Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The influence of SLCO1B1 (OATP1B1) gene polymorphisms on response to statin therapy

Abstract

Statins (3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors) are well established in the treatment of hypercholesterolaemia and the prevention of coronary artery disease. Despite this, there is wide inter-individual variability in response to statin therapy, in terms of both lipid-lowering and adverse drug reactions. The major site of statin action is within hepatocytes and recent interest has focussed on genetic variation in hepatic influx and efflux transporters for their potential to explain these differences. In this review we explore current literature regarding the pharmacokinetic and pharmacodynamic influence of the common c.388A>G and c.521T>C single-nucleotide polymorphisms (SNPs) within the solute carrier organic anion transporter 1B1 (SLCO1B1) gene, encoding the organic anion transporter polypeptide 1B1 (OATP1B1) influx transporter. We discuss their potential to predict the efficacy of statin therapy and the likelihood that patients will experience adverse effects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Rosamond W, Flegal K, Friday G, Furie K, Go A, Greenlund K et al. Heart disease and stroke statistics—2007 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 2007; 115: e69–e171.

    Article  PubMed  Google Scholar 

  2. Zineh I . HMG-CoA reductase inhibitor pharmacogenomics: overview and implications for practice. Future Cardiol 2005; 1: 191–206.

    Article  CAS  PubMed  Google Scholar 

  3. Mangravite LM, Thorn CF, Krauss RM . Clinical implications of pharmacogenomics of statin treatment. Pharmacogenomics J 2006; 6: 360–374.

    Article  CAS  PubMed  Google Scholar 

  4. Tachibana-Iimori R, Tabara Y, Kusuhara H, Kohara K, Kawamoto R, Nakura J et al. Effect of genetic polymorphism of OATP-C (SLCO1B1) on lipid-lowering response to HMG-CoA reductase inhibitors. Drug Metab Pharmacokinet 2004; 19: 375–380.

    Article  CAS  PubMed  Google Scholar 

  5. Baigent C, Keech A, Kearney PM, Blackwell L, Buck G, Pollicino C et al. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 2005; 366: 1267–1278.

    Article  CAS  Google Scholar 

  6. Pearson TA, Laurora I, Chu H, Kafonek S . The lipid treatment assessment project (L-TAP): a multicenter survey to evaluate the percentages of dyslipidemic patients receiving lipid-lowering therapy and achieving low-density lipoprotein cholesterol goals. Arch Intern Med 2000; 160: 459–467.

    Article  CAS  PubMed  Google Scholar 

  7. Harper CR, Jacobson TA . The broad spectrum of statin myopathy: from myalgia to rhabdomyolysis. Curr Opin Lipidol 2007; 18: 401–408.

    Article  CAS  PubMed  Google Scholar 

  8. Joy TR, Hegele RA . Narrative review: statin-related myopathy. Ann Intern Med 2009; 150: 858–868.

    Article  PubMed  Google Scholar 

  9. Law M, Rudnicka AR . Statin safety: a systematic review. Am J Cardiol 2006; 97 : 52C–60C.

    Article  CAS  PubMed  Google Scholar 

  10. Vaklavas C, Chatzizisis YS, Ziakas A, Zamboulis C, Giannoglou GD . Molecular basis of statin-associated myopathy. Atherosclerosis 2009; 202: 18–28.

    Article  CAS  PubMed  Google Scholar 

  11. Armitage J . The safety of statins in clinical practice. Lancet 2007; 370: 1781–1790.

    Article  CAS  PubMed  Google Scholar 

  12. Neuvonen PJ, Niemi M, Backman JT . Drug interactions with lipid-lowering drugs: mechanisms and clinical relevance. Clin Pharmacol Ther 2006; 80: 565–581.

    Article  CAS  PubMed  Google Scholar 

  13. Mangravite LM, Krauss RM . Pharmacogenomics of statin response. Curr Opin Lipidol 2007; 18: 409–414.

    CAS  PubMed  Google Scholar 

  14. Kim RB . 3-Hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors (statins) and genetic variability (single nucleotide polymorphisms) in a hepatic drug uptake transporter: what's it all about? Clin Pharmacol Ther 2004; 75: 381–385.

    Article  CAS  PubMed  Google Scholar 

  15. Maeda K, Sugiyama Y . Impact of genetic polymorphisms of transporters on the pharmacokinetic, pharmacodynamic and toxicological properties of anionic drugs. Drug Metab Pharmacokinet 2008; 23: 223–235.

