Skip to main content

Advertisement

Log in

The H2 Receptor Antagonist Nizatidine is a P-Glycoprotein Substrate: Characterization of its Intestinal Epithelial Cell Efflux Transport

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

The aim of this study was to elucidate the intestinal epithelial cell efflux transport processes that are involved in the intestinal transport of the H2 receptor antagonist nizatidine. The intestinal epithelial efflux transport mechanisms of nizatidine were investigated and characterized across Caco-2 cell monolayers, in the concentration range 0.05–10 mM in both apical–basolateral (AP–BL) and BL–AP directions, and the transport constants of P-glycoprotein (P-gp) efflux activity were calculated. The concentration-dependent effects of various P-gp (verapamil, quinidine, erythromycin, ketoconazole, and cyclosporine A), multidrug resistant-associated protein 2 (MRP2; MK-571, probenecid, indomethacin, and p-aminohipuric acid), and breast cancer resistance protein (BCRP; Fumitremorgin C) inhibitors on nizatidine bidirectional transport were examined. Nizatidine exhibited 7.7-fold higher BL–AP than AP–BL Caco-2 permeability, indicative of net mucosal secretion. All P-gp inhibitors investigated displayed concentration-dependent inhibition on nizatidine secretion in both directions. The IC50 of verapamil on nizatidine P-gp secretion was 1.2 × 10−2 mM. In the absence of inhibitors, nizatidine displayed concentration-dependent secretion, with one saturable (J max = 5.7 × 10−3 nmol∙cm−2∙s−1 and K m = 2.2 mM) and one nonsaturable component (K d = 7 × 10−4 μL∙cm−2∙s−1). Under complete P-gp inhibition, nizatidine exhibited linear secretory flux, with a slope similar to the nonsaturable component. V max and K m estimated for nizatidine P-gp-mediated secretion were 4 × 10−3 nmol∙cm−2∙s−1 and 1.2 mM, respectively. No effect was obtained with the MRP2 or the BCRP inhibitors. Being a drug commonly used in pediatrics, adults, and elderly, nizatidine susceptibility to efflux transport by P-gp revealed in this paper may be of significance in its absorption, distribution, and clearance, as well as possible drug–drug interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. R. Orenstein, D. A. Gremse, C. D. Pantaleon, D. F. Kling, and K. S. Rotenberg. Nizatidine for the treatment of pediatric gastroesophageal reflux symptoms: An open-label, multiple-dose, randomized, multicenter clinical trial in 210 children. Clin. Ther. 27:472 (2005).

    Article  PubMed  CAS  Google Scholar 

  2. M. Sasaki, T. Sudoh, and A. Fujimura. Pharmacokinetics of ranitidine and nizatidine in very elderly patients. Am. J. Ther. 12:223–225 (2005).

    PubMed  Google Scholar 

  3. M. Feldman, and M. Burton. Histamine2-receptor antagonists. Standard therapy for acid-peptic diseases. 2. N. Engl. J. Med. 323:1749–1755 (1990).

    Article  PubMed  CAS  Google Scholar 

  4. M. Feldman, and M. Burton. Histamine2-receptor antagonists. Standard therapy for acid-peptic diseases. 1. N. Engl. J. Med. 323:1672–1680 (1990).

    PubMed  CAS  Google Scholar 

  5. M. P. Knadler, R. F. Bergstrom, J. T. Callaghan, and A. Rubin. Nizatidine, an H2-blocker. Its metabolism and disposition in man. Drug Metab. Dispos. 14:175–182 (1986).

    PubMed  CAS  Google Scholar 

  6. L. Z. Benet, T. Izumi, Y. Zhang, J. A. Silverman, and V. J. Wacher. Intestinal MDR transport proteins and P-450 enzymes as barriers to oral drug delivery. J. Control Release. 62:25 (1999).

