Skip to main content

Advertisement

Log in

Changes in Individual Drug-Independent System Parameters during Virtual Paediatric Pharmacokinetic Trials: Introducing Time-Varying Physiology into a Paediatric PBPK Model

  • Research Article
  • Theme: Challenges and Opportunities in Pediatric Drug Development
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Although both POPPK and physiologically based pharmacokinetic (PBPK) models can account for age and other covariates within a paediatric population, they generally do not account for real-time growth and maturation of the individuals through the time course of drug exposure; this may be significant in prolonged neonatal studies. The major objective of this study was to introduce age progression into a paediatric PBPK model, to allow for continuous updating of anatomical, physiological and biological processes in each individual subject over time. The Simcyp paediatric PBPK model simulator system parameters were reanalysed to assess the impact of re-defining the individual over the study period. A schedule for re-defining parameters within the Simcyp paediatric simulator, for each subject, over a prolonged study period, was devised to allow seamless prediction of pharmacokinetics (PK). The model was applied to predict concentration-time data from multiday studies on sildenafil and phenytoin performed in neonates. Among PBPK system parameters, CYP3A4 abundance was one of the fastest changing covariates and a 1-h re-sampling schedule was needed for babies below age 3.5 days in order to seamlessly predict PK (<5% change in abundance) with subject maturation. The re-sampling frequency decreased as age increased, reaching biweekly by 6 months of age. The PK of both sildenafil and phenytoin were predicted better at the end of a prolonged study period using the time varying vs fixed PBPK models. Paediatric PBPK models which account for time-varying system parameters during prolonged studies may provide more mechanistic PK predictions in neonates and infants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Johnson TN, Rostami-Hodjegan A, Tucker GT. Prediction of the clearance of eleven drugs and associated variability in neonates, infants and children. Clin Pharmacokinet. 2006;45(9):931–56.

    Article  CAS  PubMed  Google Scholar 

  2. Boss GR, Seegmiller JE. Age-related physiological changes and their clinical significance. West J Med. 1981;135(6):434–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Abduljalil K, Furness P, Johnson TN, Rostami-Hodjegan A, Soltani H. Anatomical, physiological and metabolic changes with gestational age during normal pregnancy: a database for parameters required in physiologically based pharmacokinetic modelling. Clin Pharmacokinet. 2012;51(6):365–96.

    Article  CAS  PubMed  Google Scholar 

  4. Boucher BA, Wood GC, Swanson JM. Pharmacokinetic changes in critical illness. Crit Care Clin. 2006;22(2):255–71.

    Article  CAS  PubMed  Google Scholar 

  5. Joerger M. Covariate pharmacokinetic model building in oncology and its potential clinical relevance. AAPS J. 2012;14(1):119–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Tisdale MJ. Mechanisms of cancer cachexia. Physiol Rev. 2009;89(2):381–410.

    Article  CAS  PubMed  Google Scholar 

  7. Gough DB, Heys SD, Eremin O. Cancer cachexia: pathophysiological mechanisms. Eur J Surg Oncol. 1996;22(2):192–6.

    Article  CAS  PubMed  Google Scholar 

  8. Uchizono JA, Lane JR. Empirical pharmacokinetic/pharmacodynamic models. In: Ette EI, Williams PJ, editors. Pharmcometrics: the science of quantitative pharmacology. Hoboken: Wiley; 2007. p. 529–46.

    Chapter  Google Scholar 

  9. Bressolle F, Joulia JM, Pinguet F, Ychou M, Astre C, Duffour J, et al. Circadian rhythm of 5-fluorouracil population pharmacokinetics in patients with metastatic colorectal cancer. Cancer Chemother Pharmacol. 1999;44(4):295–302.

    Article  CAS  PubMed  Google Scholar 

  10. Johnson TN. Modelling approaches to dose estimation in children. Br J Clin Pharmacol. 2005;59(6):663–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Abdel-Rahman SM, Reed MD, Wells TG, Kearns GL. Considerations in the rational design and conduct of phase I/II paediatric clinical trials: avoiding the problems and pitfalls. Clin Pharmacol Ther. 2007;81(4):483–94.

    Article  CAS  PubMed  Google Scholar 

  12. Knibbe CA, Danhof M. Individualized dosing regimens in children based on population PKPD modelling: are we ready for it? Int J Pharm. 2011;415(1–2):9–14.

    Article  CAS  PubMed  Google Scholar 

  13. de Wildt SN. Profound changes in drug metabolism enzymes and possible effects on drug therapy in neonates and children. Expert Opin Drug Metab Toxicol. 2011;7(8):935–48.

    Article  PubMed  Google Scholar 

  14. Johnson TN, Rostami-Hodjegan A. Resurgence in the use of physiologically based pharmacokinetic models in paediatric clinical pharmacology: parallel shift in incorporating the knowledge of biological elements and increased applicability to drug development and clinical practice. Paediatr Anaesth. 2011;21(3):291–301.

