Skip to main content

Advertisement

Log in

Role of the breast cancer resistance protein (ABCG2) in drug transport

  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

The 72-kDa breast cancer resistance protein (BCRP) is the second member of the subfamily G of the human ATP binding cassette (ABC) transporter superfamily and thus also designated as ABCG2. Unlike P-glycoprotein and MRP1, which are arranged in 2 repeated halves, BCRP is a half-transporter consisting of only 1 nucleotide binding domain followed by 1 membrane-spanning domain. Current experimental evidence suggests that BCRP may function as a homodimer or homotetramer. Overexpression of BCRP is associated with high levels of resistance to a variety of anticancer agents, including anthracyclines, mitoxantrone, and the camptothecins, by enhancing drug efflux. BCRP expression has been detected in a large number of hematological malignancies and solid tumors, indicating that this transporter may play an important role in clinical drug resistance of cancers. In addition to its role to confer resistance against chemotherapeutic agents, BCRP actively transports structurally diverse organic molecules, conjugated or unconjugated, such as estrone-3-sulfate, 17β-estradiol 17-(β-D-glucuronide), and methotrexate. BCRP is highly expressed in the placental syncytiotrophoblasts, in the apical membrane of the epithelium in the small intestine, in the liver canalicular membrane, and at the luminal surface of the endothelial cells of human brain microvessels. This strategic and substantial tissue localization indicates that BCRP also plays an important role in absorption, distribution, and elimination of drugs that are BCRP substrates. This review summarizes current knowledge of BCRP and its relevance to multidrug resistance and drug disposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambudkar SV, Kimchi-Sarfaty C, Sauna ZE, Gottesman MM. P-glycoprotein: from genomies to mechanism.Oncogene. 2003;22:7468–7485.

    Article  PubMed  CAS  Google Scholar 

  2. Haimeur A, Conseil G, Deeley RG, Cole SP. The MRP-related and BCRP/ABCG2 multidrug resistance proteins: biology, substrate specificity and regulation.Curr Drug Metab. 2004;5:21–53.

    Article  PubMed  CAS  Google Scholar 

  3. Doyle LA, Yang W, Abruzzo LV, et al. A multidrug resistance transporter from human MCF-7 breast cancer cells.Proc Natl Acad Sci USA. 1998;95:15665–15670.

    Article  PubMed  CAS  Google Scholar 

  4. Miyake K, Mickley L, Litman T, et al. Molecular cloning of cDNAs which are highly overexpressed in mitoxantrone resistant cells: demonstration of homology to ABC transport genes.Cancer Res. 1999;59:8–13.

    PubMed  CAS  Google Scholar 

  5. Allikmets R, Schriml LM, Hutchinson A, Romano-Spica V, Dean M. A human placenta-specific ATP-binding cassette gene (ABCP) on chromosome 4q22 that is involved in multidrug resistance.Cancer Res. 1998;58:5337–5339.

    PubMed  CAS  Google Scholar 

  6. Rocchi E, Khodjakov A, Volk EL, et al. The product of the ABC half-transporter gene ABCG2 (BCRP/MXR/ABCP) is expressed in the plasma membrane.Biochem Biophys Res Commun. 2000;271:42–46.

    Article  PubMed  CAS  Google Scholar 

  7. Maliepaard M, Scheffer GL, Faneyte IF, et al. Subcellular localization and distribution of the breast cancer resistance protein transporter in normal human tissues.Cancer Res. 2001;61:3458–3464.

    PubMed  CAS  Google Scholar 

  8. Allen JD, Schinkel AH. Multidrug resistance and pharmacological protection mediated by the breast cancer resistance protein (BCRP/ABCG2).Mol Cancer Ther. 2002;1:427–434.

    PubMed  CAS  Google Scholar 

  9. Doyle LA, Ross DD. Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2).Oncogene. 2003;22:7340–7358.

    Article  PubMed  CAS  Google Scholar 

  10. Bates SE, Robey R, Miyake K, Rao K, Ross DD, Litman T. The role of half-transporters in multidrug resistance.J Bioenerg Biomembr. 2001;33:503–511.

    Article  PubMed  CAS  Google Scholar 

  11. Dean M, Allikmets R. Complete characterization of the human ABC gene family.J Bioenerg Biomembr. 2001;33:475–479.

    Article  PubMed  CAS  Google Scholar 

  12. Borst P, Elferink RO. Mammalian ABC transporters in health and disease.Annu Rev Biochem. 2002;71:537–592.

    Article  PubMed  CAS  Google Scholar 

  13. Riordan JR. Cystic fibrosis as a disease of misprocessing of the cystic fibrosis transmembrane conductance regulator glycoprotein.Am J Hum Genet. 1999;64:1499–1504.

    Article  PubMed  CAS  Google Scholar 

  14. Arnell H, Mantyjarvi M, Tuppurainen K, Andreasson S, Dahl N. Stargardt disease: linkage to the ABCR gene region on lp21-p22 in Scandinavian families.Acta Ophthalmol Scand. 1998;76:649–652.

    Article  PubMed  CAS  Google Scholar 

  15. Kartenbeck J, Leuschner U, Mayer R, Keppler D. Absence of the canalicular isoform of the MRP gene-encoded conjugate export pump from the hepatocytes in Dubin-Johnson syndrome.Hepatology. 1996;23:1061–1066.

