Skip to main content

Advertisement

Log in

Quantitative Targeted Proteomics for Membrane Transporter Proteins: Method and Application

  • Review Article
  • Theme: Targeted Proteomics Quantification for Membrane Proteins
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Although global proteomics has shown promise for discovery of many new proteins, biomarkers, protein modifications, and polymorphisms, targeted proteomics is emerging in the proteomics research field as a complement to untargeted shotgun proteomics, particularly when a determined set of low-abundance functional proteins need to be measured. The function and expression of proteins related to drug absorption, distribution, metabolism, and excretion (ADME) such as cytochrome P450 enzymes and membrane transporters are of great interest in biopharmaceutical research. Since the variation in ADME-related protein expression is known to be a major complicating factor encountered during in vitro–in vivo and in vivo–in vivo extrapolations (IVIVE), the accurate quantification of the ADME proteins in complex biological systems becomes a fundamental element in establishing IVIVE for pharmacokinetic predictions. In this review, we provide an overview of relevant methodologies followed by a summary of recent applications encompassing mass spectrometry-based targeted quantifications of membrane transporters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KL, Chu X, et al. Membrane transporters in drug development. Nat Rev Drug Discov. 2010;9(3):215–36. doi:10.1038/nrd3028.

    Article  CAS  PubMed  Google Scholar 

  2. Bentz J, O’Connor MP, Bednarczyk D, Coleman J, Lee C, Palm J, et al. Variability in P-glycoprotein inhibitory potency (IC(5)(0)) using various in vitro experimental systems: implications for universal digoxin drug–drug interaction risk assessment decision criteria. Drug Metab Dispos. 2013;41(7):1347–66. doi:10.1124/dmd.112.050500.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Ellens H, Deng S, Coleman J, Bentz J, Taub ME, Ragueneau-Majlessi I, et al. Application of receiver operating characteristic analysis to refine the prediction of potential digoxin drug interactions. Drug Metab Dispos. 2013;41(7):1367–74. doi:10.1124/dmd.112.050542.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Ghibellini G, Johnson BM, Kowalsky RJ, Heizer WD, Brouwer KL. A novel method for the determination of biliary clearance in humans. AAPS J. 2004;6(4):e33. doi:10.1208/aapsj060433.

    Article  PubMed  Google Scholar 

  5. Li N, Singh P, Mandrell KM, Lai Y. Improved extrapolation of hepatobiliary clearance from in vitro sandwich cultured rat hepatocytes through absolute quantification of hepatobiliary transporters. Mol Pharm. 2010;7(3):630–41. doi:10.1021/mp9001574.

    Article  CAS  PubMed  Google Scholar 

  6. Li N, Zhang Y, Hua F, Lai Y. Absolute difference of hepatobiliary transporter multidrug resistance-associated protein (MRP2/Mrp2) in liver tissues and isolated hepatocytes from rat, dog, monkey, and human. Drug Metab Dispos. 2009;37(1):66–73. doi:10.1124/dmd.108.023234.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang Y, Li N, Brown PW, Ozer JS, Lai Y. Liquid chromatography/tandem mass spectrometry based targeted proteomics quantification of P-glycoprotein in various biological samples. Rapid Commun Mass Spectrom. 2011;25(12):1715–24. doi:10.1002/rcm.5026.

    Article  CAS  PubMed  Google Scholar 

  8. Picotti P, Bodenmiller B, Mueller LN, Domon B, Aebersold R. Full dynamic range proteome analysis of S. cerevisiae by targeted proteomics. Cell. 2009;138(4):795–806. doi:10.1016/j.cell.2009.05.051.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Anderson L, Hunter CL. Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Mol Cell Proteomics. 2006;5(4):573–88. doi:10.1074/mcp.M500331-MCP200.

    Article  CAS  PubMed  Google Scholar 

  10. Achour B, Russell MR, Barber J, Rostami-Hodjegan A. Simultaneous quantification of the abundance of several cytochrome p450 and uridine 5′-diphospho-glucuronosyltransferase enzymes in human liver microsomes using multiplexed targeted proteomics. Drug Metab Dispos. 2014;42(4):500–10. doi:10.1124/dmd.113.055632.

