Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genetic and epigenetic regulation of the organic cation transporter 3, SLC22A3

Abstract

Human organic cation transporter 3 (OCT3 and SLC22A3) mediates the uptake of many important endogenous amines and basic drugs in a variety of tissues. OCT3 is identified as one of the important risk loci for prostate cancer, and is markedly underexpressed in aggressive prostate cancers. The goal of this study was to identify genetic and epigenetic factors in the promoter region that influence the expression level of OCT3. Haplotypes that contained the common variants, g.−81G>delGA (rs60515630) (minor allele frequency 11.5% in African American) and g.−2G>A (rs555754) (minor allele frequency>30% in all ethnic groups) showed significant increases in luciferase reporter activities and exhibited stronger transcription factor-binding affinity than the haplotypes that contained the major alleles. Consistent with the reporter assays, OCT3 messenger RNA expression levels were significantly higher in Asian (P<0.001) and Caucasian (P<0.05) liver samples from individuals who were homozygous for g.−2A/A in comparison with those homozygous for the g.−2G/G allele. Studies revealed that the methylation level in the basal promoter region of OCT3 was associated with OCT3 expression level and tumorigenesis capability in various prostate cancer cell lines. The methylation level of the OCT3 promoter was higher in 62% of prostate tumor samples compared with matched normal samples. Our studies demonstrate that genetic polymorphisms in the proximal promoter region of OCT3 alter the transcription rate of the gene and may be associated with altered expression levels of OCT3 in human liver. Aberrant methylation contributes to the reduced expression of OCT3 in prostate cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Tregouet DA, Konig IR, Erdmann J, Munteanu A, Braund PS, Hall AS et al. Genome-wide haplotype association study identifies the SLC22A3-LPAL2-LPA gene cluster as a risk locus for coronary artery disease. Nat Genet 2009; 41: 283–285.

    Article  CAS  PubMed  Google Scholar 

  2. Lazar A, Walitza S, Jetter A, Gerlach M, Warnke A, Herpertz-Dahlmann B et al. Novel mutations of the extraneuronal monoamine transporter gene in children and adolescents with obsessive-compulsive disorder. Int J Neuropsychopharmacol 2008; 11: 35–48.

    Article  CAS  PubMed  Google Scholar 

  3. Eeles RA, Kote-Jarai Z, Giles GG, Al Olama AA, Guy M, Jugurnauth SK et al. Multiple newly identified loci associated with prostate cancer susceptibility. Nature Genet 2008; 40: 316–321.

    Article  CAS  PubMed  Google Scholar 

  4. Tomlins SA, Mehra R, Rhodes DR, Cao X, Wang L, Dhanasekaran SM et al. Integrative molecular concept modeling of prostate cancer progression. Nat Genet 2007; 39: 41–51.

    Article  CAS  PubMed  Google Scholar 

  5. Cui R, Okada Y, Jang SG, Ku JL, Park JG, Kamatani Y et al. Common variant in 6q26-q27 is associated with distal colon cancer in an Asian population. Gut 2011; 60 (6): 799–805 [Epub ahead of print].

    Article  CAS  PubMed  Google Scholar 

  6. True L, Coleman I, Hawley S, Huang CY, Gifford D, Coleman R et al. A molecular correlate to the Gleason grading system for prostate adenocarcinoma. Proc Natl Acad Sci USA 2006; 103: 10991–10996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen L, Pawlikowski B, Schlessinger A, More SS, Stryke D, Johns SJ et al. Role of organic cation transporter 3 (SLC22A3) and its missense variants in the pharmacologic action of metformin. Pharmacogenet Genom 2010; 20: 687–699.

    Article  CAS  Google Scholar 

  8. Baganz NL, Horton RE, Calderon AS, Owens WA, Munn JL, Watts LT et al. Organic cation transporter 3: keeping the brake on extracellular serotonin in serotonin-transporter-deficient mice. Proc Natl Acad Sci USA 2008; 105: 18976–18981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Koepsell H, Lips K, Volk C . Polyspecific organic cation transporters: structure, function, physiological roles, and biopharmaceutical implications. Pharm Res 2007; 24: 1227–1251.

    Article  CAS  PubMed  Google Scholar 

  10. Ogasawara M, Yamauchi K, Satoh Y, Yarnaji R, Inui K, Jonker JW et al. Recent advances in molecular pharmacology of the histamine systems: organic cation transporters as a histamine transporter and histamine metabolism. J Pharmacol Sci 2006; 101: 24–30.