    Article  CAS  PubMed  Google Scholar 

  16. Kameyama Y, Yamashita K, Kobayashi K, Hosokawa M, Chiba K . Functional characterization of SLCO1B1 (OATP-C) variants, SLCO1B1*5, SLCO1B1*15 and SLCO1B1*15+C1007G, by using transient expression systems of HeLa and HEK293 cells. Pharmacogenet Genomics 2005; 15: 513–522.

    Article  CAS  PubMed  Google Scholar 

  17. Deng JW, Song IS, Shin HJ, Yeo CW, Cho DY, Shon JH et al. The effect of SLCO1B1*15 on the disposition of pravastatin and pitavastatin is substrate dependent: the contribution of transporting activity changes by SLCO1B1*15. Pharmacogenet Genomics 2008; 18: 424–433.

    Article  CAS  PubMed  Google Scholar 

  18. Pasanen MK, Fredrikson H, Neuvonen PJ, Niemi M . Different effects of SLCO1B1 polymorphism on the pharmacokinetics of atorvastatin and rosuvastatin. Clin Pharmacol Ther 2007; 82: 726–733.

    Article  CAS  PubMed  Google Scholar 

  19. Ieiri I, Higuchi S, Sugiyama Y . Genetic polymorphisms of uptake (OATP1B1, 1B3) and efflux (MRP2, BCRP) transporters: implications for inter-individual differences in the pharmacokinetics and pharmacodynamics of statins and other clinically relevant drugs. Expert Opin Drug Metab Toxicol 2009; 5: 703–729.

    Article  CAS  PubMed  Google Scholar 

  20. Niemi M . Role of OATP transporters in the disposition of drugs. Pharmacogenomics 2007; 8: 787–802.

    Article  CAS  PubMed  Google Scholar 

  21. Keskitalo JE, Kurkinen KJ, Neuvoneni PJ, Niemi M . ABCB1 haplotypes differentially affect the pharmacokinetics of the acid and lactone forms of simvastatin and atorvastatin. Clin Pharmacol Ther 2008; 84: 457–461.

    Article  CAS  PubMed  Google Scholar 

  22. Keskitalo JE, Kurkinen KJ, Neuvonen M, Backman JT, Neuvonen PJ, Niemi M . No significant effect of ABCB1 haplotypes on the pharmacokinetics of fluvastatin, pravastatin, lovastatin, and rosuvastatin. Br J Clin Pharmacol 2009; 68: 207–213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Holtzman CW, Wiggins BS, Spinler SA . Role of P-glycoprotein in statin drug interactions. Pharmacotherapy 2006; 26: 1601–1607.

    Article  CAS  PubMed  Google Scholar 

  24. Shitara Y, Sugiyama Y . Pharmacokinetic and pharmacodynamic alterations of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors: drug-drug interactions and interindividual differences in transporter and metabolic enzyme functions. Pharmacol Ther 2006; 112: 71–105.

    Article  CAS  PubMed  Google Scholar 

  25. Niemi M, Arnold KA, Backman JT, Pasanen MK, Godtel-Armbrust U, Wojnowski L et al. Association of genetic polymorphism in ABCC2 with hepatic multidrug resistance-associated protein 2 expression and pravastatin pharmacokinetics. Pharmacogenet Genomics 2006; 16: 801–808.

    Article  CAS  PubMed  Google Scholar 

  26. Ho RH, Choi L, Lee W, Mayo G, Schwarz UI, Tirona RG et al. Effect of drug transporter genotypes on pravastatin disposition in European- and African-American participants. Pharmacogenet Genomics 2007; 17: 647–656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Keskitalo JE, Zolk O, Fromm MF, Kurkinen KJ, Neuvonen PJ, Niemi M . ABCG2 polymorphism markedly affects the pharmacokinetics of atorvastatin and rosuvastatin. Clin Pharmacol Ther 2009; 86: 197–203.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang W, Yu BN, He YJ, Fan L, Li Q, Liu ZQ et al. Role of BCRP 421C>A polymorphism on rosuvastatin pharmacokinetics in healthy Chinese males. Clin Chim Acta 2006; 373: 99–103.

