Skip to main content

Advertisement

Log in

Epidermal Growth Factor Receptor-Targeted Gelatin-Based Engineered Nanocarriers for DNA Delivery and Transfection in Human Pancreatic Cancer Cells

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Type B gelatin-based engineered nanocarrier systems (GENS) have been used over the last several years as a non-condensing systemic and oral DNA delivery system. In this study, we have modified the surface of GENS with epidermal growth factor receptor (EGFR)-targeting peptide for gene delivery and transfection in pancreatic cancer cell lines. GENS were prepared by the solvent displacement method and the EGFR-targeting peptide was grafted on the surface using a hetero-bifunctional poly(ethylene glycol) (PEG) spacer. Plasmid DNA, encoding for enhanced green fluorescent protein (GFP), was efficiently encapsulated and protected from degrading enzymes in the control and surface-modified GENS. Upon incubation with EGFR over-expressing Panc-1 human pancreatic adenocarcinoma cells, the peptide-modified nanoparticles were found to be internalized efficiently by receptor-mediated endocytosis. Both quantitative and qualitative transgene expression efficiencies were significantly enhanced when plasmid DNA was administered with EGFR-targeted GENS relative to the control-unmodified gelatin or PEG-modified gelatin nanoparticle systems. Based on these preliminary results, EGFR-targeted GENS show tremendous promise as a safe and effective gene delivery vector with the potential to treat pancreatic cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Jemal, R. C. Tiwari, T. Murray, A. Ghafoor, A. Samuels, E. Ward, E. J. Feuer, and M. J. Thun. Cancer statistics, 2004. CA Cancer J. Clin. 54:8–29 (2004).

    Article  PubMed  Google Scholar 

  2. B. E. Huber. Gene therapy strategies for treating neoplastic disease. Ann. N. Y. Acad. Sci. 716:6–11 (1994). discussion 20–12.

    Article  PubMed  CAS  Google Scholar 

  3. J. A. Roth. Adenovirus p53 gene therapy. Expert. Opin. Biol. Ther. 6:55–61 (2006).

    Article  PubMed  CAS  Google Scholar 

  4. J. A. Roth. Gene replacement strategies for lung cancer. Curr. Opin. Oncol. 10:127–132 (1998).

    Article  PubMed  CAS  Google Scholar 

  5. J. A. Roth. Gene replacement strategies for cancer. Isr. J. Med. Sci. 32:89–94 (1996).

    PubMed  CAS  Google Scholar 

  6. J. A. Roth, and S. F. Grammer. Gene replacement therapy for non-small cell lung cancer: a review. Hematol. Oncol. Clin. North Am. 18:215–229 (2004).

    Article  PubMed  Google Scholar 

  7. J. A. Roth, and S. F. Grammer. Tumor suppressor gene therapy. Methods Mol. Biol. 223:577–598 (2003).

    PubMed  CAS  Google Scholar 

  8. J. A. Roth, S. F. Grammer, S. G. Swisher, R. Komaki, J. Nemunaitis, J. Merritt, and R. E. Meyn. P53 gene replacement for cancer-interactions with DNA damaging agents. Acta. Oncol. 40:739–744 (2001).

    Article  PubMed  CAS  Google Scholar 

  9. J. A. Roth, S. G. Swisher, and R. E. Meyn. p53 tumor suppressor gene therapy for cancer. Oncology (Williston Park). 13:148–154 (1999).

    CAS  Google Scholar 

  10. P. D. Wadhwa, S. P. Zielske, J. C. Roth, C. B. Ballas, J. E. Bowman, and S. L. Gerson. Cancer gene therapy: scientific basis. Annu. Rev. Med. 53:437–452 (2002).

    Article  PubMed  CAS  Google Scholar 

  11. D. Jacob, J. J. Davis, L. Zhang, H. Zhu, F. Teraishi, and B. Fang. Suppression of pancreatic tumor growth in the liver by systemic administration of the TRAIL gene driven by the hTERT promoter. Cancer Gene Ther. 12(2):109–115 (2005).