    Article  CAS  PubMed  Google Scholar 

  11. Nies AT, Koepsell H, Winter S, Burk O, Klein K, Kerb R et al. Expression of organic cation transporters OCT1 (SLC22A1) and OCT3 (SLC22A3) is affected by genetic factors and cholestasis in human liver. Hepatol 2009; 50: 1227–1240.

    Article  CAS  Google Scholar 

  12. Yonezawa A, Inui K . Organic cation transporter OCT/SLC22A and H+/organic cation antiporter MATE/SLC47A are key molecules for nephrotoxicity of platinum agents. Biochem Pharmacol 2011; 81: 563–568.

    Article  CAS  PubMed  Google Scholar 

  13. Yokoo S, Masuda S, Yonezawa A, Terada T, Katsura T, Inui KI . Significance of organic cation transporter 3 (SLC22A3) expression for the cytotoxic effect of oxaliplatin in colorectal cancer. Drug Metab Dispos 2008; 36: 2299–2306.

    Article  CAS  PubMed  Google Scholar 

  14. Waters KM, Le Marchand L, Kolonel LN, Monroe KR, Stram DO, Henderson BE et al. Generalizability of associations from prostate cancer genome-wide association studies in multiple populations. Cancer Epidem Biomar 2009; 18: 1285–1289.

    Article  CAS  Google Scholar 

  15. Kader AK, Sun JL, Isaacs SD, Wiley KE, Yan GF, Kim ST et al. Individual and cumulative effect of prostate cancer risk-associated variants on clinicopathologic variables in 5,895 prostate cancer patients. Prostate 2009; 69: 1195–1205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yee SW, Shima JE, Hesselson S, Nguyen L, De Val S, LaFond RJ et al. Identification and characterization of proximal promoter polymorphisms in the human concentrative nucleoside transporter 2 (SLC28A2). J Pharmacol Exp Ther 2009; 328: 699–707.

    Article  CAS  PubMed  Google Scholar 

  17. Choi JH, Yee SW, Kim MJ, Nguyen L, Lee JH, Kang JO et al. Identification and characterization of novel polymorphisms in the basal promoter of the human transporter, MATE1. Pharmacogenet Genom 2009; 19: 770–780.

    Article  CAS  Google Scholar 

  18. Hesselson SE, Matsson P, Shima JE, Fukushima H, Yee SW, Kobayashi Y et al. Genetic variation in the proximal promoter of ABC and SLC superfamilies: liver and kidney specific expression and promoter activity predict variation. PLoS One 2009; 4: 1–12.

    Article  Google Scholar 

  19. Tahara H, Yee SW, Urban TJ, Hesselson S, Castro RA, Kawamoto M et al. Functional genetic variation in the basal promoter of the organic cation/carnitine transporters OCTN1 (SLC22A4) and OCTN2 (SLC22A5). J Pharmacol Exp Ther 2009; 329: 262–271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Brena RM, Costello JF . Genome-epigenome interactions in cancer. Hum Mol Genet 2007; 16: R96–105.

    Article  CAS  PubMed  Google Scholar 

  21. Das PM, Singal R . DNA methylation and cancer. J Clin Oncol 2004; 22: 4632–4642.

    Article  CAS  PubMed  Google Scholar 

  22. Rodríguez-Paredes M, Esteller M . Cancer epigenetics reaches mainstream oncology. Nat Med 2011; 17: 330–339.

    Article  PubMed  Google Scholar 

  23. Ezzeldin HH, Lee AM, Mattison LK, Diasio RB . Methylation of the DPYD promoter: an alternative mechanism for dihydropyrimidine dehydrogenase deficiency in cancer patients. Clin Cancer Res 2005; 11: 8699–8705.

    Article  CAS  PubMed  Google Scholar 

  24. Yu JS, Freimuth RR, Culverhouse R, Marsh S, Watson MA, McLeod HL . DNA methylotype analysis in colorectal cancer. Oncol Rep 2008; 20: 921–927.

    CAS  PubMed  Google Scholar 

  25. Yu JS, McLeod HL . Methylation of the DPYD promoter and dihydropyrimidine dehydrogenase deficiency. Clin Cancer Res 2006; 12: 3864.