    Article  PubMed  CAS  Google Scholar 

  7. V. J. Wacher, J. A. Silverman, Y. Zhang, and L. Z. Benet. Role of P-glycoprotein and cytochrome P450 3A in limiting oral absorption of peptides and peptidomimetics. J. Pharm. Sci. 87:1322–1330 (1998).

    Article  PubMed  CAS  Google Scholar 

  8. R. Garcia del Moral, F. O’Valle, M. Andujar, M. Aguilar, M. A. Lucena, J. Lopez-Hidalgo, C. Ramirez, M. T. Medina-Cano, D. Aguilar, and M. Gomez-Morales. Relationship between P-glycoprotein expression and cyclosporin A in kidney. An immunohistological and cell culture study. Am. J. Pathol. 146:398–408 (1995).

    PubMed  CAS  Google Scholar 

  9. M. Ceckova-Novotna, P. Pavek, and F. Staud. P-glycoprotein in the placenta: Expression, localization, regulation and function. Reprod. Toxicol. 22:400 (2006).

    Article  PubMed  CAS  Google Scholar 

  10. A. Takano, H. Kusuhara, T. Suhara, I. Ieiri, T. Morimoto, Y. J. Lee, J. Maeda, Y. Ikoma, H. Ito, K. Suzuki, and Y. Sugiyama. Evaluation of in vivo P-glycoprotein function at the blood-brain barrier among MDR1 gene polymorphisms by using 11C-verapamil. J. Nucl. Med. 47:1427–1433 (2006).

    PubMed  CAS  Google Scholar 

  11. M. F. Fromm. Importance of P-glycoprotein at blood-tissue barriers. Trends Pharmacol. Sci. 25:423 (2004).

    Article  PubMed  CAS  Google Scholar 

  12. L. Z. Benet, C. L. Cummins, and C. Y. Wu. Transporter-enzyme interactions: implications for predicting drug-drug interactions from in vitro data. Curr. Drug Metab. 4:393–398 (2003).

    Article  PubMed  CAS  Google Scholar 

  13. L. Z. Benet, C. L. Cummins, and C. Y. Wu. Unmasking the dynamic interplay between efflux transporters and metabolic enzymes. Int. J. Pharm. 277:3 (2004).

    Article  PubMed  CAS  Google Scholar 

  14. A. Dahan, and H. Altman. Food-drug interaction: grapefruit juice augments drug bioavailability-mechanism, extent and relevance. Eur. J. Clin. Nutr. 58:1–9 (2004).

    Article  PubMed  CAS  Google Scholar 

  15. J. H. Lin. Drug-drug interaction mediated by inhibition and induction of P-glycoprotein. Adv. Drug Deliv. Rev. 55:53 (2003).

    Article  PubMed  CAS  Google Scholar 

  16. M. Takano, R. Yumoto, and T. Murakami. Expression and function of efflux drug transporters in the intestine. Pharmacol. Ther. 109:137 (2006).

    Article  PubMed  CAS  Google Scholar 

  17. D. Bourdet, and D. Thakker. Saturable absorptive transport of the hydrophilic organic cation ranitidine in Caco-2 cells: Role of pH-dependent organic cation uptake system and P-glycoprotein. Pharm. Res. 23:1165 (2006).

    Article  PubMed  CAS  Google Scholar 

  18. A. Collett, N. B. Higgs, E. Sims, M. Rowland, and A. G. Warhurst. Modulation of the permeability of H2 receptor antagonists cimetidine and ranitidine by P-glycoprotein in rat intestine and the human colonic cell line Caco-2. J. Pharmacol. Exp. Ther. 288:171–178 (1999).

    PubMed  CAS  Google Scholar 

  19. A. Dahan, and G. L. Amidon. Segmental dependent transport of low permeability compounds along the small intestine due to P-glycoprotein: The role of efflux transport in the oral absorption of BCS class III drugs. Mol. Pharmaceutics. 6:19–28 (2008).