    Article  PubMed  CAS  Google Scholar 

  12. A. S. Pearson, M. Bouvet, D. B. Evans, and J. A. Roth. Gene therapy and pancreatic cancer. Front Biosci. 3:E230–237 (1998).

    PubMed  CAS  Google Scholar 

  13. T. Blessing, J. S. Remy, and J. P. Behr. Monomolecular collapse of plasmid DNA into stable virus-like particles. Proc. Natl. Acad. Sci. U. S. A. 95(4):1427–1431 (1998).

    Article  PubMed  CAS  Google Scholar 

  14. E. Marshall. Gene therapy on trial. Science. 288:951–957 (2000).

    Article  PubMed  CAS  Google Scholar 

  15. E. Check. Gene therapy: shining hopes dented—but not dashed. Nature. 420:735 (2002).

    Article  PubMed  CAS  Google Scholar 

  16. C. E. Thomas, A. Ehrhardt, and M. A. Kay. Progress and problems with the use of viral vectors for gene therapy. Nat. Rev. Genet. 4(5):346–358 (2003).

    Article  PubMed  CAS  Google Scholar 

  17. H. Lv, S. Zhang, B. Wang, S. Cui, and J. Yan. Toxicity of cationic lipids and cationic polymers in gene delivery. J. Control. Release. 114(1):100–109 (2006).

    Article  PubMed  CAS  Google Scholar 

  18. J. Panyam, and V. Labhasetwar. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev. 55:329–347 (2003).

    Article  PubMed  CAS  Google Scholar 

  19. M. Dellian, F. Yuan, V. S. Trubetskoy, V. P. Torchilin, and R. K. Jain. Vascular permeability in a human tumour xenograft: molecular charge dependence. Br. J. Cancer. 82(9):1513–1518 (2000).

    Article  PubMed  CAS  Google Scholar 

  20. M. D. Bhavsar, and M. M. Amiji. Development of novel biodegradable polymeric nanoparticles-in-microsphere formulation for local plasmid DNA delivery in the gastrointestinal tract. AAPS PharmSciTech. 9:288–294 (2008).

    Article  PubMed  Google Scholar 

  21. M. D. Bhavsar, and M. M. Amiji. Oral IL-10 gene delivery in a microsphere-based formulation for local transfection and therapeutic efficacy in inflammatory bowel disease. Gene. Ther. 15(17):1200–1209 (2008).

    Article  PubMed  CAS  Google Scholar 

  22. M. D. Bhavsar, and M. M. Amiji. Gastrointestinal distribution and in vivo gene transfection studies with nanoparticles-in-microsphere oral system (NiMOS). J. Control. Release. 119:339–348 (2007).

    Article  PubMed  CAS  Google Scholar 

  23. M. D. Bhavsar, S. B. Tiwari, and M. M. Amiji. Formulation optimization for the nanoparticles-in-microsphere hybrid oral delivery system using factorial design. J. Control. Release. 110:422–430 (2006).

    Article  PubMed  CAS  Google Scholar 

  24. G. Kaul, and M. Amiji. Biodistribution and targeting potential of poly(ethylene glycol)-modified gelatin nanoparticles in subcutaneous murine tumor model. J. Drug Target. 12:585–591 (2004).

    Article  PubMed  CAS  Google Scholar 

  25. G. Kaul, and M. Amiji. Tumor-targeted gene delivery using poly(ethylene glycol)-modified gelatin nanoparticles: in vitro and in vivo studies. Pharm. Res. 22:951–961 (2005).

    Article  PubMed  CAS  Google Scholar 

  26. S. Kommareddy, and M. Amiji. Poly(ethylene glycol)-modified thiolated gelatin nanoparticles for glutathione-responsive intracellular DNA delivery. Nanomedicine. 3:32–42 (2007).

    PubMed  CAS  Google Scholar 

  27. S. Kommareddy, and M. Amiji. Biodistribution and pharmacokinetic analysis of long-circulating thiolated gelatin nanoparticles following systemic administration in breast cancer-bearing mice. J. Pharm. Sci. 96:397–407 (2007).