    Article  CAS  PubMed  Google Scholar 

  29. Ieiri I, Suwannakul S, Maeda K, Uchimaru H, Hashimoto K, Kimura M et al. SLCO1B1 (OATP1B1, an uptake transporter) and ABCG2 (BCRP, an efflux transporter) variant alleles and pharmacokinetics of pitavastatin in healthy volunteers. Clin Pharmacol Ther 2007; 82: 541–547.

    Article  CAS  PubMed  Google Scholar 

  30. Hsiang B, Zhu Y, Wang Z, Wu Y, Sasseville V, Yang WP et al. A novel human hepatic organic anion transporting polypeptide (OATP2). Identification of a liver-specific human organic anion transporting polypeptide and identification of rat and human hydroxymethylglutaryl-CoA reductase inhibitor transporters. J Biol Chem 1999; 274: 37161–37168.

    Article  CAS  PubMed  Google Scholar 

  31. Ito K, Suzuki H, Horie T, Sugiyama Y . Apical/basolateral surface expression of drug transporters and its role in vectorial drug transport. Pharm Res 2005; 22: 1559–1577.

    Article  CAS  PubMed  Google Scholar 

  32. Shitara Y, Hirano M, Sato H, Sugiyama Y . Gemfibrozil and its glucuronide inhibit the organic anion transporting polypeptide 2 (OATP2/OATP1B1:SLC21A6)-mediated hepatic uptake and CYP2C8-mediated metabolism of cerivastatin: analysis of the mechanism of the clinically relevant drug-drug interaction between cerivastatin and gemfibrozil. J Pharmacol Exp Ther 2004; 311: 228–236.

    Article  CAS  PubMed  Google Scholar 

  33. Brown CDA, Windass A, Bleasby K, Lauffart B . Rosuvastatin is a high affinity substrate of hepatic organic anion transporter OATP-C (abstract). Atheroscler Suppl 2001; 2: 90.

    Article  Google Scholar 

  34. Pasanen MK, Neuvonen M, Neuvonen PJ, Niemi M . SLCO1B1 polymorphism markedly affects the pharmacokinetics of simvastatin acid. Pharmacogenet Genomics 2006; 16: 873–879.

    Article  CAS  PubMed  Google Scholar 

  35. Tirona RG, Leake BF, Merino G, Kim RB . Polymorphisms in OATP-C: identification of multiple allelic variants associated with altered transport activity among European- and African-Americans. J Biol Chem 2001; 276: 35669–35675.

    Article  CAS  PubMed  Google Scholar 

  36. Lee E, Ryan S, Birmingham B, Zalikowski J, March R, Ambrose H et al. Rosuvastatin pharmacokinetics and pharmacogenetics in white and Asian subjects residing in the same environment. Clin Pharmacol Ther 2005; 78: 330–341.

    Article  CAS  PubMed  Google Scholar 

  37. Nishizato Y, Ieiri I, Suzuki H, Kimura M, Kawabata K, Hirota T et al. Polymorphisms of OATP-C (SLC21A6) and OAT3 (SLC22A8) genes: consequences for pravastatin pharmacokinetics. Clin Pharmacol Ther 2003; 73: 554–565.

    Article  CAS  PubMed  Google Scholar 

  38. Pasanen MK, Backman JT, Neuvonen PJ, Niemi M . Frequencies of single nucleotide polymorphisms and haplotypes of organic anion transporting polypeptide 1B1 SLCO1B1 gene in a Finnish population. Eur J Clin Pharmacol 2006; 62: 409–415.

    Article  CAS  PubMed  Google Scholar 

  39. Pasanen MK, Neuvonen PJ, Niemi M . Global analysis of genetic variation in SLCO1B1. Pharmacogenomics 2008; 9: 19–33.

    Article  CAS  PubMed  Google Scholar 

  40. Thompson JF, Man M, Johnson KJ, Wood LS, Lira ME, Lloyd DB et al. An association study of 43 SNPs in 16 candidate genes with atorvastatin response. Pharmacogenomics J 2005; 5: 352–358.

    Article  CAS  PubMed  Google Scholar 

  41. Ho RH, Tirona RG, Leake BF, Glaeser H, Lee W, Lemke CJ et al. Drug and bile acid transporters in rosuvastatin hepatic uptake: function, expression, and pharmacogenetics. Gastroenterology 2006; 130: 1793–1806.