    Article  CAS  PubMed  Google Scholar 

  11. Russell MR, Achour B, McKenzie EA, Lopez R, Harwood MD, Rostami-Hodjegan A, et al. Alternative fusion protein strategies to express recalcitrant QconCAT proteins for quantitative proteomics of human drug metabolizing enzymes and transporters. J Proteome Res. 2013;12(12):5934–42. doi:10.1021/pr400279u.

    Article  CAS  PubMed  Google Scholar 

  12. Prasad B, Evers R, Gupta A, Hop CE, Salphati L, Shukla S, et al. Interindividual variability in hepatic organic anion-transporting polypeptides and P-glycoprotein (ABCB1) protein expression: quantification by liquid chromatography tandem mass spectroscopy and influence of genotype, age, and sex. Drug Metab Dispos. 2014;42(1):78–88. doi:10.1124/dmd.113.053819.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Prasad B, Lai Y, Lin Y, Unadkat JD. Interindividual variability in the hepatic expression of the human breast cancer resistance protein (BCRP/ABCG2): effect of age, sex, and genotype. J Pharm Sci. 2013;102(3):787–93. doi:10.1002/jps.23436.

    Article  CAS  PubMed  Google Scholar 

  14. Picotti P, Aebersold R. Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions. Nat Methods. 2012;9(6):555–66. doi:10.1038/nmeth.2015.

    Article  CAS  PubMed  Google Scholar 

  15. Arnott D, Kishiyama A, Luis EA, Ludlum SG, Marsters Jr JC, Stults JT. Selective detection of membrane proteins without antibodies: a mass spectrometric version of the Western blot. Mol Cell Proteomics. 2002;1(2):148–56.

    Article  CAS  PubMed  Google Scholar 

  16. Picotti P, Rinner O, Stallmach R, Dautel F, Farrah T, Domon B, et al. High-throughput generation of selected reaction-monitoring assays for proteins and proteomes. Nat Methods. 2010;7(1):43–6. doi:10.1038/nmeth.1408.

    Article  CAS  PubMed  Google Scholar 

  17. Picotti P, Aebersold R, Domon B. The implications of proteolytic background for shotgun proteomics. Mol Cell Proteomics. 2007;6(9):1589–98. doi:10.1074/mcp.M700029-MCP200.

    Article  CAS  PubMed  Google Scholar 

  18. Li N, Nemirovskiy OV, Zhang Y, Yuan H, Mo J, Ji C, et al. Absolute quantification of multidrug resistance-associated protein 2 (MRP2/ABCC2) using liquid chromatography tandem mass spectrometry. Anal Biochem. 2008;380(2):211–22. doi:10.1016/j.ab.2008.05.032.

    Article  CAS  PubMed  Google Scholar 

  19. Kamiie J, Ohtsuki S, Iwase R, Ohmine K, Katsukura Y, Yanai K, et al. Quantitative atlas of membrane transporter proteins: development and application of a highly sensitive simultaneous LC/MS/MS method combined with novel in-silico peptide selection criteria. Pharm Res. 2008;25(6):1469–83. doi:10.1007/s11095-008-9532-4.

    Article  CAS  PubMed  Google Scholar 

  20. Uchida Y, Tachikawa M, Obuchi W, Hoshi Y, Tomioka Y, Ohtsuki S, et al. A study protocol for quantitative targeted absolute proteomics (QTAP) by LC-MS/MS: application for inter-strain differences in protein expression levels of transporters, receptors, claudin-5, and marker proteins at the blood–brain barrier in ddY, FVB, and C57BL/6J mice. Fluids Barriers CNS. 2013;10(1):21. doi:10.1186/2045-8118-10-21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Yoneyama T, Ohtsuki S, Ono M, Ohmine K, Uchida Y, Yamada T, et al. Quantitative targeted absolute proteomics-based large-scale quantification of proline-hydroxylated alpha-fibrinogen in plasma for pancreatic cancer diagnosis. J Proteome Res. 2013;12(2):753–62. doi:10.1021/pr3008144.

    Article  CAS  PubMed  Google Scholar 

  22. Groer C, Bruck S, Lai Y, Paulick A, Busemann A, Heidecke CD, et al. LC-MS/MS-based quantification of clinically relevant intestinal uptake and efflux transporter proteins. J Pharm Biomed Anal. 2013;85:253–61. doi:10.1016/j.jpba.2013.07.031.