    PubMed  CAS  Google Scholar 

  16. Klucken J, Buchler C, Orso E, et al. ABCG1 (ABC8), the human homolog of the Drosophila white gene, is a regulator of macrophage cholesterol and phospholipid transport.Proc Natl Acad Sci USA. 2000;97:817–822.

    Article  PubMed  CAS  Google Scholar 

  17. Yu L, von Bergmann K, Lutjohann D, Hobbs HH, Cohen JC. Selective sterol accumulation in ABCG5/ABCG8-deficient mice.J Lipid Res. 2004;45:301–307.

    Article  PubMed  CAS  Google Scholar 

  18. Graf GA, Yu L, Li WP, et al. ABCG5 and ABCG8 are obligate heterodimers for protein trafficking and biliary cholesterol excretion.J Biol Chem. 2003;278:48275–48282.

    Article  PubMed  CAS  Google Scholar 

  19. Yu L, Li-Hawkins J, Hammer RE, et al. Overexpression of ABCG5 and ABCG8 promotes biliary cholesterol secretion and reduces fractional absorption of dietary cholesterol.J Clin Invest. 2002;110:671–680.

    Article  PubMed  CAS  Google Scholar 

  20. Xu J, Liu Y, Yang Y, Bates S, Zhang JT. Characterization of oligomeric human half ABC transporter ABCG2/BCRP/MXR/ABCP in plasma membranes.J Biol Chem. 2004;279:19781–19789.

    Article  PubMed  CAS  Google Scholar 

  21. Ozvegy C, Varadi A, Sarkadi B. Characterization of drug transport, ATP hydrolysis, and nucleotide trapping by the human ABCG2 multidrug transporter. Modulation of substrate specificity by a point mutation.J Biol Chem. 2002;277:47980–47990.

    Article  PubMed  CAS  Google Scholar 

  22. Janvilisri T, Venter H, Shahi S, Reuter G, Balakrishnan L, van Veen HW Sterol transport by the human breast cancer resistance protein (ABC G2) expressed in Lactococcus lactis.J Biol Chem. 2003;278:20645–20651.

    Article  PubMed  CAS  Google Scholar 

  23. Ross DD, Yang W, Abruzzo LV, et al. Atypical multidrug resistance: breast cancer resistance protein messenger RNA expression in mitoxantrone-selected cell lines.J Natl Cancer Inst. 1999;91:429–433.

    Article  PubMed  CAS  Google Scholar 

  24. Maliepaard M, van Gastelen MA, de Jong LA, et al. Overexpression of the BCRP/MXR/ABCP gene in a topotecan-selected ovarian tumor cell line.Cancer Res. 1999;59:4559–4563.

    PubMed  CAS  Google Scholar 

  25. Yang CH, Schneider E, Kuo ML, Volk EL, Rocchi E, Chen YC. BCRP/MXR/ABCP expression in topotecan-resistant human breast carcinoma cells.Biochem Pharmacol. 2000;60:831–837.

    Article  PubMed  CAS  Google Scholar 

  26. Ishii M, Iwahana M, Mitsui I, et al. Growth inhibitory effect of a new camptothecin analog, DX-8951f, on various drug-resistant sublines including BCRP-mediated camptothecin derivative-resistant variantsderived from the human lung cancer cell line PC-6.Anticancer Drugs. 2000;11:353–362.

    Article  PubMed  CAS  Google Scholar 

  27. Robey RW, Medina-Perez WY, Nishiyama K, et al. Overexpression of the ATP-binding cassette half-transporter, ABCG2 (Mxr/BC rp/ABCP1), in flavopiridol-resistant human breast cancer cells.Clin Cancer Res. 2001;7:145–152.

    PubMed  CAS  Google Scholar 

  28. Allen JD, Brinkhuis RF, Wijnholds J, Schinkel AH. The mouse Berpl/Mxr/Abep gene: amplification and overexpression in cell lines selected for resistance to topotecan, mitoxantrone, or doxorubicin.Cancer Res. 1999;59:4237–4241.

    PubMed  CAS  Google Scholar 

  29. Eisenblatter T, Galla HJ. A new multidrug resistance protein at the blood-brain barrier.Biochem Biophys Res Commun. 2002;293:1273–1278.

    Article  PubMed  CAS  Google Scholar 

  30. Eisenblatter T, Huwel S, Galla HJ. Characterisation of the brain multidrug resistance protein (BMDP/ABCG2/BCRP) expressed at the blood-brain barrier.Brain Res. 2003;971:221–231.

    Article  PubMed  CAS  Google Scholar 

  31. Hori S, Ohtsuki S, Tachikawa M, et al. Functional expression of rat ABCG2 on the luminal side of brain capillaries and its enhancement by astrocyte-derived soluble factor(s).J Neurochem. 2004;90:526–536.

    Article  PubMed  CAS  Google Scholar 

  32. Rajagopal A, Simon SM. Subcellular localization and activity of multidrug resistance proteins.Mol Biol Cell. 2003;14:3389–3399.

    Article  PubMed  CAS  Google Scholar 

  33. Cole SP, Chanda ER, Dicke FP, Gerlach JH, Mirski SE. Non-P-glycoprotein-mediated multidrug resistance in a small cell lung cancer cell line: evidence for decreased susceptibility to drug-induced DNA damage and reduced levels of topoisomerase II.Cancer Res. 1991;51:3345–3352.

    PubMed  CAS  Google Scholar 

  34. Aust S, Obrist P, Jaeger W, et al. Subcellular localization of the ABCG2 transporter in normal and malignant human gallbladder epithelium.Lab Invest. 2004;84:1024–1036.

    Article  PubMed  CAS  Google Scholar 

  35. Litman T, Brangi M, Hudson E, et al. The multidrug-resistant phenotype associated with overexpression of the new ABC half-transporter, MXR (ABCG2).J Cell Sci. 2000;113:2011–2021.

    PubMed  CAS  Google Scholar 

  36. Robey RW, Honjo Y, van de Laar A, et al. A functional assay for detection of the mitoxantrone resistance protein, MXR (ABCG2).Biochim Biophys Acta. 2001;1512:171–182.

    Article  PubMed  CAS  Google Scholar 

  37. Minderman H, Suvannasankha A, O'Loughlin KL, et al. Flow cytometric analysis of breast cancer resistance protein expression and function.Cytometry. 2002;48:59–65.

    Article  PubMed  CAS  Google Scholar 

  38. Rabindran SK, Ross DD, Doyle LA, Yang W, Greenberger LM. Fumitremorgin C reverses multidrug resistance in cells transfected with the breast cancer resistance protein.Cancer Res. 2000;60:47–50.

    PubMed  CAS  Google Scholar 

  39. Hazlehurst LA, Foley NE, Gleason-Guzman MC, et al. Multiple mechanisms confer drug resistance to mitoxantrone in the human 8226 myeloma cell line.Cancer Res. 1999;59:1021–1028.

    PubMed  CAS  Google Scholar 

  40. Nakagawa M, Schneider E, Dixon KH, et al. Reduced intracellular drug accumulation in the abscence of P-glycoprotein (mdr1) overexpression in mitoxantrone-resistant human MCF-7 breast cancer cells.Cancer Res. 1992;52:6175–6181.

    PubMed  CAS  Google Scholar 

  41. Maliepaard M, van Gastelen MA, Tohgo A, et al. Circumvention of breast cancer resistance protein (BCRP)-mediated resistance to camptothecins in vitro using non-substrate drugs or the BCRP inhibitor GF120918.Clin Cancer Res. 2001;7:935–941.

    PubMed  CAS  Google Scholar 

  42. Kawabata S, Oka M, Shiozawa K, et al. Breast cancer resistance protein directly confers SN-38 resistance of lung cancer cells.Biochem Biophys Res Commun. 2001;280:1216–1223.

    Article  PubMed  CAS  Google Scholar 

  43. Nakatomi K, Yoshikawa M, Oka M, et al. Transport of 7-ethyl-10-hydroxycamptothecin (SN-38) by breast cancer resistance protein ABCG2 in human lung cancer cells.Biochem Biophys Res Commun. 2001;288:827–832.

    Article  PubMed  CAS  Google Scholar 

  44. Shiozawa K, Oka M, Soda H, et al. Reversal of breast cancer resistance protein (BCRP/ABCG2)-mediated drug resistance by novobiocin, a coumermycin antibiotic.Int J Cancer. 2004;108:146–151.

    Article  PubMed  CAS  Google Scholar 

  45. Rajendra R, Gounder MK, Saleem A, et al. Differential effects of the breast cancer resistance protein on the cellular accumulation and cytotoxicity of 9-aminocamptothecin and 9-nitrocamptothecin.Cancer Res. 2003;63:3228–3233.

    PubMed  CAS  Google Scholar 

  46. Bates SE, Medina-Perez WY, Kohlhagen G, et al. ABCG2 mediates differential resistance to SN-38 and homocamptothecins.J Pharmacol Exp Ther. 2004;310:836–842.

    Article  PubMed  CAS  Google Scholar 

  47. Yoshikawa M, Ikegami Y, Hayasaka S, et al. Novel camptothecin analogues that circumvent ABCG2-associated drug resistance in human tumor cells.Int J Cancer. 2004;110:921–927.

    Article  PubMed  CAS  Google Scholar 

  48. Honjo Y, Hrycyna CA, Yan QW, et al. Acquired mutations in the MXR/BCRP/ABCP gene alter substrate specificity in MXR/BCRP/ABCP-overexpressing cells.Cancer Res. 2001;61:6635–6639.

    PubMed  CAS  Google Scholar 

  49. Nakanishi T, Karp JE, Tan M, et al. Quantitative analysis of breast cancer resistance protein and cellular resistance to flavopiridol in acute leukemia patients.Clin Cancer Res. 2003;9:3320–3328.

    PubMed  CAS  Google Scholar 

  50. Volk EL, Farley KM, Wu Y, Li F, Robey RW, Schneider E. Overexpression of wild-type breast cancer resistance protein mediates methotrexate resistance.Cancer Res. 2002;62:5035–5040.

    PubMed  CAS  Google Scholar 

  51. Chen Z-S, Robey RW, Belinsky MG, et al. Transport of methotrexate, methotrexate polyglutamates, and 17beta-estradiol 17-(beta-D-glucuronide) by ABCG2: effects of acquired mutations at R482 on methotrexate transport.Cancer Res. 2003;63:4048–4054.

    PubMed  CAS  Google Scholar 

  52. Robey RW, Honjo Y, Morisaki K, et al. Mutations at amino-acid 482 in the ABCG2 gene affect substrate and antagonist specificity.Br J Cancer. 2003;89:1971–1978.

    Article  PubMed  CAS  Google Scholar 

  53. Miwa M, Tsukahara S, Ishikawa E, Asada S, Imai Y, Sugimoto Y. Single amino acid substitutions in the transmembrane domains of breast cancer resistance protein (BCRP) alter cross resistance patterns in transfectants.Int J Cancer. 2003;107:757–763.

    Article  PubMed  CAS  Google Scholar 

  54. Kim M, Turnquist H, Jackson J, et al. The multidrug resistance transporter ABCG2 (breast cancer resistance protein 1) effluxes Hoechst 33342 and is overexpressed in hematopoietic stem cells.Clin Cancer Res. 2002;8:22–28.

    PubMed  CAS  Google Scholar 

  55. Scharenberg CW, Harkey MA, Torok-Storb B. The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors.Blood. 2002;99:507–512.

    Article  PubMed  CAS  Google Scholar 

  56. Suzuki M, Suzuki H, Sugimoto Y, Sugiyama Y. ABC G2 transports sulfated conjugates of steroids and xenobiotics.J Biol Chem. 2003;278:22644–22649.

    Article  PubMed  CAS  Google Scholar 

  57. Imai Y, Asada S, Tsukahara S, Ishikawa E, Tsuruo T, Sugimoto Y. Breast cancer resistance protein exports sulfated estrogens but not free estrogens.Mol Pharmacol. 2003;64:610–618.

    Article  PubMed  CAS  Google Scholar 

  58. Ifergan I, Shafran A, Jansen G, Hooijberg JH, Scheffer GL, Assaraf YG. Folate deprivation results in the loss of breast cancer resistance protein (BCRP/ABCG2) expression: Aa role for BCRP in cellular folate homeostasis.J Biol Chem. 2004;279:25527–25534.

    Article  PubMed  CAS  Google Scholar 

  59. Jonker JW, Buitelaar M, Wagenaar E, et al. The breast cancer resistance protein protects against a major chlorophyll-derived dietary phototoxin and protoporphyria.Proc Natl Acad Sci USA. 2002;99:15449–15654.

    Article  CAS  Google Scholar 

  60. Robey RW, Steadman K, Polgar O, et al. Pheophorbide a Is a Specific Probe for ABCG2 Function and Inhibition.Cancer Res. 2004;64:1242–1246.

    Article  PubMed  CAS  Google Scholar 

  61. Sinha R, Gustafson DR, Kulldorff M, Wen WQ, Cerhan JR, Zheng W. 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine, a carcinogen in high-temperature-cooked meat, and breast cancer risk.J Natl Cancer Inst. 2000:92:1352–1354.

    Article  PubMed  CAS  Google Scholar 

  62. van Herwaarden AE, Jonker JW, Wagenaar E, et al. The breast cancer resistance protein (Berpl/Abeg2) restricts exposure to the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine.Cancer Res. 2003;63:6447–6452.

    PubMed  Google Scholar 

  63. Woehlecke H, Pohl A, Alder-Baerens N, Lage H, Herrmann A. Enhanced exposure of phosphatidylserine in human gastric carcinoma cells overexpressing the half-size ABC transporter BCRP (ABCG2).Biochem J. 2003;376:489–495.

    Article  PubMed  CAS  Google Scholar 

  64. Erlichman C, Boerner SA, Hallgren CG, et al. The HER tyrosine kinase inhibitor C11033 enhances cytotoxicity of 7-ethyl-10-hydroxy-camptothecin and topotecan by inhibiting breast cancer resistance protein-mediated drug efflux.Cancer Res. 2001;61:739–748.

    PubMed  CAS  Google Scholar 

  65. Burger H, Van Tol H, Boersma AW, et al. Imatinib mesylate (STI571) is a substrate for the breast cancer resistance protein (BCRP)/ABCG2 drug pump.Blood. 2004;104:2940–2942.

    Article  PubMed  CAS  Google Scholar 

  66. Imai Y, Tsukahara S, Asada S, Sugimoto Y. Phytoestrogens/flavonoids reverse breast cancer resistance protein/ABCG2-mediated multidrug resistance.Cancer Res. 2004;64:4346–4352.

    Article  PubMed  CAS  Google Scholar 

  67. Polli JW, Baughman TM, Humphreys JE, et al. The systemic exposure of an N-methyl-d-aspartate receptor antagonist is limited in mice by the p-glycoprotein and breast cancer resistance protein efflux transporters.Drug Metab Dispos. 2004;32:722–726.

    Article  PubMed  CAS  Google Scholar 

  68. Breedveld P, Zelcer N, Pluim D, et al. Mechanism of the pharmaco-kinetic interaction between methotrexate and benzimidazoles: potential role for breast cancer resistance protein in clinical drug-drug interactions.Cancer Res. 2004;64:5804–5811.