    Article  CAS  PubMed  Google Scholar 

  26. Teodoridis JM, Hall J, Marsh S, Kannall HD, Smyth C, Curto J et al. CpG island methylation of DNA damage response genes in advanced ovarian cancer. Cancer Res 2005; 65: 8961–8967.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang X, Soong R, Wang K, Li L, Davie JR, Guarcello V et al. Suppression of DPYD expression in RKO Cells via DNA methylation in the regulatory region of the DPYD promoter: a potentially important epigenetic mechanism regulating DPYD expression. Biochem Cell Biol 2007; 85: 337–346.

    Article  CAS  PubMed  Google Scholar 

  28. Kikuchi R, Kusuhara H, Hattori N, Shiota K, Kim I, Gonzalez FJ et al. Regulation of the expression of human organic anion transporter 3 by hepatocyte nuclear factor 1 α/β and DNA methylation. Mol Pharmacol 2006; 70: 887–896.

    Article  CAS  PubMed  Google Scholar 

  29. Ichihara S, Kikuchi R, Kusuhara H, Imai S, Maeda K, Sugiyama Y . DNA methylation profiles of organic anion transporting polypeptide 1B3 in cancer cell lines. Pharm Res 2010; 27: 510–516.

    Article  CAS  PubMed  Google Scholar 

  30. Kikuchi R, Yagi S, Kusuhara H, Imai S, Sugiyama Y, Shiota K . Genome-wide analysis of epigenetic signatures for kidney-specific transporters. Kidney Int 2010; 78: 569–577.

    Article  CAS  PubMed  Google Scholar 

  31. Imai S, Kikuchi R, Kusuhara H, Yagi S, Shiota K, Sugiyama Y . Analysis of DNA methylation and histone modification profiles of liver-specific transporters. Mol Pharmacol 2009; 75: 568–576.

    Article  CAS  PubMed  Google Scholar 

  32. Terada T, Inui K . Gene expression and regulation of drug transporters in the intestine and kidney. Biochem Pharmacol 2007; 73: 440–449.

    Article  CAS  PubMed  Google Scholar 

  33. Tokuzawa Y, Kaiho E, Maruyama M, Takahashi K, Mitsui K, Maeda M et al. Fbx15 is a novel target of Oct3/4 but is dispensable for embryonic stem cell self-renewal and mouse development. Mol Cell Biol 2003; 23: 2699–2708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hong CB, Moorefield KS, Jun P, Aldape KD, Kharbanda S, Phillips HS et al. Epigenome scans and cancer genome sequencing converge on WNK2, a kinase-independent suppressor of cell growth. Proc Natl Acad Sci USA 2007; 104: 10974–10979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Koeneman KS, Yeung F, Chung LW . Osteomimetic properties of prostate cancer cells: a hypothesis supporting the predilection of prostate cancer metastasis and growth in the bone environment. Prostate 1999; 39: 246–261.

    Article  CAS  PubMed  Google Scholar 

  36. Pulukuri SM, Gondi CS, Lakka SS, Jutla A, Estes N, Gujrati M et al. RNA interference-directed knockdown of urokinase plasminogen activator and urokinase plasminogen activator receptor inhibits prostate cancer cell invasion, survival, and tumorigenicity in vivo. J Biol Chem 2005; 280: 36529–36540.

    Article  CAS  PubMed  Google Scholar 

  37. Schadt EE, Molony C, Chudin E, Hao K, Yang X, Lum PY et al. Mapping the genetic architecture of gene expression in human liver. PLoS Biol 2008; 6: 1020–1032.

    Article  CAS  Google Scholar 

  38. Brena RM, Plass C, Costello JF . Mining methylation for early detection of common cancers. PLoS Med 2006; 3: 2184–2185.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The project was supported by NIH grant GM61390. Eugene Chen was supported in part by NIH training grant T32 GM007175. We highly appreciate Dr Suet-Tim Cheung at the University of Hong Kong to provide human liver samples, and Dr Peter Carroll and Dr Hubert Stoppler in the Cancer Tissue Center in UCSF for the prostate cancer tissues. Lu Xu is a visiting graduate student from University of the Pacific.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K M Giacomini.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, L., Hong, C., Chen, E. et al. Genetic and epigenetic regulation of the organic cation transporter 3, SLC22A3. Pharmacogenomics J 13, 110–120 (2013). https://doi.org/10.1038/tpj.2011.60

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2011.60

Keywords

This article is cited by

Search

Quick links