    Article  CAS  PubMed  Google Scholar 

  23. Fallon JK, Neubert H, Hyland R, Goosen TC, Smith PC. Targeted quantitative proteomics for the analysis of 14 UGT1As and -2Bs in human liver using NanoUPLC-MS/MS with selected reaction monitoring. J Proteome Res. 2013;12(10):4402–13. doi:10.1021/pr4004213.

    Article  CAS  PubMed  Google Scholar 

  24. Fusaro VA, Mani DR, Mesirov JP, Carr SA. Prediction of high-responding peptides for targeted protein assays by mass spectrometry. Nat Biotechnol. 2009;27(2):190–8. doi:10.1038/nbt.1524.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Lange V, Picotti P, Domon B, Aebersold R. Selected reaction monitoring for quantitative proteomics: a tutorial. Mol Syst Biol. 2008;4:222. doi:10.1038/msb.2008.61.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Kirkpatrick DS, Gerber SA, Gygi SP. The absolute quantification strategy: a general procedure for the quantification of proteins and post-translational modifications. Methods. 2005;35(3):265–73. doi:10.1016/j.ymeth.2004.08.018.

    Article  CAS  PubMed  Google Scholar 

  27. Chalkley R. Instrumentation for LC-MS/MS in proteomics. Methods Mol Biol. 2010;658:47–60. doi:10.1007/978-1-60761-780-8_3.

    Article  CAS  PubMed  Google Scholar 

  28. Bronstrup M. Absolute quantification strategies in proteomics based on mass spectrometry. Expert Rev Proteomics. 2004;1(4):503–12. doi:10.1586/14789450.1.4.503.

    Article  PubMed  Google Scholar 

  29. Sherwood CA, Eastham A, Lee LW, Risler J, Vitek O, Martin DB. Correlation between y-type ions observed in ion trap and triple quadrupole mass spectrometers. J Proteome Res. 2009;8(9):4243–51. doi:10.1021/pr900298b.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP. Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci U S A. 2003;100(12):6940–5. doi:10.1073/pnas.0832254100.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Barr JR, Maggio VL, Patterson Jr DG, Cooper GR, Henderson LO, Turner WE, et al. Isotope dilution–mass spectrometric quantification of specific proteins: model application with apolipoprotein A-I. Clin Chem. 1996;42(10):1676–82.

    CAS  PubMed  Google Scholar 

  32. Zhang G, Annan RS, Carr SA, Neubert TA. Overview of peptide and protein analysis by mass spectrometry. Curr Protoc Protein Sci. 2010;Chapter 16:Unit16 1. doi:10.1002/0471140864.ps1601s62.

    PubMed  Google Scholar 

  33. Brun V, Masselon C, Garin J, Dupuis A. Isotope dilution strategies for absolute quantitative proteomics. J Proteomics. 2009;72(5):740–9. doi:10.1016/j.jprot.2009.03.007.

    Article  CAS  PubMed  Google Scholar 

  34. Elliott MH, Smith DS, Parker CE, Borchers C. Current trends in quantitative proteomics. J Mass Spectrom. 2009;44(12):1637–60. doi:10.1002/jms.1692.

    CAS  PubMed  Google Scholar 

  35. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics. 2002;1(5):376–86.

    Article  CAS  PubMed  Google Scholar 

  36. Rauniyar N, McClatchy DB, Yates 3rd JR. Stable isotope labeling of mammals (SILAM) for in vivo quantitative proteomic analysis. Methods. 2013;61(3):260–8. doi:10.1016/j.ymeth.2013.03.008.

    Article  CAS  PubMed  Google Scholar 

  37. Qiu X, Bi YA, Balogh LM, Lai Y. Absolute measurement of species differences in sodium taurocholate cotransporting polypeptide (NTCP/Ntcp) and its modulation in cultured hepatocytes. J Pharm Sci. 2013;102(9):3252–63. doi:10.1002/jps.23582.

    Article  CAS  PubMed  Google Scholar 

  38. Geiger T, Wisniewski JR, Cox J, Zanivan S, Kruger M, Ishihama Y, et al. Use of stable isotope labeling by amino acids in cell culture as a spike-in standard in quantitative proteomics. Nat Protoc. 2011;6(2):147–57. doi:10.1038/nprot.2010.192.

    Article  CAS  PubMed  Google Scholar 

  39. Hanke S, Besir H, Oesterhelt D, Mann M. Absolute SILAC for accurate quantitation of proteins in complex mixtures down to the attomole level. J Proteome Res. 2008;7(3):1118–30. doi:10.1021/pr7007175.