    Article  PubMed  CAS  Google Scholar 

  69. Wang X, Furukawa T, Nitanda T, et al. Breast cancer resistance protein (BCRP/ABCG2) induces cellular resistance to HIV-1 nucleoside reverse transcriptase inhibitors.Mol Pharmacol. 2003;63:65–72.

    Article  PubMed  CAS  Google Scholar 

  70. Wang X, Nitanda T, Shi M, et al. Induction of cellular resistance to nucleoside reverse transcriptase inhibitors by the wild-type breast cancer resistance protein.Biochem Pharmacol. 2004;68:1363–1370.

    Article  PubMed  CAS  Google Scholar 

  71. Brangi M, Litman T, Ciotti M, et al. Camptothecin resistance: role of the ATP-binding cassette (ABC), mitoxantrone-resistance half-transporter (MXR), and potential for glucuronidation in MXR-expressing cells.Cancer Res. 1999;59:5938–5946.

    PubMed  CAS  Google Scholar 

  72. Rabindran SK, He H, Singh M, et al. Reversal of a novel multidrug resistance mechanism in human colon carcinoma cells by fumitremorgin C.Cancer Res. 1998;58:5850–5858.

    PubMed  CAS  Google Scholar 

  73. Sparreboom A, Gelderblom H, Marsh S, et al. Diflomotecan pharmacokinetics in relation to ABC G2 421C>A genotype.Clin Pharmacol Ther. 2004;76:38–44.

    Article  PubMed  CAS  Google Scholar 

  74. Volk EL, Schneider E. Wild-type breast cancer resistance protein (BCRP/ABCG2) is a methotrexate polyglutamate transporter.Cancer Res. 2003;63:5538–5543.

    PubMed  CAS  Google Scholar 

  75. Nakagawa R, Hara Y, Arakawa H, Nishimura S, Komatani H. ABCG2 confers resistance to indolocarbazole compounds by ATP-dependent transport.Biochem Biophys Res Commun. 2002;299:669–675.

    Article  PubMed  CAS  Google Scholar 

  76. Komatani H, Kotani H, Hara Y, et al. Identification of breast cancer resistant protein/mitoxantrone resistance/placenta-specific, ATP-binding cassette transporter as a transporter of NB-506 and J-107088, topoisomerase I inhibitors with an indolocarbazole structure.Cancer Res. 2001;61:2827–2832.

    PubMed  CAS  Google Scholar 

  77. de Bruin M, Miyake K, Litman T, Robey R, Bates SE. Reversal of resistance by GF120918 in cell lines expressing the ABC Half-transporter.Cancer Lett. 1999;146:117–126.

    Article  PubMed  Google Scholar 

  78. Allen JD, van Loevezijn A, Lakhai JM, et al. Potent and specific inhibition of the breast cancer resistance protein multidrug transporter in vitro and in mouse intestine by a novel analogue of fumitremorgin C.Mol Cancer Ther. 2002;1:417–425.

    PubMed  CAS  Google Scholar 

  79. van Loevezijn A, Allen JD, Schinkel AH, Koomen GJ. Inhibition of BCRP-mediated drug efflux by fumitremorgin-type indolyl diketopiperazines.Bioorg Med Chem Lett. 2001;11:29–32.

    Article  PubMed  Google Scholar 

  80. Özvegy-Laczka C, Hegedus T, Varady G, et al. High-affinity interaction of tyrosine kinase inhibitors with the ABCG2 multidrug transporter.Mol Pharmacol. 2004;65:1485–1495.

    Article  PubMed  Google Scholar 

  81. Houghton PJ, Germain GS, Harwood FC, et al. Imatinib mesylate is a potent inhibitor of the ABCG2 (BCRP) transporter and reverses resistance to topotecan and SN-38 in vitro.Cancer Res. 2004;64:2333–2337.

    Article  PubMed  CAS  Google Scholar 

  82. Yang CH, Chen YC, Kuo ML. Novobiocin sensitizes BCRP/MXR/ABCP overexpressing topotecan-resistant human breast carcinoma cells to topotecan and mitoxantrone.Anticancer Res. 2003;23:2519–2523.

    PubMed  CAS  Google Scholar 

  83. Sugimoto Y, Tsukahara S, Imai Y, Ueda K, Tsuruo T. Reversal of breast cancer resistance protein-mediated drug resistance by estrogen antagonists and agonists.Mol Cancer Ther. 2003;2:105–112.

    PubMed  CAS  Google Scholar 

  84. Zhou S, Schuetz JD, Bunting KD, et al. The ABC transporter Bcrpl/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype.Nat Med. 2001;7:1028–1034.

    Article  PubMed  CAS  Google Scholar 

  85. Minderman H, O'Loughlin KL, Pendyala L, Baer MR. VX-710 (biricodar) increases drug retention and enhances chemosensitivity in resistant cells overexpressing P-glycoprotein, multidrug resistance protein, and breast cancer resistance protein.Clin Cancer Res. 2004;10:1826–1834.

    Article  PubMed  CAS  Google Scholar 

  86. Woehlecke H, Osada H, Herrmann A, Lage H. Reversal of breast cancer resistance protein-mediated drug resistance by tryprostatin A.Int J Cancer. 2003;107:721–728.

    Article  PubMed  CAS  Google Scholar 

  87. Zhang S, Yang X, Morris ME. Flavonoids are inhibitors of breast cancer resistance protein (ABCG2).Mol Pharmacol. 2004;65:1208–1216.

    Article  PubMed  CAS  Google Scholar 

  88. Cooray HC, Janvilisri T, van Veen HW, Hladky SB, Barrand MA. Interaction of the breast cancer resistance protein with plant polyphenols.Biochem Biophys Res Commun. 2004;317:269–275.

    Article  PubMed  CAS  Google Scholar 

  89. Gupta A, Zhang Y, Unadkat JD, Mao Q. HiV Protease inhibitors are inhibitors but not substrates of the human breast cancer resistance protein (BCRP/ABCG2).J Pharmacol Exp Ther. 2004;310:334–341.

    Article  PubMed  CAS  Google Scholar 

  90. Allen JD, Van Dort SC, Buitelaar M, van Tellingen O, Schinkel AH. Mouse breast cancer resistance protein (Berpl/Abeg2) mediates etoposide resistance and transport, but etoposide oral availability is limited primarily by P-glycoprotein.Cancer Res. 2003;63:1339–1344.

    PubMed  CAS  Google Scholar 

  91. Kruijtzer CM, Beijnen JH, Rosing H, et al. Increased oral bioavailability of topotecan in combination with the breast cancer resistance protein and P-glycoprotein inhibitor GF120918.J Clin Oncol. 2002;20:2943–2950.

    Article  PubMed  CAS  Google Scholar 

  92. Jonker JW, Smit JW, Brinkhuis RF, et al. Role of breast cancer resistance protein in the bioavailability and fetal penetration of topotecan.J Natl Cancer Inst. 2000;92:1651–1656.

    Article  PubMed  CAS  Google Scholar 

  93. Allen JD, Jackson SC, Schinkel AH. A mutation hot spot in the Berpl (Abcg2) multidrug transporter in mouse cell lines selected for doxorubicin resistance.Cancer Res. 2002;62:2294–2299.

    PubMed  CAS  Google Scholar 

  94. Alqawi O, Bates S, Georges E. Arginine 482 to threonine 482 mutation in breast cancer resistance protein (ABCG2) inhibits rhodaminel 23 transport while increasing binding.Biochem J. 2004;382:711–716.

    Article  PubMed  CAS  Google Scholar 

  95. Zamber CP, Lamba JK, Yasuda K, et al. Natural allelic variants of breast cancer resistance protein (BCRP) and their relationship to BCRP expression in human intestine.Pharmacogenetics. 2003;13:19–28.

    Article  PubMed  CAS  Google Scholar 

  96. Imai Y, Nakane M, Kage K, et al. C421A polymorphism in the human breast cancer resistance protein gene is associated with low expression of Q141K protein and low-level drug resistance.Mol Cancer ther. 2002;1:611–616.

    PubMed  CAS  Google Scholar 

  97. Honjo Y, Morisaki K, Huff LM. et al. Single-nucleotide polymorphism (SNP) analysis in the ABC half-transporter ABCG2 (MXR/BCRP/ABCP1).Cancer Biol Ther. 2002;1:696–702.

    PubMed  CAS  Google Scholar 

  98. Mizuarai S, Aozasa N, Kotani H. Single nucleotide polymorphisms result, in impaired membrane localization and reduced atpase activity in multidrug transporter ABCG2.Int J Cancer. 2004;109:238–246.

    Article  PubMed  CAS  Google Scholar 

  99. Kage K, Tsukahara S, Sugiyama T, et al. Dominant-negative inhibition of breast cancer resistance protein as drug efflux pump through the inhibition of S-S dependent homodimerization.Int J Cancer, 2002;97:626–630.

    Article  PubMed  CAS  Google Scholar 

  100. Litman T, Jensen U, Hansen A, et al. Use of peptide antibodies to probe for the mitoxantrone resistance-associated protein MXR/BCRP/ABCP/ABCG2.Biochim Biophys Acta. 2002;1565:6–16.

    Article  PubMed  CAS  Google Scholar 

  101. Mao Q, Conseil G, Gupta A, Cole SP, Unadkat JD. Functional expression of the human breast cancer resistance protein in Pichia pastoris.Biochem Biophys Res Commun. 2004;320:730–737.

    Article  PubMed  CAS  Google Scholar 

  102. Mitomo H, Kato R, Ito A, et al. A functional study on polymorphism of the ATP-binding cassette transporter ABCG2: critical role of arginine-482 in methotrexate transport.Biochem J. 2003;373:767–774.

    Article  PubMed  CAS  Google Scholar 

  103. Polgar O, Robey RW, Morisaki K, et al. Mutational analysis of ABCG2: role of the GXXXG motif.Biochemistry, 2004;43:9448–9456.

    Article  PubMed  CAS  Google Scholar 

  104. Ozvegy C, Litman T, Szakacs G, et al. Functional characterization of the human multidrug transporter, ABCG2, expressed in insect cells.Biochem Biophys Res Commun. 2001;285:111–117.

