogues: focus on haematological malignancies. Clin Pharmacokinet 2000; 39: 5–26.

    Article  CAS  Google Scholar 

  27. Grunewald R, Kantarjian H, Du M, Faucher K, Tarassoff P, Plunkett W . Gemcitabine in leukemia: a phase I clinical, plasma, and cellular pharmacology study. J Clin Oncol 1992; 10: 406–413.

    Article  CAS  Google Scholar 

  28. Gran C, Boyum A, Johansen RF, Lovhaug D, Seeberg EC . Growth inhibition of granulocyte-macrophage colony-forming cells by human cytidine deaminase requires the catalytic function of the protein. Blood 1998; 91: 4127–4135.

    CAS  PubMed  Google Scholar 

  29. Jansen M, Bardenheuer W, Sorg UR, Seeber S, Flasshove M, Moritz T . Protection of hematopoietic cells from O(6)-alkylation damage by O(6)-methylguanine DNA methyltransferase gene transfer: studies with different O(6)-alkylating agents and retroviral backbones. Eur J Haematol 2001; 67: 2–13.

    Article  CAS  Google Scholar 

  30. Takebe N, Nakahara S, Zhao SC, Adhikari D, Ural AU, Iwamoto M et al. Comparison of methotrexate resistance conferred by a mutated dihydrofolate reductase (DHFR) cDNA in two different retroviral vectors. Cancer Gene Ther 2000; 7: 910–919.

    Article  CAS  Google Scholar 

  31. Ragg S, Xu-Welliver M, Bailey J, D’Souza M, Cooper R, Chandra S et al. Direct reversal of DNA damage by mutant methyltransferase protein protects mice against dose-intensified chemotherapy and leads to in vivo selection of hematopoietic stem cells. Cancer Res 2000; 60: 5187–5195.

    CAS  PubMed  Google Scholar 

  32. Rappa G, Lorico A, Hildinger M, Fodstad O, Baum C . Novel bicistronic retroviral vector expressing gamma-glutamylcysteine synthetase and the multidrug resistance protein 1 (MRP1) protects cells from MRP1-effluxed drugs and alkylating agents. Hum Gene Ther 2001; 12: 1785–1796.

    Article  CAS  Google Scholar 

  33. Knipper R, Kuehlcke K, Schiedlmeier B, Hildinger M, Lindemann C, Schilz AJ et al. Improved post-transcriptional processing of an MDR1 retrovirus elevates expression of multidrug resistance in primary human hematopoietic cells. Gene Therapy 2001; 8: 239–246.

    Article  CAS  Google Scholar 

  34. Baum C, Richters A, Ostertag W . Retroviral vector-mediated gene expression in hematopoietic cells. Curr Opin Mol Ther 1999; 1: 605–612.

    CAS  PubMed  Google Scholar 

  35. Leurs C, Jansen M, Pollok KE, Heinkelein M, Schmidt M, Wissler M et al. Comparison of three retroviral vector systems for transduction of nonobese diabetic/severe combined immunodeficiency mice repopulating human CD34+ cord blood cells. Hum Gene Ther 2003; 14: 509–519.

    Article  CAS  Google Scholar 

  36. Heinkelein M, Dressler M, Jarmy G, Rammling M, Imrich H, Thurow J et al. Improved primate foamy virus vectors and packaging constructs. J Virol 2002; 76: 3774–3783.

    Article  CAS  Google Scholar 

  37. Beausejour CM, Eliopoulos N, Momparler L, Le NL, Momparler RL . Selection of drug-resistant transduced cells with cytosine nucleoside analogs using the human cytidine deaminase gene. Cancer Gene Ther 2001; 8: 669–676.

    Article  CAS  Google Scholar 

  38. Dirksen U, Moritz T, Burdach S, Flasshove M, Hanenberg H . Fanconi anemia and beta c deficiency-associated pulmonary alveolar proteinosis as two hereditary diseases of childhood which are potentially curable by stem cell gene therapy but require different therapeutic approaches. Klin Padiatr 1999; 211: 329–335.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A Feldmann, M Müller, M Möllmann and K Lennartz for excellent technical help and I Demirer for help in preparing the manuscript. The retroviral SF91 and SFβ1 backbones were kindly provided by C Baum (Medizinische Hochschule, Hannover, Germany) und W Ostertag (Heinrich-Pette-Institute, Hamburg, Germany). IL-3 and IL-6 were a gift from Novartis AG, Basel, Switzerland. The work was supported by grant Fla 327/2 from Deutsche Forschungsgemeinschaft (DFG) to T.M. and M.F. and by grants from ‘Interne Forschungsförderung der Medizinischen Fakultät der Universität Essen’ (IFORES) to K.L. and A.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Flasshove.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bardenheuer, W., Lehmberg, K., Rattmann, I. et al. Resistance to cytarabine and gemcitabine and in vitro selection of transduced cells after retroviral expression of cytidine deaminase in human hematopoietic progenitor cells. Leukemia 19, 2281–2288 (2005). https://doi.org/10.1038/sj.leu.2403977

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403977

Keywords

This article is cited by

Search

Quick links