    Article  CAS  Google Scholar 

  20. K. Lee, C. Ng, K. L. R. Brouwer, and D. R. Thakker. Secretory transport of ranitidine and famotidine across Caco-2 cell monolayers. J. Pharmacol. Exp. Ther. 303:574–580 (2002).

    Article  PubMed  CAS  Google Scholar 

  21. J. Gao, O. Murase, R. L. Schowen, J. Aube, and R. T. Borchardt. A functional assay for quantitation of the apparent affinities of ligands of P-glycoprotein in Caco-2 cells. Pharm. Res. 18:171 (2001).

    Article  PubMed  CAS  Google Scholar 

  22. A. Dahan, and G. L. Amidon. Grapefruit juice and its constituents augment colchicine intestinal absorption: Potential hazardous interaction and the role of P-glycoprotein. Pharm. Res. 26:883–892 (2009).

    Article  PubMed  CAS  Google Scholar 

  23. J. H. Chang, and L. Z. Benet. Glucuronidation and the transport of the glucuronide metabolites in LLC-PK1 cells. Mol. Pharmaceutics. 2:428–434 (2005).

    Article  CAS  Google Scholar 

  24. M. Rodriguez-Ibanez, R. Nalda-Molina, M. Montalar-Montero, M. V. Bermejo, V. Merino, and T. M. Garrigues. Transintestinal secretion of ciprofloxacin, grepafloxacin and sparfloxacin: in vitro and in situ inhibition studies. Eur. J. Pharm. Biopharm. 55:241 (2003).

    Article  PubMed  CAS  Google Scholar 

  25. M. P. Draper, R. L. Martell, and S. B. Levy. Indomethacin-mediated reversal of multidrug resistance and drug efflux in human and murine cell lines overexpressing MRP, but not P-glycoprotein. Br. J. Cancer. 75:810–815 (1997).

    PubMed  CAS  Google Scholar 

  26. R. Evers, G. Zaman, L. van Deemter, H. Jansen, J. Calafat, L. Oomen, R. Oude Elferink, P. Borst, and A. Schinkel. Basolateral localization and export activity of the human multidrug resistance-associated protein in polarized pig kidney cells. J. Clin. Invest. 97:1211–1218 (1996).

    Article  PubMed  CAS  Google Scholar 

  27. N. Petri, C. Tannergren, D. Rungstad, and H. Lennernas. Transport characteristics of fexofenadine in the Caco-2 cell model. Pharm. Res. 21:1398 (2004).

    Article  PubMed  CAS  Google Scholar 

  28. Y. Ji, and M. E. Morris. Membrane transport of dietary phenethyl isothiocyanate by ABCG2 (breast cancer resistance protein). Mol. Pharmaceutics. 2:414–419 (2005).

    Article  CAS  Google Scholar 

  29. H. Nakamura, H. Sano, M. Yamazaki, and Y. Sugiyama. Carrier-mediated active transport of histamine H2 receptor antagonists, cimetidine and nizatidine, into isolated rat hepatocytes: contribution of type I system. J. Pharmacol. Exp. Ther. 269:1220–1227 (1994).

    PubMed  CAS  Google Scholar 

  30. S. M. Abdel-Rahman, F. K. Johnson, G. Gauthier-Dubois, I. E. Weston, and G. L. Kearns. The bioequivalence of nizatidine (Axid(R)) in two extemporaneously and one commercially prepared oral liquid formulations compared with capsule. J. Clin. Pharmacol. 43:148–153 (2003).

    Article  PubMed  CAS  Google Scholar 

  31. P. H. Howard, and W. M. Meylan. Handbook of physical properties of organic chemicals, CRC, New York, 1996.

    Google Scholar 

  32. G. L. Amidon, H. Lennernas, V. P. Shah, and J. R. Crison. A theoretical basis for a biopharmaceutic drug classification: The correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm. Res. 12:413 (1995).