    Article  CAS  PubMed  Google Scholar 

  40. Harsha HC, Molina H, Pandey A. Quantitative proteomics using stable isotope labeling with amino acids in cell culture. Nat Protoc. 2008;3(3):505–16. doi:10.1038/nprot.2008.2.

    Article  CAS  PubMed  Google Scholar 

  41. Ong SE, Mann M. A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nat Protoc. 2006;1(6):2650–60. doi:10.1038/nprot.2006.427.

    Article  CAS  PubMed  Google Scholar 

  42. Ong SE, Mann M. Stable isotope labeling by amino acids in cell culture for quantitative proteomics. Methods Mol Biol. 2007;359:37–52. doi:10.1007/978-1-59745-255-7_3.

    Article  CAS  PubMed  Google Scholar 

  43. Brun V, Dupuis A, Adrait A, Marcellin M, Thomas D, Court M, et al. Isotope-labeled protein standards: toward absolute quantitative proteomics. Mol Cell Proteomics. 2007;6(12):2139–49. doi:10.1074/mcp.M700163-MCP200.

    Article  CAS  PubMed  Google Scholar 

  44. Ishihama Y, Sato T, Tabata T, Miyamoto N, Sagane K, Nagasu T, et al. Quantitative mouse brain proteomics using culture-derived isotope tags as internal standards. Nat Biotechnol. 2005;23(5):617–21. doi:10.1038/nbt1086.

    Article  CAS  PubMed  Google Scholar 

  45. Lebert D, Dupuis A, Garin J, Bruley C, Brun V. Production and use of stable isotope-labeled proteins for absolute quantitative proteomics. Methods Mol Biol. 2011;753:93–115. doi:10.1007/978-1-61779-148-2_7.

    Article  CAS  PubMed  Google Scholar 

  46. Li N, Bi YA, Duignan DB, Lai Y. Quantitative expression profile of hepatobiliary transporters in sandwich cultured rat and human hepatocytes. Mol Pharm. 2009;6(4):1180–9. doi:10.1021/mp900044x.

    Article  CAS  PubMed  Google Scholar 

  47. Li N, Palandra J, Nemirovskiy OV, Lai Y. LC-MS/MS mediated absolute quantification and comparison of bile salt export pump and breast cancer resistance protein in livers and hepatocytes across species. Anal Chem. 2009;81(6):2251–9. doi:10.1021/ac8024009.

    Article  CAS  PubMed  Google Scholar 

  48. Uchida Y, Ohtsuki S, Katsukura Y, Ikeda C, Suzuki T, Kamiie J, et al. Quantitative targeted absolute proteomics of human blood–brain barrier transporters and receptors. J Neurochem. 2011;117(2):333–45. doi:10.1111/j.1471-4159.2011.07208.x.

    Article  CAS  PubMed  Google Scholar 

  49. Sakamoto A, Matsumaru T, Ishiguro N, Schaefer O, Ohtsuki S, Inoue T, et al. Reliability and robustness of simultaneous absolute quantification of drug transporters, cytochrome P450 enzymes, and Udp-glucuronosyltransferases in human liver tissue by multiplexed MRM/selected reaction monitoring mode tandem mass spectrometry with nano-liquid chromatography. J Pharm Sci. 2011;100(9):4037–43. doi:10.1002/jps.22591.

    Article  CAS  PubMed  Google Scholar 

  50. Shawahna R, Uchida Y, Decleves X, Ohtsuki S, Yousif S, Dauchy S, et al. Transcriptomic and quantitative proteomic analysis of transporters and drug metabolizing enzymes in freshly isolated human brain microvessels. Mol Pharm. 2011;8(4):1332–41. doi:10.1021/mp200129p.

    Article  CAS  PubMed  Google Scholar 

  51. Uchida Y, Ohtsuki S, Kamiie J, Terasaki T. Blood–brain barrier (BBB) pharmacoproteomics: reconstruction of in vivo brain distribution of 11 P-glycoprotein substrates based on the BBB transporter protein concentration, in vitro intrinsic transport activity, and unbound fraction in plasma and brain in mice. J Pharmacol Exp Ther. 2011;339(2):579–88. doi:10.1124/jpet.111.184200.