    Article  PubMed  CAS  Google Scholar 

  105. Ross DD, Karp JE, Chen TT, Doyle LA. Expression of breast cancer resistance protein in blast cells from patients with acute leukemia.Blood. 2000;96:365–368.

    PubMed  CAS  Google Scholar 

  106. Steinbach D, Sell W, Voigt A, Hermann J, Zintl F, Sauerbrey A. BCRP gene expression is associated with a poor response to remission induction therapy in childhood acute myeloid leukemia.Leukemia, 2002;16:1443–1447.

    Article  PubMed  CAS  Google Scholar 

  107. Plasschaert SL, Van Der Kolk DM, De Bont ES, Vellenga E, Kamps WA, De Vries EG. Breast cancer resistance protein (BCRP) in acute leukemia.Leuk Lymphoma. 2004;45:649–654.

    Article  PubMed  CAS  Google Scholar 

  108. Abbott BL, Colapietro AM, Barnes Y, Marini F, Andreeff M, Sorrentino BP. Low levels of ABCG2 expression in adult AML blast samples.Blood. 2002;100:4594–4601.

    Article  PubMed  CAS  Google Scholar 

  109. van der Kolk DM, Vellenga E, Scheffer GL, et al. Expression and activity of breast cancer resistance protein (BCRP) in de novo and relapsed acute myeloid leukemia.Blood. 2002;99:3763–3770.

    Article  PubMed  Google Scholar 

  110. Sauerbrey A, Sell W, Steinbach D, Voigt A, Zintl F. Expression of the BCRP gene (ABCG2/MXR/ABCP) in childhood acute lymphoblastic leukaemia.Br J Haematol. 2002;118:147–150.

    Article  PubMed  CAS  Google Scholar 

  111. Plasschaert SL, van der Kolk DM, de Bont ES, et al. The role of breast cancer resistance protein in acute lymphoblastic leukemia.Clin Cancer Res. 2003;9:5171–5177.

    PubMed  CAS  Google Scholar 

  112. Ren JH, Du XY, Guo XN, et al. Relationship between resistance to chemotherapy and expression of breast cancer resistance protein (BCRP) gene in patients with acute leukemia.Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2004;12:55–58.

    PubMed  CAS  Google Scholar 

  113. van der Pol MA, Broxterman HJ, Pater JM, et al. Function of the ABC transporters. P-glycoprotein, multidrug resistance protein and breast cancer resistance protein, in minimal residual disease in acute myeloid leukemia.Haematologica. 2003;88:134–147.

    PubMed  Google Scholar 

  114. van den Heuvel-Eibrink MM, Wiemer EA, Prins A, et al. Increased expression of the breast cancer resistance protein (BCRP) in relapsed or refractory acute myeloid leukemia (AML).Leukemia. 2002;16:833–839.

    Article  PubMed  CAS  Google Scholar 

  115. Sargent JM, Williamson CJ, Maliepaard M, Elgic AW, Scheper RJ, Taylor CG. Breast cancer resistance protein expression and resistance to daunorubicin in blast cells from patients with acute myeloid leukaemia.Br J Haematol. 2001;115:257–262.

    Article  PubMed  CAS  Google Scholar 

  116. Stam RW, van den Heuvel-Eibrink MM, den Boer ML, et al. Multidrug resistance genes in infant acute lymphoblastic leukemia: Ara-C is not a substrate for the breast cancer resistance protein.Leukemia. 2004;18:78–83.

    Article  PubMed  CAS  Google Scholar 

  117. Suvannasankha A, Minderman H, O'Loughlin KL, et al. Breast cancer resistance protein (BCRP/MXR/ABCG2) in acute myeloid leukemia: discordance between expression and function.Leukemia. 2004;18:1252–1257.

    Article  PubMed  CAS  Google Scholar 

  118. Scheffer GL, Maliepaard M, Pijnenborg AC, et al. Breast cancer resistance protein is localized at the plasma membrane in mitoxantrone-and topotecan-resistant cell lines.Cancer Res. 2000;60:2589–2593.

    PubMed  CAS  Google Scholar 

  119. Diestra JE, Scheffer GL, Catala I, et al. Frequent expression of the multi-drug resistance-associated protein BCRP/MXR/ABCP/ABCG2 in human tumours detected by the BXP-21 monoclonal antibody in paraffin-embedded material.J Pathol. 2002;198:213–219.

    Article  PubMed  CAS  Google Scholar 

  120. Kawabata S, Oka M, Soda H, et al. Expression and functional analyses of breast cancer resistance protein in lung cancer.Clin Cancer Res. 2003;9:3052–3057.

    PubMed  CAS  Google Scholar 

  121. Yoh K, Ishii G, Yokose T, et al. Breast cancer resistance protein impacts clinical outcome in platinum-based chemotherapy for advanced non-small cell lung cancer.Clin Cancer Res. 2004;10:1691–1697.

    Article  PubMed  CAS  Google Scholar 

  122. Candeil L, Gourdier I, Peyron D, et al.: ABCG2 overexpression in colon cancer cells resistant to SN38 and in irinotecan-treated metastases.Int J Cancer. 2004;109:848–854.

    Article  PubMed  CAS  Google Scholar 

  123. Kanzaki A, Toi M, Nakayama K, et al. Expression of multidrug resistance-related transporters in human breast carcinoma.Jpn J Cancer Res. 2001;92:452–458.