    Article  PubMed  Google Scholar 

  15. Johnson TN, Thomson M. Intestinal metabolism and transport of drugs in children: the effects of age and disease. J Pediatr Gastroenterol Nutr. 2008;47(1):3–10.

    Article  CAS  PubMed  Google Scholar 

  16. Kearns GL, Abdel-Rahman SM, Alander SW, Blowey DL, Leeder JS, Kauffman RE. Developmental pharmacology—drug disposition, action, and therapy in infants and children. N Engl J Med. 2003;349(12):1157–67.

    Article  CAS  PubMed  Google Scholar 

  17. Allegaert K, Rochette A, Veyckemans F. Developmental pharmacology of tramadol during infancy: ontogeny, pharmacogenetics and elimination clearance. Paediatr Anaesth. 2011;21(3):266–73.

    Article  PubMed  Google Scholar 

  18. Anderson BJ. Developmental pharmacology; filling one knowledge gap in paediatric anesthesiology. Paediatr Anaesth. 2011;21(3):179–82.

    Article  PubMed  Google Scholar 

  19. Allegaert K. Mechanism based medicine in infancy: complex interplay between developmental pharmacology and pharmacogenetics. Int J Clin Pharm. 2011;33(3):473–4.

    Article  CAS  PubMed  Google Scholar 

  20. Reed MD, Besunder JB. Developmental pharmacology: ontogenic basis of drug disposition. Pediatr Clin N Am. 1989;36(5):1053–74.

    CAS  Google Scholar 

  21. van den Anker JN. Developmental pharmacology. Dev Disabil Res Rev. 2010;16(3):233–8.

    Article  PubMed  Google Scholar 

  22. Viergever RF, Rademaker CM, Ghersi D. Pharmacokinetic research in children: an analysis of registered records of clinical trials. BMJ Open. 2011;1(1):e000221.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Le Jouan M, Jullien V, Tetanye E, Tran A, Rey E, Treluyer JM, et al. Quinine pharmacokinetics and pharmacodynamics in children with malaria caused by Plasmodium falciparum. Antimicrob Agents Chemother. 2005;49(9):3658–62.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Wahlby U, Thomson AH, Milligan PA, Karlsson MO. Models for time-varying covariates in population pharmacokinetic-pharmacodynamic analysis. Br J Clin Pharmacol. 2004;58(4):367–77.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Staatz CE, Byrne C, Thomson AH. Population pharmacokinetic modelling of gentamicin and vancomycin in patients with unstable renal function following cardiothoracic surgery. Br J Clin Pharmacol. 2006;61(2):164–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. van Hest RM, van Gelder T, Bouw R, Goggin T, Gordon R, Mamelok RD, et al. Time-dependent clearance of mycophenolic acid in renal transplant recipients. Br J Clin Pharmacol. 2007;63(6):741–52.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Wade KC, Wu D, Kaufman DA, Ward RM, Benjamin Jr DK, Sullivan JE, et al. Population pharmacokinetics of fluconazole in young infants. Antimicrob Agents Chemother. 2008;52(11):4043–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. De Cock RF, Allegaert K, Sherwin CM, Nielsen EI, de Hoog M, van den Anker JN, et al. A neonatal amikacin covariate model can be used to predict ontogeny of other drugs eliminated through glomerular filtration in neonates. Pharm Res. 2013;31:754–67.

    Article  PubMed  Google Scholar 

  29. Cella M, Knibbe C, de Wildt SN, Van Gerven J, Danhof M, Della Pasqua O. Scaling of pharmacokinetics across paediatric populations: the lack of interpolative power of allometric models. Br J Clin Pharmacol. 2012;74(3):525–35.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Cella M, Zhao W, Jacqz-Aigrain E, Burger D, Danhof M, Della Pasqua O. Paediatric drug development: are population models predictive of pharmacokinetics across paediatric populations? Br J Clin Pharmacol. 2011;72(3):454–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Strougo A, Eissing T, Yassen A, Willmann S, Danhof M, Freijer J. First dose in children: physiological insights into pharmacokinetic scaling approaches and their implications in paediatric drug development. J Pharmacokinet Pharmacodyn. 2012;39(2):195–203.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Salem F, Johnson TN, Barter ZE, Leeder JS, Rostami-Hodjegan A. Age related changes in fractional elimination pathways for drugs: assessing the impact of variable ontogeny on metabolic drug-drug interactions. J Clin Pharmacol. 2013;53(8):857–65.

    Article  PubMed  Google Scholar 

  33. Edginton AN, Schmitt W, Willmann S. Development and evaluation of a generic physiologically based pharmacokinetic model for children. Clin Pharmacokinet. 2006;45(10):1013–34.

    Article  CAS  PubMed  Google Scholar 

  34. Anderson BJ, Woollard GA, Holford NH. A model for size and age changes in the pharmacokinetics of paracetamol in neonates, infants and children. Br J Clin Pharmacol. 2000;50(2):125–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Sharpe CM, Capparelli EV, Mower A, Farrell MJ, Soldin SJ, Haas RH. A seven-day study of the pharmacokinetics of intravenous levetiracetam in neonates: marked changes in pharmacokinetics occur during the first week of life. Pediatr Res. 2012;72(1):43–9.

