Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genetic diversity and function in the human cytosolic sulfotransferases

Abstract

Amino-acid substitutions, which result from common nonsynonymous (NS) polymorphisms, may dramatically alter the function of the encoded protein. Gaining insight into how these substitutions alter function is a step toward acquiring predictability. In this study, we incorporated gene resequencing, functional genomics, amino-acid characterization and crystal structure analysis for the cytosolic sulfotransferases (SULTs) to attempt to gain predictability regarding the function of variant allozymes. Previously, four SULT genes were resequenced in 118 DNA samples. With additional resequencing of the remaining eight SULT family members in the same DNA samples, a total of 217 polymorphisms were revealed. Of 64 polymorphisms identified within 8785 bp of coding regions from SULT genes examined, 25 were synonymous and 39 were NS. Overall, the proportion of synonymous changes was greater than expected from a random distribution of mutations, suggesting the presence of a selective pressure against amino-acid substitutions. Functional data for common variants of five SULT genes have been previously published. These data, together with the SULT1A1 variant allozyme data presented in this paper, showed that the major mechanism by which amino acid changes altered function in a transient expression system was through decreases in immunoreactive protein rather than changes in enzyme kinetics. Additional insight with regard to mechanisms by which NS single nucleotide polymorphisms alter function was sought by analysis of evolutionary conservation, physicochemical properties of the amino-acid substitutions and crystal structure analysis. Neither individual amino-acid characteristics nor structural models were able to accurately and reliably predict the function of variant allozymes. These results suggest that common amino-acid substitutions may not dramatically alter the protein structure, but affect interactions with the cellular environment that are currently not well understood.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Abbreviations

AA:

African-American

CA:

Caucasian-American

SULT:

sulfotransferase

SNP:

single nucleotide polymorphism

NS:

nonsynonymous

S:

synonymous

WT:

wild type

MAF:

minor allele frequency

EC:

evolutionarily conserved

EU:

evolutionarily unconserved

References

  1. Kruglyak L, Nickerson DA . Variation is the spice of life. Nat Genet 2001; 27: 234–236.

    Article  CAS  PubMed  Google Scholar 

  2. Falany CN . Enzymology of human cytosolic sulfotransferases. FASEB J 1997; 11: 206–216.

    Article  CAS  PubMed  Google Scholar 

  3. Coughtrie MW . Sulfation through the looking glass – recent advances in sulfotransferase research for the curious. Pharmacogenomics J 2002; 2: 297–308.

    Article  CAS  PubMed  Google Scholar 

  4. Weinshilboum RM, Otterness DM, Aksoy IA, Wood TC, Her C, Raftogianis RB . Sulfation and sulfotransferases 1: sulfotransferase molecular biology: cDNAs and genes. FASEB J 1997; 11: 3–14.

    Article  CAS  PubMed  Google Scholar 

  5. Blanchard RL, Freimuth RR, Buck J, Weinshilboum RM, Coughtrie MW . A proposed nomenclature system for the cytosolic sulfotransferase (SULT) superfamily. Pharmacogenetics 2004; 14: 199–211.

    Article  CAS  PubMed  Google Scholar 

  6. Adjei AA, Thomae BA, Prondzinski JL, Eckloff BW, Wieben ED, Weinshilboum RM . Human estrogen sulfotransferase (SULT1E1) pharmacogenomics: gene resequencing and functional genomics. Br J Pharmacol 2003; 139: 1373–1382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Freimuth RR, Eckloff B, Wieben ED, Weinshilboum RM . Human sulfotransferase SULT1C1 pharmacogenetics: gene resequencing and functional genomic studies. Pharmacogenetics 2001; 11: 747–756.

    Article  CAS  PubMed  Google Scholar 

  8. Hildebrandt MA, Salavaggione OE, Martin YN, Flynn HC, Jalal S, Wieben ED et al. Human SULT1A3 pharmacogenetics: gene duplication and functional genomic studies. Biochem Biophys Res Commun 2004; 321: 870–878.

    Article  CAS  PubMed  Google Scholar 

  9. Raftogianis RB, Wood TC, Weinshilboum RM . Human phenol sulfotransferases SULT1A2 and SULT1A1: genetic polymorphisms, allozyme properties, and human liver genotype–phenotype correlations. Biochem Pharmacol 1999; 58: 605–616.

    Article  CAS  PubMed  Google Scholar 

  10. Raftogianis RB, Wood TC, Otterness DM, Van Loon JA, Weinshilboum RM . Phenol sulfotransferase pharmacogenetics in humans: association of common SULT1A1 alleles with TS PST phenotype. Biochem Biophys Res Commun 1997; 239: 298–304.