    Article  PubMed  CAS  Google Scholar 

  33. N. A. Kasim, M. Whitehouse, C. Ramachandran, M. Bermejo, H. Lennernas, A. S. Hussain, H. E. Junginger, S. A. Stavchansky, K. K. Midha, V. P. Shah, and G. L. Amidon. Molecular properties of WHO essential drugs and provisional biopharmaceutical classification. Mol. Pharmaceutics. 1:85–96 (2004).

    Article  CAS  Google Scholar 

  34. T. Takagi, C. Ramachandran, M. Bermejo, S. Yamashita, L. X. Yu, and G. L. Amidon. A provisional biopharmaceutical classification of the top 200 oral drug products in the United States, Great Britain, Spain, and Japan. Mol. Pharmaceutics. 3:631–643 (2006).

    Article  CAS  Google Scholar 

  35. S. Berggren, J. Hoogstraate, U. Fagerholm, and H. Lennernas. Characterization of jejunal absorption and apical efflux of ropivacaine, lidocaine and bupivacaine in the rat using in situ and in vitro absorption models. Eur. J. Pharm. Sci. 21:553 (2004).

    Article  PubMed  CAS  Google Scholar 

  36. W. Chiou, S. Chung, T. Wu, and C. Ma. A comprehensive account on the role of efflux transporters in the gastrointestinal absorption of 13 commonly used substrate drugs in humans. Int. J. Clin. Pharmacol. Ther. 39:93–101 (2001).

    PubMed  CAS  Google Scholar 

  37. W. L. Chiou, S. M. Chung, and T. C. Wu. Apparent lack of effect of P-glycoprotein on the gastrointestinal absorption of a substrate, tacrolimus, in normal mice. Pharm. Res. 17:205 (2000).

    Article  PubMed  CAS  Google Scholar 

  38. Y. J. Lee, S. J. Chung, and C. K. Shim. Limited role of P-glycoprotein in the intestinal absorption of cyclosporin A. Biol. Pharm. Bull. 28:760 (2005).

    Article  PubMed  CAS  Google Scholar 

  39. J. Lin. How significant is the role of P-glycoprotein in drug absorption and brain uptake? Drugs Today. 40:5–22 (2004).

    Article  PubMed  CAS  Google Scholar 

  40. H. Toyobuku, I. Tamai, K. Ueno, and A. Tsuji. Limited influence of P-glycoprotein on small-intestinal absorption of cilostazol, a high absorptive permeability drug. J. Pharm. Sci. 92:2249–2259 (2003).

    Article  PubMed  CAS  Google Scholar 

  41. R. H. Stephens, J. Tanianis-Hughes, N. B. Higgs, M. Humphrey, and G. Warhurst. Region-dependent modulation of intestinal permeability by drug efflux transporters: In vitro studies in mdr1a(−/−) mouse intestine. J. Pharmacol. Exp. Ther. 303:1095–1101 (2002).

    Article  PubMed  CAS  Google Scholar 

  42. S. Tamura, A. Ohike, R. Ibuki, G. L. Amidon, and S. Yamashita. Tacrolimus is a class II low-solubility high-permeability drug: The effect of P-glycoprotein efflux on regional permeability of tacrolimus in rats. J. Pharm. Sci. 91:719–729 (2002).

    Article  PubMed  CAS  Google Scholar 

  43. J. M. M. Terwogt, J. H. Beijnen, W. W. t. B. Huinink, H. Rosing, and J. H. M. Schellens. Co-administration of cyclosporin enables oral therapy with paclitaxel. Lancet. 352:285 (1998).

    Article  CAS  Google Scholar 

  44. X. Cao, L. X. Yu, C. Barbaciru, C. P. Landowski, H. C. Shin, S. Gibbs, H. A. Miller, G. L. Amidon, and D. Sun. Permeability dominates in vivo intestinal absorption of P-gp substrate with high solubility and high permeability. Mol. Pharmaceutics. 2:329–340 (2005).