    PubMed  CAS  Google Scholar 

  124. Faneyte IF, Kristel PM, Maliepaard M, et al. Expression of the breast cancer resistance protein in breast cancer.Clin Cancer Res. 2002;8:1068–1074.

    PubMed  CAS  Google Scholar 

  125. Burger H, Foekens JA, Look MP, et al. RNA expression of breast cancer resistance protein, lung resistance-related protein, multidrug resistance-associated proteins 1 and 2, and multidrug resistance gene 1 in breast cancer: correlation with chemotherapeutic response.Clin Cancer Res. 2003;9:827–836.

    PubMed  CAS  Google Scholar 

  126. Zhou S, Morris JJ, Barnes Y, Lan L, Schuetz JD, Sorrentino BP. Berp1 gene expression is required for normal numbers of side population stem cells in mice, and confers relative protection to mitoxantrone in hematopoietic cells in vivo.Proc Natl Acad Sci USA. 2002;99:12339–12344.

    Article  PubMed  CAS  Google Scholar 

  127. Tamaki T, Akatsuka A, Ando K, et al. Identification of myogenic-endothelial progenitor cells in the interstitial spaces of skeletal muscle.J Cell Biol. 2002;157:571–577.

    Article  PubMed  CAS  Google Scholar 

  128. Leehner A, Leech CA, Abraham EJ, Nolan AL, Habener JF. Nestinpositive progenitor cells derived from adult human pancreatic islets of Langerhans contain side population (SP) cells defined by expression of the ABCG2 (BCRP1) ATP-binding cassette transporter.Biochem Biophys Res Commun. 2002;293:670–674.

    Article  Google Scholar 

  129. Shimano K, Satake M, Okaya A, et al. Hepatic oval cells have the side population phenotype defined by expression of ATP-binding cassette transporter ABCG2/BCRP1.Am J Pathol. 2003;163:3–9.

    PubMed  CAS  Google Scholar 

  130. Martin CM, Meeson AP, Robertson SM, et al. Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart.Dev Biol. 2004;265:262–275.

    Article  PubMed  CAS  Google Scholar 

  131. Krishnamurthy P, Ross DD, Nakanishi T, et al., The stem cell marker Berp/ABCG2 enhances hypoxic cell survival through interactions with heme.J Biol Chem. 2004;279:24218–24225.

    Article  PubMed  CAS  Google Scholar 

  132. Sarkadi B, Ozvegy-Laczka C, Nemet K, Varadi A, ABCG2-a transporter for all seasons.FEBS Lett. 2004;567:116–120.

    Article  PubMed  CAS  Google Scholar 

  133. Bunting KD. ABC transporters as phenotypic markers and functional regulators of stem cells.Stem Cells. 2002;20:11–20.

    Article  PubMed  CAS  Google Scholar 

  134. Abbott BL. ABCG2 (BCRP) expression in normal and malignant hematopoietic cells.Hematol Oncol. 2003;21:115–130.

    Article  PubMed  Google Scholar 

  135. Taipalensuu J, Tornblom H, Lindberg G, et al. Correlation of gene expression of ten drug efflux proteins of the ATP-binding cassette transporter family in normal human jejunum and in human intestinal epithelial Caco-2 cell monolayers.J Pharmacol Exp Ther. 2001;299:164–170.

    PubMed  CAS  Google Scholar 

  136. Cooray HC, Blackmore CG, Maskell L, Barrand MA. Localisation of breast cancer resistance protein in microvessel endothelium of human brain.Neuroreport. 2002;13:2059–2063.

    Article  PubMed  CAS  Google Scholar 

  137. Zhang W, Mojsilovic-Petrovic J, Andrade MF, Zhang H, Ball M, Stanimirovic DB. The expression and functional characterization of ABCG2 in brain endothelial cells and vessels.FASEB J. 2003;17:2085–2087.

    PubMed  Google Scholar 

  138. Troger U, Stotzel B, Martens-Lobenhoffer J, Gollnick H, Meyer FP. Drug points: severe myalgia from an interaction between treatments with pantoprazole and methotrexate.BMJ. 2002;324:1497.

    Article  PubMed  CAS  Google Scholar 

  139. Mizuno N, Suzuki M, Kusuhara H, et al. Impaired renal excretion of 6-hydroxy-5,7-dimethyl-2-methylamino-4-(3-pyridylmethyl) benzothiazole (E3040) sulfate in breast cancer resistance protein (BCRP1/ABCG2) knockout mice.Drug Metab Dispos. 2004;32:898–901.

    PubMed  CAS  Google Scholar 

  140. Cisternino S, Mercier C, Bourasset F, Roux F, Scherrmann JM. Expression, up-regulation, and transport activity of the multidrug-resistance protein abcg2 at the mouse blood-brain barrier.Cancer Res. 2004;64:3296–3301.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingcheng Mao.

Additional information

Published: May 11, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mao, Q. Role of the breast cancer resistance protein (ABCG2) in drug transport. AAPS J 7, 12 (2005). https://doi.org/10.1208/aapsj070112

Download citation

  • Received:

  • Accepted:

  • DOI: https://doi.org/10.1208/aapsj070112

Keywords

Navigation