    Article  CAS  PubMed  Google Scholar 

  42. Nozawa T, Nakajima M, Tamai I, Noda K, Nezu J, Sai Y et al. Genetic polymorphisms of human organic anion transporters OATP-C (SLC21A6) and OATP-B (SLC21A9): allele frequencies in the Japanese population and functional analysis. J Pharmacol Exp Ther 2002; 302: 804–813.

    Article  CAS  PubMed  Google Scholar 

  43. Iwai M, Suzuki H, Ieiri I, Otsubo K, Sugiyama Y . Functional analysis of single nucleotide polymorphisms of hepatic organic anion transporter OATP1B1 (OATP-C). Pharmacogenetics 2004; 14: 749–757.

    Article  CAS  PubMed  Google Scholar 

  44. Michalski C, Cui Y, Nies AT, Nuessler AK, Neuhaus P, Zanger UM et al. A naturally occurring mutation in the SLC21A6 gene causing impaired membrane localization of the hepatocyte uptake transporter. J Biol Chem 2002; 277: 43058–43063.

    Article  CAS  PubMed  Google Scholar 

  45. Igel M, Arnold KA, Niemi M, Hofmann U, Schwab M, Lutjohann D et al. Impact of the SLCO1B1 polymorphism on the pharmacokinetics and lipid-lowering efficacy of multiple-dose pravastatin. Clin Pharmacol Ther 2006; 79: 419–426.

    Article  CAS  PubMed  Google Scholar 

  46. Niemi M, Pasanen MK, Neuvonen PJ . SLCO1B1 polymorphism and sex affect the pharmacokinetics of pravastatin but not fluvastatin. Clin Pharmacol Ther 2006; 80: 356–366.

    Article  CAS  PubMed  Google Scholar 

  47. Link E, Parish S, Armitage J, Bowman L, Heath S, Matsuda F et al. SLCO1B1 variants and statin-induced myopathy—a genomewide study. N Engl J Med 2008; 359: 789–799.

    Article  CAS  PubMed  Google Scholar 

  48. Mwinyi J, Johne A, Bauer S, Roots I, Gerloff T . Evidence for inverse effects of OATP-C (SLC21A6) 5 and 1b haplotypes on pravastatin kinetics. Clin Pharmacol Ther 2004; 75: 415–421.

    Article  CAS  PubMed  Google Scholar 

  49. Maeda K, Ieiri I, Yasuda K, Fujino A, Fujiwara H, Otsubo K et al. Effects of organic anion transporting polypeptide 1B1 haplotype on pharmacokinetics of pravastatin, valsartan, and temocapril. Clin Pharmacol Ther 2006; 79: 427–439.

    Article  CAS  PubMed  Google Scholar 

  50. Kalliokoski A, Backman JT, Neuvonen PJ, Niemi M . Effects of the SLCO1B1*1B haplotype on the pharmacokinetics and pharmacodynamics of repaglinide and nateglinide. Pharmacogenet Genomics 2008; 18: 937–942.

    Article  CAS  PubMed  Google Scholar 

  51. Takane H, Miyata M, Burioka N, Shigemasa C, Shimizu E, Otsubo K et al. Pharmacogenetic determinants of variability in lipid-lowering response to pravastatin therapy. J Hum Genet 2006; 51: 822–826.

    Article  CAS  PubMed  Google Scholar 

  52. Zhang W, Chen BL, Ozdemir V, He YJ, Zhou G, Peng DD et al. SLCO1B1 521T → C functional genetic polymorphism and lipid-lowering efficacy of multiple-dose pravastatin in Chinese coronary heart disease patients. Br J Clin Pharmacol 2007; 64: 346–352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Heart Protection Study Collaborative Group. MRC/BHF heart protection study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 2002; 360: 7–22.

    Article  Google Scholar 

Download references

Acknowledgements

SPRR thanks Heart Research UK who provided support in the form of a Leeds Undergraduate Research Enterprise (LURE) scholarship, and the Jean Shanks Foundation who provided support in the form of an intercalated degree bursary. KMB was supported by the Arnold Tunstall Fellowship awarded by the Leeds Teaching Hospitals Charitable Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S P R Romaine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romaine, S., Bailey, K., Hall, A. et al. The influence of SLCO1B1 (OATP1B1) gene polymorphisms on response to statin therapy. Pharmacogenomics J 10, 1–11 (2010). https://doi.org/10.1038/tpj.2009.54

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2009.54

Keywords

This article is cited by

Search

Quick links