Skip to main content

Well-Differentiated Human Airway Epithelial Cell Cultures

  • Protocol
Book cover Human Cell Culture Protocols

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 107))

Abstract

The airway epithelium occupies a critical environmental interface, protecting the host from a wide variety of inhaled insults, including chemical and particulate pollutants and pathogens. The coordinated regulation of ion and water transport, mucous secretion, and cilia beating underlies mucociliary clearance. Physical trapping and removal of harmful substances, in combination with baseline or inducible secretion of antimicrobial factors, antioxidants, and protease inhibitors and recruitment of nonspecific inflammatory cells (neutrophils, monocytes), constitutes airway innate host defense.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lechner, J. R, Haugen, A., McLendon, I. A., and Pettis, E. W. (1982) Clonal growth of normal adult human bronchial epithelial cells in a serum-free medium. In Vitro 18, 633–642.

    Article  PubMed  CAS  Google Scholar 

  2. Gruenert, D. C., Finkbeiner, W. E., and Widdicombe, J. H. (1995) Culture and transformation of human airway epithelial cells. Am. J. Physiol. 268, L347–L360.

    PubMed  CAS  Google Scholar 

  3. Terzaghi, M., Nettesheim, P., and Williams, M.L. (1978) Repopulation of denuded tracheal grafts with normal, preneoplastic, and neoplastic epithelial cell populations. Cancer Res. 38, 4546–4553.

    PubMed  CAS  Google Scholar 

  4. Yankaskas, J. R., Knowles, M. R., Gatzy, J. T., and Boucher, R. C. (1985) Persistence of abnormal chloride ion permeability in cystic fibrosis nasal epithelial cells in heterologous culture. Lancet 1, 954–956.

    Article  PubMed  CAS  Google Scholar 

  5. Jorissen, M., Van Der Schueren, B., van den Berghe, H., and Cassiman, J. J. (1989) The preservation and regeneration of cilia on human nasal epithelial cells cultured in vitro. Arch. Otorhinolaryngol. 246, 308–314.

    Article  PubMed  CAS  Google Scholar 

  6. Wu, R., Yankaskas, J., Cheng, E., Knowles, M. R., and Boucher, R. (1985) Growth and differentiation of human nasal epithelial cells in culture. Serum-free, hormone-supplemented medium and proteoglycan synthesis. Am. Rev. Respir. Dis. 132, 311–320.

    PubMed  CAS  Google Scholar 

  7. Benali, R., Tournier, J. M., Chevillard, M., et al. (1993) Tubule formation by human surface respiratory epithelial cells cultured in a three-dimensional collagen lattice. Am. J. Physiol. 264, L183–L192.

    PubMed  CAS  Google Scholar 

  8. Whitcutt, M. J., Adler, K., and Wu, R. (1988) A biphasic chamber system for maintaining polarity of differentiation of cultured respiratory tract epithelial cells. In Vitro Cell. Dev. Biol. 24, 420–428.

    Article  PubMed  CAS  Google Scholar 

  9. Matsui, H., Grubb, B. R., Tarran, R., et al. (1998) Evidence for periciliary liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airways disease. Cell 95, 1005–1015.

    Article  PubMed  CAS  Google Scholar 

  10. Matsui, H., Randell, S. H., Peretti, S. W., Davis, C. W., and Boucher, R. C. (1998) Coordinated clearance of periciliary liquid and mucus from airway surfaces. J. Clin. Invest. 102, 1125–1131.

    Article  PubMed  CAS  Google Scholar 

  11. Pickles, R. J., McCarty, D., Matsui, H., Hart, P. J., Randell, S. H., and Boucher, R. C. (1998) Limited entry of adenoviral vectors into well differentiated airway epithelium is responsible for inefficient gene transfer. J. Virol. 72, 6014–6023.

    PubMed  CAS  Google Scholar 

  12. Zhang, L., Peeples, M. E., Boucher, R. C., Collins, P. L., and Pickles, R. J. (2002) Respiratory syncytial virus infection of human airway epithelial cells is polarized, specific to ciliated cells, and without obvious cytopathology. J. Virol. 76, 5654–5666.

    Article  PubMed  CAS  Google Scholar 

  13. Bernacki, S. H., Nelson, A. L., Abdullah, L., et al. (1999) Mucin gene expression during differentiation of human airway epithelia in vitro. Muc4 and muc5b are strongly induced. Am. J. Respir. Cell Mol. Biol. 20, 595–604.

    PubMed  CAS  Google Scholar 

  14. Zhang, Y. J., O’Neal, W. K., Randell, S. H., et al. (2002) Identification of dynein heavy chain 7 as an inner arm component of human cilia that is synthesized but not assembled in a case of primary ciliary dyskinesia. J. Biol. Chem. 277, 17,906–17,915.

    Article  PubMed  CAS  Google Scholar 

  15. Yoon, J. H., Koo, J. S., Norford, D., Guzman, K., Gray, T., and Nettesheim, P. (1999) Lysozyme expression during metaplastic squamous differentiation of retinoic acid-deficient human tracheobronchial epithelial cells. Am. J. Respir. Cell Mol. Biol. 20, 573–581.