    Article  PubMed  CAS  Google Scholar 

  28. S. Kommareddy, and M. Amiji. Preparation and evaluation of thiol-modified gelatin nanoparticles for intracellular DNA delivery in response to glutathione. Bioconjug. Chem. 16:1423–1432 (2005).

    Article  PubMed  CAS  Google Scholar 

  29. S. Kommareddy, and M. Amiji. Antiangiogenic gene therapy with systemically administered sFlt-1 plasmid DNA in engineered gelatin-based nanovectors. Cancer Gene Ther. 14:488–498 (2007).

    Article  PubMed  CAS  Google Scholar 

  30. C. Neves, V. Escriou, G. Byk, D. Scherman, and P. Wils. Intracellular fate and nuclear targeting of plasmid DNA. Cell Boil. Toxicol. 15:193–202 (1999).

    Article  CAS  Google Scholar 

  31. K. Tobita, H. Kijima, S. Dowaki, H. Kashiwagi, Y. Ohtani, Y. Oida, H. Yamazaki, M. Nakamura, Y. Ueyama, M. Tanaka, S. Inokuchi, and H. Makuuchi. Epidermal growth factor receptor expression in human pancreatic cancer: significance for liver metastasis. Int. J. Mol. Med. 11:305–309 (2003).

    PubMed  CAS  Google Scholar 

  32. Y. Yamanaka, H. Friess, M. S. Kobrin, M. Buchler, H. G. Beger, and M. Korc. Coexpression of epidermal growth factor receptor and ligands in human pancreatic cancer is associated with enhanced tumor aggressiveness. Anticancer Res. 13:565–569 (1993).

    PubMed  CAS  Google Scholar 

  33. T. A. Jarvinen, and E. Ruoslahti. Molecular changes in the vasculature of injured tissues. Am. J. Pathol. 171:702–711 (2007).

    Article  PubMed  CAS  Google Scholar 

  34. Z. Li, R. Zhao, X. Wu, Y. Sun, M. Yao, J. Li, Y. Xu, and J. Gu. Identification and characterization of a novel peptide ligand of epidermal growth factor receptor for targeted delivery of therapeutics. FASEB J. 19:1978–1985 (2005).

    Article  PubMed  CAS  Google Scholar 

  35. S. Zitzmann, V. Ehemann, and M. Schwab. Arginine-glycine-aspartic acid (RGD)-peptide binds to both tumor and tumor-endothelial cells in vivo. Cancer Res. 62:5139–5143 (2002).

    PubMed  CAS  Google Scholar 

  36. V. Guillemard, H. Nedev, A. Berezov, R. Murali, and H. U. Saragovi. HER2-mediated internalization of a targeted prodrug cytotoxic conjugate is dependent on the valency of the targeting ligand. DNA Cell Biol. 24(6):351–358 (2005).

    Article  Google Scholar 

  37. P. Chan, H. P. Nestler, and W. T. Miller. Investigating the substrate specificity of the HER2/Neu tyrosine kinase using peptide libraries. Cancer Lett. 160(2):159–169 (2000).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Padmaja Magadala is a Fellow in the Nanomedicine Science and Technology Interdisciplinary Graduate Education and Research Training (IGERT) program. This pre-doctoral program is supported by the National Cancer Institute (NCI) and the National Science Foundation (NSF). Scanning electron microscopy was performed at Northeastern University’s Electron Microscopy Center. We deeply appreciate the assistance of Mr. Luis Brito with the flow cytometry analysis. Flow cytometry studies were performed in Professor Vladimir Torchilin’s Lab at Northeastern University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansoor Amiji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magadala, P., Amiji, M. Epidermal Growth Factor Receptor-Targeted Gelatin-Based Engineered Nanocarriers for DNA Delivery and Transfection in Human Pancreatic Cancer Cells. AAPS J 10, 565–576 (2008). https://doi.org/10.1208/s12248-008-9065-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-008-9065-0

Key words

Navigation