    Article  CAS  PubMed  Google Scholar 

  52. Balogh LM, Kimoto E, Chupka J, Zhang H, Lai Y. Membrane protein quantification by peptide-based mass spectrometry approaches: studies on the organic anion-transporting polypeptide family. J Proteomics Bioinforma. 2012;S4(003):1–8.

    Google Scholar 

  53. Helenius A, McCaslin DR, Fries E, Tanford C. Properties of detergents. Methods Enzymol. 1979;56:734–49.

    Article  CAS  PubMed  Google Scholar 

  54. Lin Y, Zhou J, Bi D, Chen P, Wang X, Liang S. Sodium-deoxycholate-assisted tryptic digestion and identification of proteolytically resistant proteins. Anal Biochem. 2008;377(2):259–66. doi:10.1016/j.ab.2008.03.009.

    Article  CAS  PubMed  Google Scholar 

  55. FDA_Guidance. Guidance for industry: bioanalytical method validation. http://wwwfdagov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM368107pdf. 2013.

  56. Brouwer KL, Keppler D, Hoffmaster KA, Bow DA, Cheng Y, Lai Y, et al. In vitro methods to support transporter evaluation in drug discovery and development. Clin Pharmacol Ther. 2013;94(1):95–112. doi:10.1038/clpt.2013.81.

    Article  CAS  PubMed  Google Scholar 

  57. Liu X, Chism JP, LeCluyse EL, Brouwer KR, Brouwer KL. Correlation of biliary excretion in sandwich-cultured rat hepatocytes and in vivo in rats. Drug Metab Dispos. 1999;27(6):637–44.

    CAS  PubMed  Google Scholar 

  58. Liu X, LeCluyse EL, Brouwer KR, Lightfoot RM, Lee JI, Brouwer KL. Use of Ca2+ modulation to evaluate biliary excretion in sandwich-cultured rat hepatocytes. J Pharmacol Exp Ther. 1999;289(3):1592–9.

    CAS  PubMed  Google Scholar 

  59. Bi YA, Kazolias D, Duignan DB. Use of cryopreserved human hepatocytes in sandwich culture to measure hepatobiliary transport. Drug Metab Dispos. 2006;34(9):1658–65. doi:10.1124/dmd.105.009118.

    Article  CAS  PubMed  Google Scholar 

  60. Pfeifer ND, Hardwick RN, Brouwer KL. Role of hepatic efflux transporters in regulating systemic and hepatocyte exposure to xenobiotics. Annu Rev Pharmacol Toxicol. 2014;54:509–35. doi:10.1146/annurev-pharmtox-011613-140021.

    Article  CAS  PubMed  Google Scholar 

  61. Reid LM, Jefferson DM. Culturing hepatocytes and other differentiated cells. Hepatology. 1984;4(3):548–59.

    Article  CAS  PubMed  Google Scholar 

  62. Chandra P, Lecluyse EL, Brouwer KL. Optimization of culture conditions for determining hepatobiliary disposition of taurocholate in sandwich-cultured rat hepatocytes. In Vitro Cell Dev Biol Anim. 2001;37(6):380–5. doi:10.1007/BF02577575.

    Article  CAS  PubMed  Google Scholar 

  63. Turncliff RZ, Tian X, Brouwer KL. Effect of culture conditions on the expression and function of Bsep, Mrp2, and Mdr1a/b in sandwich-cultured rat hepatocytes. Biochem Pharmacol. 2006;71(10):1520–9. doi:10.1016/j.bcp.2006.02.004.

    Article  CAS  PubMed  Google Scholar 

  64. Tchaparian EH, Houghton JS, Uyeda C, Grillo MP, Jin L. Effect of culture time on the basal expression levels of drug transporters in sandwich-cultured primary rat hepatocytes. Drug Metab Dispos. 2011;39(12):2387–94. doi:10.1124/dmd.111.039545.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Kimoto E, Yoshida K, Balogh LM, Bi YA, Maeda K, El-Kattan A, et al. Characterization of Organic Anion Transporting Polypeptide (OATP) expression and its functional contribution to the uptake of substrates in human hepatocytes. Mol Pharm. 2012;9:3535–42. doi:10.1021/mp300379q.