    Article  CAS  PubMed  Google Scholar 

  11. Thomae BA, Eckloff BW, Freimuth RR, Wieben ED, Weinshilboum RM . Human sulfotransferase SULT2A1 pharmacogenetics: genotype-to-phenotype studies. Pharmacogenomics J 2002; 2: 48–56.

    Article  CAS  PubMed  Google Scholar 

  12. Thomae BA, Rifki OF, Theobald MA, Eckloff BW, Wieben ED, Weinshilboum RM . Human catecholamine sulfotransferase (SULT1A3) pharmacogenetics: functional genetic polymorphism. J Neurochem 2003; 87: 809–819.

    Article  CAS  PubMed  Google Scholar 

  13. Wood TC, Her C, Aksoy I, Otterness DM, Weinshilboum RM . Human dehydroepiandrosterone sulfotransferase pharmacogenetics: quantitative Western analysis and gene sequence polymorphisms. J Steroid Biochem Mol Biol 1996; 59: 467–478.

    Article  CAS  PubMed  Google Scholar 

  14. Bidwell LM, McManus ME, Gaedigk A, Kakuta Y, Negishi M, Pedersen L et al. Crystal structure of human catecholamine sulfotransferase. J Mol Biol 1999; 293: 521–530.

    Article  CAS  PubMed  Google Scholar 

  15. Dajani R, Cleasby A, Neu M, Wonacott AJ, Jhoti H, Hood AM et al. X-ray crystal structure of human dopamine sulfotransferase, SULT1A3. Molecular modeling and quantitative structure–activity relationship analysis demonstrate a molecular basis for sulfotransferase substrate specificity. J Biol Chem 1999; 274: 37862–37868.

    Article  CAS  PubMed  Google Scholar 

  16. Gamage NU, Duggleby RG, Barnett AC, Tresillian M, Latham CF, Liyou NE et al. Structure of a human carcinogen-converting enzyme, SULT1A1. Structural and kinetic implications of substrate inhibition. J Biol Chem 2003; 278: 7655–7662.

    Article  CAS  PubMed  Google Scholar 

  17. Lee KA, Fuda H, Lee YC, Negishi M, Strott CA, Pedersen LC . Crystal structure of human cholesterol sulfotransferase (SULT2B1b) in the presence of pregnenolone and 3′-phosphoadenosine 5′-phosphate. Rationale for specificity differences between prototypical SULT2A1 and the SULT2B1 isoforms. J Biol Chem 2003; 278: 44593–44599.

    Article  CAS  PubMed  Google Scholar 

  18. Pedersen LC, Petrotchenko E, Shevtsov S, Negishi M . Crystal structure of the human estrogen sulfotransferase–PAPS complex: evidence for catalytic role of Ser137 in the sulfuryl transfer reaction. J Biol Chem 2002; 277: 17928–17932.

    Article  CAS  PubMed  Google Scholar 

  19. Pedersen LC, Petrotchenko EV, Negishi M . Crystal structure of SULT2A3, human hydroxysteroid sulfotransferase. FEBS Lett 2000; 475: 61–64.

    Article  CAS  PubMed  Google Scholar 

  20. Shevtsov S, Petrotchenko EV, Pedersen LC, Negishi M . Crystallographic analysis of a hydroxylated polychlorinated biphenyl (OH-PCB) bound to the catalytic estrogen binding site of human estrogen sulfotransferase. Environ Health Perspect 2003; 111: 884–888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rehse PH, Zhou M, Lin SX . Crystal structure of human dehydroepiandrosterone sulphotransferase in complex with substrate. [erratum appears in Biochem J 2002 Jun 15;364(Pt 3):888]. Biochem J 2002; 364(Part 1): 165–171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chang HJ, Shi R, Rehse P, Lin SX . Identifying androsterone (ADT) as a cognate substrate for human dehydroepiandrosterone sulfotransferase (DHEA-ST) important for steroid homeostasis: structure of the enzyme–ADT complex. J Biol Chem 2004; 279: 2689–2696.

    Article  CAS  PubMed  Google Scholar 

  23. Leabman MK, Huang CC, DeYoung J, Carlson EJ, Taylor TR, de la Cruz M et al. Natural variation in human membrane transporter genes reveals evolutionary and functional constraints. Proc Natl Acad Sci USA 2003; 100: 5896–5901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Halushka MK, Fan JB, Bentley K, Hsie L, Shen N, Weder A et al. Patterns of single-nucleotide polymorphisms in candidate genes for blood-pressure homeostasis. Nat Genet 1999; 22: 239–247.

    Article  CAS  PubMed  Google Scholar 

  25. Cargill M, Altshuler D, Ireland J, Sklar P, Ardlie K, Patil N et al. Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat Genet 1999; 22: 231–238.