    Article  CAS  Google Scholar 

  45. I. Gonzalez-Alvarez, C. Fernandez-Teruel, V. G. Casabo-Alos, T. M. Garrigues, J. E. Polli, A. Ruiz-Garcia, and M. Bermejo. In situ kinetic modelling of intestinal efflux in rats: functional characterization of segmental differences and correlation with in vitro results. Biopharm. Drug Dispos. 28:229–239 (2007).

    Article  PubMed  CAS  Google Scholar 

  46. C. P. Landowski, D. Sun, D. R. Foster, S. S. Menon, J. L. Barnett, L. S. Welage, C. Ramachandran, and G. L. Amidon. Gene expression in the human intestine and correlation with oral valacyclovir pharmacokinetic parameters. J. Pharmacol. Exp. Ther. 306:778–786 (2003).

    Article  PubMed  CAS  Google Scholar 

  47. D. Tam, R. G. Tirona, and K. S. Pang. Segmental intestinal transporters and metabolic enzymes on intestinal drug absorption. Drug Metab. Dispos. 31:373–383 (2003).

    Article  PubMed  CAS  Google Scholar 

  48. B. Valenzuela, A. Nacher, P. Ruiz-Carretero, A. Martin-Villodre, G. Lopez-Carballo, and D. Barettino. Profile of P-glycoprotein distribution in the rat and its possible influence on the salbutamol intestinal absorption process. J. Pharm. Sci. 93:1641–1648 (2004).

    Article  PubMed  CAS  Google Scholar 

  49. A. Dahan, R. Duvdevani, E. Dvir, A. Elmann, and A. Hoffman. A novel mechanism for oral controlled release of drugs by continuous degradation of a phospholipid prodrug along the intestine: In-vivo and in-vitro evaluation of an indomethacin-lecithin conjugate. J. Control Release. 119:86 (2007).

    Article  PubMed  CAS  Google Scholar 

  50. A. Hoffman. Pharmacodynamic aspects of sustained release preparations. Adv. Drug Deliv. Rev. 33:185 (1998).

    Article  PubMed  CAS  Google Scholar 

  51. R. Lobenberg, J. S. Kim, and G. L. Amidon. Pharmacokinetics of an immediate release, a controlled release and a two pulse dosage form in dogs. Eur. J. Pharm. Biopharm. 60:17 (2005).

    Article  PubMed  CAS  Google Scholar 

  52. M. Tubic, D. Wagner, H. Spahn-Langguth, C. Weiler, R. Wanitschke, W. O. Bocher, and P. Langguth. Effects of controlled-release on the pharmacokinetics and absorption characteristics of a compound undergoing intestinal efflux in humans. Eur. J. Pharm. Sci. 29:231 (2006).

    Article  PubMed  CAS  Google Scholar 

  53. R. A. Blum, A. J. Braverman, P. Rice, and F. K. Johnson. Pharmacokinetics and pharmacodynamics of a novel nizatidine controlled-release formulation in healthy subjects. J. Clin. Pharmacol. 43:74–83 (2003).

    Article  PubMed  CAS  Google Scholar 

  54. J. T. Callaghan, R. F. Bergstrom, A. Rubin, S. Chernish, R. Crabtree, M. P. Knadler, B. Obermeyer, W. W. Offen, D. W. Schneck, G. Aronoff, and K. C. Lasseter. A pharmacokinetic profile of nizatidine in man. Scand. J. Gastroenterol. 22:9–17 (1987).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon L. Amidon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dahan, A., Sabit, H. & Amidon, G.L. The H2 Receptor Antagonist Nizatidine is a P-Glycoprotein Substrate: Characterization of its Intestinal Epithelial Cell Efflux Transport. AAPS J 11, 205–213 (2009). https://doi.org/10.1208/s12248-009-9092-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-009-9092-5

Key words

Navigation