    Article  CAS  PubMed  Google Scholar 

  66. Kotani N, Maeda K, Watanabe T, Hiramatsu M, Gong LK, Bi YA, et al. Culture period-dependent changes in the uptake of transporter substrates in sandwich-cultured rat and human hepatocytes. Drug Metab Dispos. 2011;39(9):1503–10. doi:10.1124/dmd.111.038968.

    Article  CAS  PubMed  Google Scholar 

  67. Di L, Whitney-Pickett C, Umland JP, Zhang H, Zhang X, Gebhard DF, et al. Development of a new permeability assay using low-efflux MDCKII cells. J Pharm Sci. 2011;100(11):4974–85. doi:10.1002/jps.22674.

    Article  CAS  PubMed  Google Scholar 

  68. Poller B, Drewe J, Krahenbuhl S, Huwyler J, Gutmann H. Regulation of BCRP (ABCG2) and P-glycoprotein (ABCB1) by cytokines in a model of the human blood–brain barrier. Cell Mol Neurobiol. 2010;30(1):63–70. doi:10.1007/s10571-009-9431-1.

    Article  CAS  PubMed  Google Scholar 

  69. Dickens D, Webb SD, Antonyuk S, Giannoudis A, Owen A, Radisch S, et al. Transport of gabapentin by LAT1 (SLC7A5). Biochem Pharmacol. 2013;85(11):1672–83. doi:10.1016/j.bcp.2013.03.022.

    Article  CAS  PubMed  Google Scholar 

  70. Poller B, Gutmann H, Krahenbuhl S, Weksler B, Romero I, Couraud PO, et al. The human brain endothelial cell line hCMEC/D3 as a human blood–brain barrier model for drug transport studies. J Neurochem. 2008;107(5):1358–68.

    Article  CAS  PubMed  Google Scholar 

  71. Weksler B, Romero IA, Couraud PO. The hCMEC/D3 cell line as a model of the human blood brain barrier. Fluids Barriers CNS. 2013;10(1):16. doi:10.1186/2045-8118-10-16.

    Article  PubMed Central  PubMed  Google Scholar 

  72. Carl SM, Lindley DJ, Couraud PO, Weksler BB, Romero I, Mowery SA, et al. ABC and SLC transporter expression and pot substrate characterization across the human CMEC/D3 blood–brain barrier cell line. Mol Pharm. 2010;7(4):1057–68. doi:10.1021/mp900178j.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Dauchy S, Miller F, Couraud PO, Weaver RJ, Weksler B, Romero IA, et al. Expression and transcriptional regulation of ABC transporters and cytochromes P450 in hCMEC/D3 human cerebral microvascular endothelial cells. Biochem Pharmacol. 2009;77(5):897–909. doi:10.1016/j.bcp.2008.11.001.

    Article  CAS  PubMed  Google Scholar 

  74. Ohtsuki S, Ikeda C, Uchida Y, Sakamoto Y, Miller F, Glacial F, et al. Quantitative targeted absolute proteomic analysis of transporters, receptors and junction proteins for validation of human cerebral microvascular endothelial cell line hCMEC/D3 as a human blood–brain barrier model. Mol Pharm. 2013;10(1):289–96. doi:10.1021/mp3004308.

    Article  CAS  PubMed  Google Scholar 

  75. Ohtsuki S, Uchida Y, Kubo Y, Terasaki T. Quantitative targeted absolute proteomics-based ADME research as a new path to drug discovery and development: methodology, advantages, strategy, and prospects. J Pharm Sci. 2011;100(9):3547–59. doi:10.1002/jps.22612.

    Article  CAS  PubMed  Google Scholar 

  76. Lai Y. Identification of interspecies difference in hepatobiliary transporters to improve extrapolation of human biliary secretion. Expert Opin Drug Metab Toxicol. 2009;5(10):1175–87. doi:10.1517/17425250903127234.

    Article  CAS  PubMed  Google Scholar 

  77. Niessen J, Jedlitschky G, Grube M, Kawakami H, Kamiie J, Ohtsuki S, et al. Expression of ABC-type transport proteins in human platelets. Pharmacogenet Genomics. 2010;20(6):396–400. doi:10.1097/FPC.0b013e32833997b0.

    Article  CAS  PubMed  Google Scholar 

  78. Ito K, Uchida Y, Ohtsuki S, Aizawa S, Kawakami H, Katsukura Y, et al. Quantitative membrane protein expression at the blood–brain barrier of adult and younger cynomolgus monkeys. J Pharm Sci. 2011;100(9):3939–50. doi:10.1002/jps.22487.