    Article  CAS  PubMed  Google Scholar 

  26. Stephens JC, Schneider JA, Tanguay DA, Choi J, Acharya T, Stanley SE et al. Haplotype variation and linkage disequilibrium in 313 human genes. Science 2001; 293: 489–493.

    Article  CAS  PubMed  Google Scholar 

  27. Freudenberg-Hua Y, Freudenberg J, Kluck N, Cichon S, Propping P, Nothen MM . Single nucleotide variation analysis in 65 candidate genes for CNS disorders in a representative sample of the European population. Genome Res 2003; 13: 2271–2276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. King JL, Jukes TH . Non-Darwinian evolution. Science 1969; 164: 788–798.

    Article  CAS  PubMed  Google Scholar 

  29. Kimura M . Evolutionary rate at the molecular level. Nature 1968; 217: 624–626.

    Article  CAS  PubMed  Google Scholar 

  30. Tajima F . Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989; 123: 585–595.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Grantham R . Amino acid difference formula to help explain protein evolution. Science 1974; 185: 862–864.

    Article  CAS  PubMed  Google Scholar 

  32. Henikoff S, Henikoff JG . Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci USA 1992; 89: 10915–10919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ng PC, Henikoff S . Predicting deleterious amino acid substitutions. Genome Res 2001; 11: 863–874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ng PC, Henikoff S . SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res 2003; 31: 3812–3814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shu Y, Leabman MK, Feng B, Mangravite LM, Huang CC, Stryke D et al. Evolutionary conservation predicts function of variants of the human organic cation transporter, OCT1. Proc Natl Acad Sci USA 2003; 100: 5902–5907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liyou NE, Buller KM, Tresillian MJ, Elvin CM, Scott HL, Dodd PR et al. Localization of a brain sulfotransferase, SULT4A1, in the human and rat brain: an immunohistochemical study. J Histochem Cytochem 2003; 51: 1655–1664.

    Article  CAS  PubMed  Google Scholar 

  37. Weinshilboum R, Adjei AA . Sulfate conjugation: pharmacogenetics and pharmacogenomics. In: Pacifici GM, Coughtrie MW (eds). Human Cytosolic Sulfotransferases. Taylor and Francis: Boca Raton, Fl, 2005 pp 61–78.

    Google Scholar 

  38. Weinshilboum R, Wang L . Pharmacogenetics: inherited variation in amino acid sequence and altered protein quantity. Clin Pharmacol Ther 2004; 75: 253–258.

    Article  CAS  PubMed  Google Scholar 

  39. Wang L, Sullivan W, Toft D, Weinshilboum R . Thiopurine S-methyltransferase pharmacogenetics: chaperone protein association and allozyme degradation. Pharmacogenetics 2003; 13: 555–564.

    Article  CAS  PubMed  Google Scholar 

  40. Salavaggione OE, Wang L, Wiepert M, Yee VC, Weinshilboum RM . Thiopurine S-methyltransferase pharmacogenetics: variant allele functional and comparative genomics. Pharmacogenet Genomics 2005; 15: 801–815.

    Article  CAS  PubMed  Google Scholar 

  41. Ji Y, Salavaggione OE, Wang L, Adjei AA, Eckloff B, Wieben ED et al. Human phenylethanolamine N-methyltransferase pharmacogenomics: gene re-sequencing and functional genomics. J Neurochem 2005; 95: 1766–1776.

    Article  CAS  PubMed  Google Scholar 

  42. Wang L, Nguyen TV, McLaughlin RW, Sikkink LA, Ramirez-Alvarado M, Weinshilboum RM . Human thiopurine S-methyltransferase pharmacogenetics: variant allozyme misfolding and aggresome formation. Proc Natl Acad Sci USA 2005; 102: 9394–9399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hartl DL, Clark AG . Principles of Population Genetics, 3rd edn. Sinauer Associates Inc.: Sunderland, MA, 2000.

    Google Scholar 

  44. Ramensky V, Bork P, Sunyaev S . Human non-synonymous SNPs: server and survey. Nucleic Acids Res 2002; 30: 3894–3900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jones TA, Zou JY, Cowan SW, Kjeldgaard M . Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A 1991; 47(Part 2): 110–119.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Luanne Wussow for her assistance with the manuscript. This work was supported in part by the National Institutes of Health (NIH) Grants RO1 GM35720 (MATH, BAT and RMW) and UO1 GM61388, The Pharmacogenetics Research Network (MATH, DPC, BAT, BWE, DJS, VCY, RMW and EDW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E D Wieben.

Additional information

Duality of interest

None.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hildebrandt, M., Carrington, D., Thomae, B. et al. Genetic diversity and function in the human cytosolic sulfotransferases. Pharmacogenomics J 7, 133–143 (2007). https://doi.org/10.1038/sj.tpj.6500404

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.tpj.6500404

Keywords

This article is cited by

Search

Quick links