    Article  CAS  PubMed  Google Scholar 

  36. Price PS, Conolly RB, Chaisson CF, Gross EA, Young JS, Mathis ET, et al. Modeling interindividual variation in physiological factors used in PBPK models of humans. Crit Rev Toxicol. 2003;33(5):469–503.

    Article  PubMed  Google Scholar 

  37. British National Formulary for Children (BNFC) 2010-11 British National formulary publications L, 2010 (P. 182).

  38. Mukherjee A, Dombi T, Wittke B, Lalonde R. Population pharmacokinetics of sildenafil in term neonates: evidence of rapid maturation of metabolic clearance in the early postnatal period. Clin Pharmacol Ther. 2009;85(1):56–63.

    Article  CAS  PubMed  Google Scholar 

  39. Loughnan PM, Greenwald A, Purton WW, Aranda JV, Watters G, Neims AH. Pharmacokinetic observations of phenytoin disposition in the newborn and young infant. Arch Dis Child. 1977;52(4):302–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Jauregizar N, Quintana A, Suarez E, Raczka E, de la Fuente L, Calvo R. Age-related changes in pharmacokinetics and pharmacodynamics of lerisetron in the rat: a population pharmacokinetic model. Gerontology. 2003;49(4):205–14.

    Article  PubMed  Google Scholar 

  41. Mangoni AA, Jackson SH. Age-related changes in pharmacokinetics and pharmacodynamics: basic principles and practical applications. Br J Clin Pharmacol. 2004;57(1):6–14.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Tobias D. Age-related changes in pharmacokinetics and pharmacodynamics: a review. Consult Pharm. 2004;19(8):736–9.

    Article  PubMed  Google Scholar 

  43. Shi S, Klotz U. Age-related changes in pharmacokinetics. Curr Drug Metab. 2011;12(7):601–10.

    Article  CAS  PubMed  Google Scholar 

  44. Rogers AS. The role of cytochrome P450 in developmental pharmacology. J Adolesc Health. 1994;15(8):635–40.

    Article  CAS  PubMed  Google Scholar 

  45. Reed MD. Developmental pharmacology: relationship to drug use. DICP. 1989;23(7–8 Suppl):S21–6.

    CAS  PubMed  Google Scholar 

  46. Rodriguez W, Selen A, Avant D, Chaurasia C, Crescenzi T, Gieser G, et al. Improving paediatric dosing through paediatric initiatives: what we have learned. Paediatrics. 2008;121(3):530–9.

    Article  Google Scholar 

  47. Lacroix D, Sonnier M, Moncion A, Cheron G, Cresteil T. Evidence that the shift between CYP3A7 and CYP3A4 occurs immediately after birth. Eur J Biochem. 1997;247(2):625–34.

    Article  CAS  PubMed  Google Scholar 

  48. Stevens JC, Hines RN, Gu C, Koukouritaki SB, Manro JR, Tandler PJ, et al. Developmental expression of the major human hepatic CYP3A enzymes. J Pharmacol Exp Ther. 2003;307(2):573–82.

    Article  CAS  PubMed  Google Scholar 

  49. Treluyer JM, Bowers G, Cazali N, Sonnier M, Rey E, Pons G, et al. Oxidative metabolism of amprenavir in the human liver. Effect of the CYP3A maturation. Drug Metab Dispos. 2003;31(3):275–81.

    Article  CAS  PubMed  Google Scholar 

  50. Johnson TN, Tucker GT, Rostami-Hodjegan A. Ontogeny of CYP2D6 and CYP3A4 in the first year of life. Clin Pharmacol Ther. 2008;83(5):670–1.

    Article  CAS  PubMed  Google Scholar 

  51. Tateseishi T, Nakura H, Asoh M, et al. A comparison of hepatic cytochromes P450 protein expression between infancy and postinfancy. Life Sci. 1997;61(26):2567–74.

    Article  Google Scholar 

  52. Hines RN. Ontogeny of human hepatic cytochromes P450. Biochem Mol Toxicol. 2007;21(4):169–75.

    Article  CAS  Google Scholar 

  53. Anderson BJ, Larsson P. A maturation model for midazolam clearance. Pediatr Anesth. 2011;21(3):302–8.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank James Kay and Eleanor Savill for their assistance with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trevor N. Johnson.

Additional information

Guest Editors: Bernd Meibohm, Jeffrey S. Barrett, and Gregory Knipp

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 35.3 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abduljalil, K., Jamei, M., Rostami-Hodjegan, A. et al. Changes in Individual Drug-Independent System Parameters during Virtual Paediatric Pharmacokinetic Trials: Introducing Time-Varying Physiology into a Paediatric PBPK Model. AAPS J 16, 568–576 (2014). https://doi.org/10.1208/s12248-014-9592-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-014-9592-9

KEY WORDS

Navigation