    Article  CAS  PubMed  Google Scholar 

  79. Bi YA, Qiu X, Rotter CJ, Kimoto E, Piotrowski M, Varma MV, et al. Quantitative assessment of the contribution of sodium-dependent taurocholate co-transporting polypeptide (NTCP) to the hepatic uptake of rosuvastatin, pitavastatin and fluvastatin. Biopharm Drug Dispos. 2013;34(8):452–61. doi:10.1002/bdd.1861.

    Article  CAS  PubMed  Google Scholar 

  80. Ho RH, Tirona RG, Leake BF, Glaeser H, Lee W, Lemke CJ, et al. Drug and bile acid transporters in rosuvastatin hepatic uptake: function, expression, and pharmacogenetics. Gastroenterology. 2006;130(6):1793–806. doi:10.1053/j.gastro.2006.02.034.

    Article  CAS  PubMed  Google Scholar 

  81. Fujino H, Saito T, Ogawa S, Kojima J. Transporter-mediated influx and efflux mechanisms of pitavastatin, a new inhibitor of HMG-CoA reductase. J Pharm Pharmacol. 2005;57(10):1305–11. doi:10.1211/jpp.57.10.0009.

    Article  CAS  PubMed  Google Scholar 

  82. Greupink R, Dillen L, Monshouwer M, Huisman MT, Russel FG. Interaction of fluvastatin with the liver-specific Na+-dependent taurocholate cotransporting polypeptide (NTCP). Eur J Pharm Sci. 2011;44(4):487–96. doi:10.1016/j.ejps.2011.09.009.

    Article  CAS  PubMed  Google Scholar 

  83. Proc JL, Kuzyk MA, Hardie DB, Yang J, Smith DS, Jackson AM, et al. A quantitative study of the effects of chaotropic agents, surfactants, and solvents on the digestion efficiency of human plasma proteins by trypsin. J Proteome Res. 2010;9(10):5422–37. doi:10.1021/pr100656u.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Klammer AA, MacCoss MJ. Effects of modified digestion schemes on the identification of proteins from complex mixtures. J Proteome Res. 2006;5(3):695–700. doi:10.1021/pr050315j.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Ohtsuki S, Schaefer O, Kawakami H, Inoue T, Liehner S, Saito A, et al. Simultaneous absolute protein quantification of transporters, cytochromes P450, and UDP-glucuronosyltransferases as a novel approach for the characterization of individual human liver: comparison with mRNA levels and activities. Drug Metab Dispos. 2012;40(1):83–92. doi:10.1124/dmd.111.042259.

    Article  CAS  PubMed  Google Scholar 

  86. Schaefer O, Ohtsuki S, Kawakami H, Inoue T, Liehner S, Saito A, et al. Absolute quantification and differential expression of drug transporters, cytochrome P450 enzymes, and UDP-glucuronosyltransferases in cultured primary human hepatocytes. Drug Metab Dispos. 2012;40(1):93–103. doi:10.1124/dmd.111.042275.

    Article  CAS  PubMed  Google Scholar 

  87. Atkinson Jr AJ, Smith BP. Models of physiology and physiologically based models in clinical pharmacology. Clin Pharmacol Ther. 2012;92(1):3–6. doi:10.1038/clpt.2012.67.

    Article  PubMed  Google Scholar 

  88. Smith BJ. An industrial perspective on contemporary applications of PBPK models in drug discovery and development. Biopharm Drug Dispos. 2012;33(2):53–4. doi:10.1002/bdd.1778.

    Article  CAS  PubMed  Google Scholar 

  89. Wu CC, Yates 3rd JR. The application of mass spectrometry to membrane proteomics. Nat Biotechnol. 2003;21(3):262–7. doi:10.1038/nbt0303-262.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

We would like to acknowledge Dr. Punit Marathe for her scientific comments and suggestions. We also thank Anthony Marino for the help in editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yurong Lai.

Additional information

Guest Editors: Marilyn E. Morris and Yurong Lai

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, X., Zhang, H. & Lai, Y. Quantitative Targeted Proteomics for Membrane Transporter Proteins: Method and Application. AAPS J 16, 714–726 (2014). https://doi.org/10.1208/s12248-014-9607-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-014-9607-6

KEY WORDS

Navigation