    PubMed  CAS  Google Scholar 

  16. Gray, T. E., Guzman, K., Davis, C. W., Abdullah, L. H., and Nettesheim, P. (1996) Mucociliary differentiation of serially passaged normal human tracheobronchial epithelial cells. Am. J. Respir. Cell Mol. Biol. 14, 104–112.

    PubMed  CAS  Google Scholar 

  17. Lechner, J. F. and LaVeck, M. A. (1985) A serum-free method for culturing normal human bronchial epithelial cells at clonal density. J. Tiss. Cult. Meth. 9, 43–48.

    Article  Google Scholar 

  18. Randell, S. H., Walstad, L., Schwab, U. E., Grubb, B. R., and Yankaskas, J. R. (2001) Isolation and culture of airway epithelial cells from chronically infected human lungs. In Vitro Cell Dev. Biol. Anim. 37, 480–489.

    Article  PubMed  CAS  Google Scholar 

  19. Bancroft, J. and Stevens, A. (1996) Theory and Practice of Histological Techniques, Battle Press, Columbus, OH, pp. 69–80.

    Google Scholar 

  20. Sheehan, D. and Hrapchak, B. (1980) Theory and Practice of Histotechnology, Battle Press, Columbus, OH, Vol. 2, 59–66.

    Google Scholar 

  21. Hayat, M. A. (1989) Principles and Techniques of Electron Microscopy 3, 79–92.

    Google Scholar 

  22. Goldstein, J. (1984) Scanning Electron Microscopy and X-ray Micro analysis, pp. 495–540.

    Google Scholar 

  23. Boat, T. E, Welsh, M. J., and Beaudet, A. L. (1989) Cystic fibrosis, in The Metabolic Basis of Inherited Disease (Scriver, C. R., Beaudet, A. L., Sly, W. S., Valle, D., Stansbury, J. B., Wyngaarden, J. B., and Frederickson, D. S., eds.), 2649–2680.

    Google Scholar 

  24. Rommens, J. M., Iannuzzi, M. C., Kerem, B.-T., et al. (1989) Identification of the cystic fibrosis gene: Chromosome walking and jumping. Science 245, 1059–1065.

    Article  PubMed  CAS  Google Scholar 

  25. Riordan, J. R., Rommens, J. M., Kerem, B.-T., et al. (1989) Identification of the cystic fibrosis gene: Cloning and characterization of complementary DNA. Science 245, 1066–1073.

    Article  PubMed  CAS  Google Scholar 

  26. Kerem, B., Rommens, J. M., Buchanan, J. A., et al. (1989) Identification of the cystic fibrosis gene: Genetic analysis. Science 245, 1073–1080.

    Article  PubMed  CAS  Google Scholar 

  27. Anderson, M. P., Rich, D. P., Gregory, R. J., Smith, A. E., and Welsh, M. J. (1991) Generation of cAMP-activated chloride currents by expression of CFTR. Science 251, 679–682.

    Article  PubMed  CAS  Google Scholar 

  28. Kartner, N., Hanrahan, J. W., Jensen, T. J., et al. (1991) Expression of the cystic fibrosis gene in non-epithelial invertebrate cells produces a regulated anion conductance. Cell 64, 681–691.

    Article  PubMed  CAS  Google Scholar 

  29. Stutts, M. J., Canessa, C. M., Olsen, J. C., et al. (1995) CFTR as a cAMP-dependent regulator of sodium channels. Science 269, 847–850.

    Article  PubMed  CAS  Google Scholar 

  30. Gabriel, S. E., Makhlina, M., Martsen, E., Thomas, E. J., Lethem, M. L, and Boucher, R. C. (2000) Permeabilization via the P2X7 purinoceptor reveals the presence of a Ca2+-activated Cl- conductance in the apical membrane of murine tracheal epithelial cells. J. Biol. Chem. 275, 35,028–35,033.

    Article  PubMed  CAS  Google Scholar 

  31. Tarran, R., Loewen, M. E., Paradiso, A. M., et al. (2002) Regulation of murine airway surface liquid volume by CFTR and Ca2+-activated Cl- conductances. J. Gen. Physiol. 120, 407–418.

    Article  PubMed  CAS  Google Scholar 

  32. Donaldson, S. H., Hirsh, A., Li, D. C., et al. (2002) Regulation of the epithelial sodium channel by serine proteases in human airways. J. Biol. Chem. 277, 8338–8345.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Fulcher, M.L., Gabriel, S., Burns, K.A., Yankaskas, J.R., Randell, S.H. (2005). Well-Differentiated Human Airway Epithelial Cell Cultures. In: Picot, J. (eds) Human Cell Culture Protocols. Methods in Molecular Medicine™, vol 107. Humana Press. https://doi.org/10.1385/1-59259-861-7:183

Download citation

  • DOI: https://doi.org/10.1385/1-59259-861-7:183

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-222-3

  • Online ISBN: 978-1-59259-861-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics