Skip to main content
Log in

Metabolism of the Newer Antidepressants

An Overview of the Pharmacological and Pharmacokinetic Implications

  • Review Article
  • Drug Disposition
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Several chemically unrelated agents has been developed and introduced in the past decade, to supplement the earlier antidepressants. These include inhibitors of the reuptake of serotonin [the selective serotonin reuptake inhibitors (SSRI)] or noradrenaline (reboxetine) or both (milnacipran and venlafaxine), as well as drugs with distinct neurochemical profiles such as mirtazapine, nefazodone, moclobemide and tianeptine. Like the earlier drugs, these newer antidepressants are almost totally biotransformed before excretion, except for milnacipran whose clearance appears to be due equally to both urinary excretion and metabolism. Sometimes — as in the case of moclobemide — up to 20 metabolites have been identified in body fluids. In some cases, however, only a few metabolites have been detected, and a substantial proportion of the dose remains unaccounted for (e.g. fluoxetine and fluvoxamine).

Metabolism generally proceeds through sequential or parallel oxidative pathways. These may be affected to varying degrees by physiological and pathological factors and those mediated by cytochrome P450 (CYP) 2D6 and CYP2C19 through genetic polymorphism. Some are influenced by chirality (e.g. the dealkylation of citalopram and fluoxetine), although information on this aspect of disposition is still lacking for other drugs existing as racemates (e.g. mirtazepine and tianeptine) and milancipran, which is probably a mixture of 4 stereoisomers. Others again are saturable within the therapeutic range of doses (e.g. some pathways of metabolism of fluoxetine, fluvoxamine, nefazodone, paroxetine and venlafaxine). This may explain the individual variability with all these drugs which, from the pharmacokinetic point of view, is the same as with tricyclic agents.

Our knowledge of the isoenzymes involved in the various oxidation pathways and their relevance for potential drug interactions varies from a considerable amount for most of the SSRI and nefazodone, to minimal for reboxetine and tianeptine. This information is useful for predicting the pharmacokinetic interactions mediated through inhibition of specific isoenzymes. This would be better appreciated if the enzymatic mechanisms involved in the biotransformation of the metabolite(s), and their role in drug interactions, were also known. This information is still lacking for some drugs, although metabolites may exhibit in vitro inhibitory potencies of similar to (paroxetine and its M2 metabolite as inhibitors of CYP2D6) or even greater than that of the parent drug (norfluoxetine is more potent than fluoxetine as an inhibitor of CYP3A3/4, and in view of the longer half-life (t1/2) of the metabolite the potential for interactions may persist for weeks after discontinuation of the parent drug).

While we do know something about the biological activity of the metabolites of some of these drugs, we know very little about others. With few exceptions this knowledge refers only to the major metabolite(s) and regards the main in vitro effects as exerted by the parent drug. However, in vitro potency and selectivity may not translate directly into in vivo, and either major or minor metabolites may have characteristic in vitro and in vivo properties. For example, unlike the parent drug some minor ring-opened metabolites of moclobemide have monoamine oxidase-B inhibitory activity in the rat, and the nefazodone metabolite m-chlorophenyl-piperazine shows activity on 5-HT2C receptors in rats and humans.

Data on the brain-to-blood partition of metabolites compared with their parent drug are available only in a few cases. They are still not known for the main metabolites of fluvoxamine, milnacipran, mirtazapine, moclobemide, nefazodone, paroxetine, reboxetine and venlafaxine, despite the fact that total blood concentrations do not always reflect the metabolite: parent drug ratio in brain. Thus, in most cases, we do not really know what part hepatic metabolism plays in the overall effect of the administered parent drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Coccaro EF, Siever LJ. Second generation antidepressants: a comparative review. J Clin Pharmacol. 1985; 25: 241–60.

    PubMed  CAS  Google Scholar 

  2. Blackwell B, Simon JS. Second-generation antidepressants. Drugs Today. 1986; 22: 611–33.

    CAS  Google Scholar 

  3. Hollister LE. Current antidepressants. Annu Rev Pharmacol Toxicol. 1993; 26: 23–37.

    Google Scholar 

  4. Rudorfer MV, Potter WZ. Antidepressants: a comparative review of the clinical pharmacology and therapeutic use of the ‘newer’ versus the ‘older’ drugs. Drugs. 1989; 37: 713–38.

    Article  PubMed  CAS  Google Scholar 

  5. Möller H-J, Volz H-P. Drug treatment of depression in the 1990s: an overview of achievements and future possibilities. Drugs. 1996; 52: 625–6.

    Article  PubMed  Google Scholar 

  6. Skerritt U, Evans R, Montgomery SA. Selective serotonin reuptake inhibits in older patients: a tolerability perspective. Drugs Aging. 1997; 10: 209–18.

    Article  PubMed  CAS  Google Scholar 

  7. Amsterdam J, Brunswick D, Mendels J. The clinical application of tricyclic antidepressant pharmacokinetics and plasma levels. Am J Psychiatry. 1980; 137: 653–62.

    PubMed  CAS  Google Scholar 

  8. Guthrie S, Lane EA, Linnoila M. Monitoring of plasma drug concentrations in clinical psychopharmacology. In: Meltzer HY, editor. Psychopharmacology: the third generation of progress. New York: Raven Press, 1987: 1323–9.

    Google Scholar 

  9. Preskorn SH, Dorey RC, Jerkovich GS. Therapeutic drug monitoring of tricyclic antidepressants. Clin Chem. 1988; 34: 822–8.

    PubMed  CAS  Google Scholar 

  10. Orsulak PJ. Therapeutic monitoring of antidepressant drugs: guidelines updated. Ther Drug Monit. 1989; 11: 497–507.

    Article  PubMed  CAS  Google Scholar 

  11. Caccia S, Garattini S. Formation of active metabolites of psychotropic drugs: an updated review of their significance. Clin Pharmacokinet. 1990; 18: 434–59.

    Article  PubMed  CAS  Google Scholar 

  12. Potter WZ, Manji HK. Antidepressants, metabolites, and apparent drug resistance. Clin Neuropharmacol. 1990; 13 Suppl. 1: S45–53.

    Article  PubMed  Google Scholar 

  13. Nordin C, Bertilsson L. Active hydroxymetabolites of antidepressants: emphasis on E-10-hydroxy-nortriptyline. Clin Pharmacokinet. 1995; 28: 26–40.

    Article  PubMed  CAS  Google Scholar 

  14. Caccia S, Garattini S. Pharmacokinetic and pharmacodynamic significance of antidepressant drug metabolites. Pharmacol Res. 1992; 26: 317–29.

    Article  PubMed  CAS  Google Scholar 

  15. Preskorn SH. Pharmacokinetics of antidepressants: why and how they are relevant to treatment. J Clin Psychiatry 1993; 54 Suppl.: 14–34.

    PubMed  Google Scholar 

  16. DeVane CL. Pharmacokinetics of the newer antidepressants: Clinical relevance. Am J Med. 1994; 97 Suppl. 6A: 13S–23S.

    Article  Google Scholar 

  17. Goodnick PJ. Pharmacokinetic optimisation of therapy with newer antidepressants. Clin Pharmacokinet. 1994; 27: 307–30.

    Article  PubMed  CAS  Google Scholar 

  18. Baumann P. Pharmacokinetic-pharmacodynamic relationship of the selective serotonin reuptake inhibitors. Clin Pharmacokinet. 1996; 31: 444–69.

    Article  PubMed  CAS  Google Scholar 

  19. Rudorfer MV, Potter WZ. The role of metabolites of antidepressants in the treatment of depression. CNS Drugs. 1997; 7: 273–312.

    Article  CAS  Google Scholar 

  20. Claassen V. Review of the animal pharmacology and pharmacokinetics of fluvoxamine. Br J Clin Pharmacol. 1983; 15: 349S–55S.

    Article  PubMed  Google Scholar 

  21. Dechant KL, Clissold SP. Paroxetine: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in depressive illness. Drugs. 1991; 41: 225–53.

    Article  PubMed  CAS  Google Scholar 

  22. Milne CJ, Goa KL. Citalopram: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in depressive illness. Drugs. 1991; 41: 450–77.

    Article  PubMed  CAS  Google Scholar 

  23. Benfield P, Heel RC, Lewis SP. Fluoxetine: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in depressive illness. Drugs. 1986; 32: 481–508.

    Article  PubMed  CAS  Google Scholar 

  24. Wong DT, Bymaster FP, Reid LR, et al. Norfluoxetine enantiomers as inhibitors of serotonin uptake in rat brain. Neuropsychopharmacology. 1993; 8: 337–44.

    PubMed  CAS  Google Scholar 

  25. Fuller, RW, Wong DT. Serotonin re-uptake blockers in vitro and in vivo. J Clin Psychopharmacol. 1987; 7: 365–435.

    Article  Google Scholar 

  26. Murdoch D, McTavish D. Sertraline: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in depression and obsessive-compulsive disorder. Drugs. 1992; 44: 604–24.

    Article  PubMed  CAS  Google Scholar 

  27. Ronfeld RA, Tremaine LM, Wilner KD. Pharmacokinetics of sertraline and its N-demethyl metabolite in elderly and young male and female volunteers. Clin Pharmacokinet. 1997; 32: Suppl. 1: 22–30.

    Article  PubMed  CAS  Google Scholar 

  28. Benfield P, Ward A. Fluvoxamine: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in depressive illness. Drugs. 1986; 32: 313–34.

    Article  PubMed  CAS  Google Scholar 

  29. Preskorn SH, Magnus RD. Inhibition of hepatic P-450 isoenzymes by serotonin selective reuptake inhibitors: in vitro and in vivo findings and their implications for patient care. Psychopharmacol Bull. 1994; 30: 251–9.

    PubMed  CAS  Google Scholar 

  30. Lane RM. Pharmacokinetic drug interaction potential of selective serotonin reuptake inhibitors. Int Clin Psychopharmacol. 1996; 11 Suppl. 5: 31–61.

    Article  PubMed  Google Scholar 

  31. Nemeroff CB, DeVane CL, Pollock BG. Newer antidepressants and the cytochrome P450 system. Am J Psychiatry. 1996; 153: 311–20.

    PubMed  CAS  Google Scholar 

  32. Becquemont L, Ragueneau I, Le Bot MA, et al. Influence of the CYP1A2 inhibitor fluvoxamine on tacrine pharmacokinetics in humans. Clin Pharmacol Ther. 1997; 61: 619–27.

    Article  PubMed  CAS  Google Scholar 

  33. Spigset O, Carleborg L, Hedenmalm K, et al. Effect of cigarette smoking on fluvoxamine pharmacokinetics in humans. Clin Pharmacol Ther. 1995; 58: 399–403.

    Article  PubMed  CAS  Google Scholar 

  34. Crewe HK, Lennard MS, Tucker GT, et al. The effect of selective serotonin re-uptake inhibitors on cytochrome P4502D6 (CYP2D6) activity in human liver microsomes. Br J Clin Pharmacol. 1992; 34: 262–5.

    Article  PubMed  CAS  Google Scholar 

  35. Skjelbo E, Brosen K. Inhibitors of imipramine metabolism by human liver microsomes. Br J Clin Pharmacol. 1992; 34: 256–61.

    Article  PubMed  CAS  Google Scholar 

  36. von Moltke LL, Greenblatt DJ, Court MH, et al. Inhibition of alprazolam and desipramine hydroxylation by paroxetine and fluvoxamine: comparison with other selective serotonin reuptake inhibitor antidepressants. J Clin Psychopharmacol. 1995; 15: 125–31.

    Article  Google Scholar 

  37. Jeppesen U, Rasmussen BB, Brosen K. Fluvoxamine inhibits the CYP2C19-catalyzed bioactivation of chloroguanide. Clin Pharmacol Ther. 1997; 62: 279–86.

    Article  PubMed  CAS  Google Scholar 

  38. Hartter S, Wetzel H, Hammes E, et al. Inhibition of antidepressant demethylation and hydroxylation by fluvoxamine in depressed patients. Psychopharmacology. 1993; 110: 302–8.

    Article  PubMed  CAS  Google Scholar 

  39. Kaye CM, Haddock RE, Langley PF, et al. A review of the metabolism and pharmacokinetics of paroxetine in man. Acta Psychiatr Scand. 1989; 80 Suppl. 350: 60–75.

    Article  Google Scholar 

  40. Crewe S, Lennard MS, Tucker GT, et al. The effect of paroxetine and other specific serotonin re-uptake inhibitors on cytochrome P450IID6 activity in human liver microsomes. Br J Clin Pharmacol. 1991; 32: 658P–9P.

    Google Scholar 

  41. Bloomer JC, Woods FR, Haddock RE, et al. The role of cytochrome P4502D6 in the metabolism of paroxetine by human liver microsomes. Br J Clin Pharmacol. 1992; 33: 521–3.

    Article  PubMed  CAS  Google Scholar 

  42. Sindrup SH, Brøsen K, Gram LF, et al. The relationship between paroxetine and the sparteine oxidation polymorphism. Clin Pharmacol Ther. 1992; 51: 278–87.

    Article  PubMed  CAS  Google Scholar 

  43. Brøsen K, Hansen JG, Nielsen KK, et al. Inhibition by paroxetine of desipramine metabolism in extensive but not in poor metabolizers of sparteine. Eur J Clin Pharmacol. 1993; 44: 349–55.

    Article  PubMed  Google Scholar 

  44. Preskorn SH. Clinically relevant pharmacology of selective serotonin reuptake inhibitors: an overview with emphasis on pharmacokinetics and effects on oxidative drug metabolism. Clin Pharmacokinet. 1997; 32 Suppl. 1: 1–21.

    Article  PubMed  CAS  Google Scholar 

  45. Ozdemir V, Naranjo CA, Herrmann N, et al. paroxetine potentiates the central nervous system side effects of perphenazine: contribution of cytocrome P4502D6 inhibition in vivo. Clin Pharmacol Ther. 1997; 62: 334–47.

    Article  PubMed  CAS  Google Scholar 

  46. Tremaine LM, Welch WM, Ronfeld RA. Metabolism and disposition of the 5-hydroxytryptamine uptake blocker sertraline in the rat and dog. Drug Metab Dispos. 1989; 17: 542–50.

    PubMed  CAS  Google Scholar 

  47. Sindrup SH, Brøsen K, Hansen MGJ, et al. Pharmacokinetics of citalopram in relation to the sparteine and the mephenytoin oxidation polymorphisms. Ther Drug Monit. 1993; 15: 11–7.

    Article  PubMed  CAS  Google Scholar 

  48. Baumann P, Nil R, Souche A, et al. A double-blind placebo-controlled study of citalopram with and without lithium in the treatment of therapy-resistant depressive patients: a clinical, pharmacokinetic, and pharmacogenetic investigation. J Clin Psychopharmacol. 1996; 16: 307–14.

    Article  PubMed  CAS  Google Scholar 

  49. Kobayashi K, Chiba K, Yagi T, et al. Identification of cytochrome P450 isoforms involved in citalopram N-demethylation by human liver microsomes. J Pharmacol Exp Ther. 1997; 280: 927–33.

    PubMed  CAS  Google Scholar 

  50. Rochat B, Amey M, Baumann P. Analysis of enantiomers of citalopram and its demethylated metabolites in plasma of depressive patients using chiral reverse-phase liquid chromatography. Ther Drug Monit. 1995; 17: 273–9.

    Article  PubMed  CAS  Google Scholar 

  51. Foglia JP, Pollock BG, Kirshner MA, et al. Plasma levels of citalopram enantiomers and metabolites in elderly patients. Psychopharmacol Bull. 1997; 33: 109–12.

    PubMed  CAS  Google Scholar 

  52. Rochat B, Amey M, Gillet M, et al. Identification of three cytochrome P450 isozymes involved in N-demethylation of citalopram enantiomers in human liver microsomes. Pharmacogenetics. 1997; 7: 1–10.

    Article  PubMed  CAS  Google Scholar 

  53. Bondolfi G, Chautems C, Rochat B, et al. Non-response to citalopram in depressive patients: pharmacokinetic and clinical consequences of a fluvoxamine augmentation. Psychopharmacology. 1996; 128: 421–5.

    Article  PubMed  CAS  Google Scholar 

  54. Torok-Both GA, Baker GB, Coutts RT, et al. Simultaneous determination of fluoxetine and norfluoxetine enantiomers in biological samples by gas chromatography with electron-capture detection. J Chromatogr B. 1992; 579: 99–106.

    Article  CAS  Google Scholar 

  55. Fjordside L, Jeppesen U, Eap CB et al. The stereoselective metabolism of fluoxetine in poor and extensive metabolisers of sparteine [abstract]. Eur J Clin Pharmacol 1997; Suppl. I: A127.

    Google Scholar 

  56. Fuller RW, Snoddy HD, Perry KW. Importance of duration of drug action in the antagonism of p-chloroamphetamine depletion of brain serotonin-comparison of fluoxetine and chlorimipramine. Biochem Pharmacol. 1978; 27: 193–8.

    Article  PubMed  CAS  Google Scholar 

  57. Anelli M, Bizzi A, Caccia S, et al. Anorectic activity of fluoxetine and norfluoxetine in mice, rats and guinea-pigs. J Pharm Pharmacol. 1992; 44: 696–8.

    Article  PubMed  CAS  Google Scholar 

  58. Caccia S, Fracasso C, Garattini S, et al. Effects of short- and long-term administration of fluoxetine on the monoamine content of rat brain. Neuropharmacology. 1992; 31: 343–7.

    Article  PubMed  CAS  Google Scholar 

  59. Caccia S, Anelli M, Codegoni AM, et al. The effect of single and repeated anorectic doses of 5-hydroxytryptamine uptake inhibitors on indole levels in rat brain. Br J Pharmacol. 1993; 110: 355–9.

    Article  PubMed  CAS  Google Scholar 

  60. Altamura AC, Moro AR, Percudani M. Clinical pharmacokinetics of fluoxetine. Clin Pharmacokinet. 1994; 26: 201–14.

    Article  PubMed  CAS  Google Scholar 

  61. Hamelin BA, Turgeon J, Vallée F et al. The disposition of fluoxetine but not sertraline is altered in poor metabolizers of debrisoquin. Clin Pharmacol Ther. 1996; 60: 512–21.

    Article  PubMed  CAS  Google Scholar 

  62. Otton SV, WU D, Joffe RT, et al. Inhibition by fluoxetine of cytochrome P4562D6 activity. Clin Pharmacol Ther. 1993; 53: 401–9.

    Article  PubMed  CAS  Google Scholar 

  63. Harvey A, Preskorn S. Cytochrome P450 enzymes: interpretation of their interactions with selective serotonin reuptake inhibitors. Part II. J Clin Psychopharmacol. 1996; 16: 345–55.

    Article  PubMed  CAS  Google Scholar 

  64. Brosen K. Are pharmacokinetic drug interactions with the SSRIS and issue? Int Clin psychopharmacol 1996; 11 Suppl. 1: 23–7.

    Article  PubMed  Google Scholar 

  65. Meyer UA, Amrein R, Balant LP et al. Antidepressants and drug-metabolizing enzymes: expert group report. Acta Psychiatr Scand. 1996; 93: 71–9.

    Article  PubMed  CAS  Google Scholar 

  66. Bertilsson L, Dahl M-L, Tybring G. Pharmacogenetics of antidepressants: clinical aspects. Acta Psychiatr Scand Suppl. 1997; 391: 14–21.

    Article  PubMed  CAS  Google Scholar 

  67. Sproule BA, Naranjo CA, Bremner KE, et al. Selective serotonin reuptake inhibitors and CNS drug interactions. Clin Pharmacokinet. 1997; 33: 454–71.

    Article  PubMed  CAS  Google Scholar 

  68. Zussman BD, Davie CC, Fowles SE, et al. Sertraline, like other SSRIs, is a significant inhibitor of desipramine metabolism in vivo. Br J Clin Pharmacol. 1995; 39: 550.

    Google Scholar 

  69. Alderman J, Preskorn SH, Greenblatt DJ, et al. desipramine pharmacokinetics when coadministered with paroxetine or sertraline in extensive metabolizers. J Clin Psychopharmacol. 1997; 17: 284–91.

    Article  PubMed  CAS  Google Scholar 

  70. Kurtz DL, Bergstrom RF, Goldberg MJ, Cerimele BJ. The effect of sertraline on the pharmacokinetics of desipramine and imipramine. Clin Pharmacol Ther. 1997; 62: 145–56.

    Article  PubMed  CAS  Google Scholar 

  71. Carson SW. Pharmacokinetic and pharmacodynamic drug interactions with polypharmacotherapy of treatment-resistant affective and obsessive-compulsive disorders. Psychopharmacol Bull. 1996; 32: 555–68.

    PubMed  CAS  Google Scholar 

  72. Preskorn SH, Alderman J, Greenblatt DJ, et al. Sertraline does not inhibit cytochrome P4503A-mediated drug metabolism in vivo. Psychopharmacol Bull. 1997; 33: 659.

    PubMed  CAS  Google Scholar 

  73. Sprouse J, Clarke T, Reynolds L, et al. Comparison of the effects of sertraline and its metabolite desmethylsertraline on blockade of central 5-HT reuptake in vivo. Neuropsychopharmacology. 1996; 14: 225–31.

    Article  PubMed  CAS  Google Scholar 

  74. Fuller RW, Hemrick-Luecke SK, Littlefield ES, et al. Comparison of desmethylsertraline with sertraline as a monoamine uptake inhibitor in vivo. Prog Neuropsychopharmacol. 1995; 19: 135–49.

    Article  CAS  Google Scholar 

  75. Garattini S, Bizzi A, Caccia S, et al. Progress report on the anorectic effects of dexfenfluramine, fluoxetine and sertraline, Int J Obes Relat Metab Disord 1992; 16 Suppl. 3: S43–50.

    PubMed  Google Scholar 

  76. Puozzo C, Leonard BE. Pharmacokinetics of milnacipran in comparison with other antidepressants. Int Clin Psychopharmacol. 1996; 11 Suppl. 4: 15–27.

    Article  PubMed  Google Scholar 

  77. Briley M, Prost JF, Moret C. Preclinical pharmacology of milnacipran. Int Clin Psychopharmacol. 1996; 11 Suppl. 4: 10–4.

    Google Scholar 

  78. Muth EA, Haskins JT, Moyer JA, et al. Antidepressant biochemical profile of the novel bicyclic compound Wy-45,030, an ethyl cyclohexanol derivative. Biochem Pharmacol. 1986; 35: 4493–7.

    Article  PubMed  CAS  Google Scholar 

  79. Artigas F. Selective serotonin/noradrenaline reuptake inhibitors (SNRIs): pharmacology and therapeutic potential in the treatment of depressive disorders. CNS Drugs. 1995; 4: 79–89.

    Article  CAS  Google Scholar 

  80. Bonnaud B, Cousse H, Mouzin G, et al. 1-Aryl-2-(aminoethyl) cyclopropanecarboxylic acid derivatives: a new series of potential antidepressants. J Med Chem. 1987; 30: 318–25.

    Article  PubMed  CAS  Google Scholar 

  81. Morton WA, Sonne SC, Verga MA. Venlafaxine: a structurally unique and novel antidepressant. Ann Pharmacother. 1995; 29: 387–95.

    PubMed  CAS  Google Scholar 

  82. Troy SM, Schultz RW, Parker VD, et al. The effect of renal disease on the disposition of venlafaxine. Clin Pharmacol Ther. 1994; 56: 14–21.

    Article  PubMed  CAS  Google Scholar 

  83. Wang CP, Howell SR, Scatina J, et al. The disposition of venlafaxine enantiomers in dogs, rats, and humans receiving venlafaxine. Chirality. 1992; 4: 84–90.

    Article  PubMed  Google Scholar 

  84. Howell SR, Husbands GEM, Scatina JA, et al. Metabolic disposition of 14C-venlafaxine in mouse, rat, dog, rhesus monkey and man. Xenobiotica. 1993; 23: 349–59.

    Article  PubMed  CAS  Google Scholar 

  85. Muth EA, Moyer JA, Haskins JT, et al. Biochemical, neurophysiological, and behavioral effects of Wy-45,233 and other identified metabolites of the antidepressant venlafaxine. Drug Dev Res. 1991; 23: 191–9.

    Article  CAS  Google Scholar 

  86. Otton SV, Ball SE, Cheung SW, et al. Venlafaxine oxidation in vitro is catalysed by CYP2D6. Br J Clin Pharmacol. 1996; 41: 149–56.

    Article  PubMed  CAS  Google Scholar 

  87. von Moltke LL, Greenblatt DJ, Duan SX, et al. Phenacetin O-deethylation by human liver microsomes in vitro: inhibition by chemical probes, SSRI antidepressants, nefazodone and venlafaxine. Psychopharmacology. 1996; 128: 398–407.

    Article  Google Scholar 

  88. Otton SV, Ball SE, Cheung SW, et al. Comparative inhibition of the polymorphic enzyme CYP2D6 by venlafaxine (VF) and other 5HT uptake inhibitors. Clin Pharmacol Ther. 1994; 55: 141.

    Google Scholar 

  89. Ball SE, Ahern D, Scatina J, et al. Venlafaxine: in vitro inhibition of CYP2D6 dependent imipramine and desipramine metabolism. Comparative studies with selected SSRIs, and effects on human hepatic CYP3A4, CYP2C9 and CYPIA2. Br J Clin Pharmacol. 1997; 43: 619–26.

    Article  PubMed  CAS  Google Scholar 

  90. Troy SM, Lucki I, Peirgies AA, et al. Pharmacokinetic and phar macodynamic evaluation of the potential drug interaction between venlafaxine and diazepam. J Clin Pharmacol. 1995; 35: 410–9.

    PubMed  CAS  Google Scholar 

  91. Ketter TA, Flockhart DA, Post RM, et al. The emerging role of cytochrome P450 3A in psychopharmacology. J Clin Psychopharmacol. 1995; 15: 387–98.

    Article  PubMed  CAS  Google Scholar 

  92. Ereshefsky L. Drug-drug interactions involving antidepressants: focus on venlafaxine. J Clin Psychopharmacol. 1996; 16 Suppl. 2: 37S–50S.

    Article  PubMed  CAS  Google Scholar 

  93. Melloni P, Delia Torre A, Lazzari E, et al. Configuration studies on 2[α-ethoxyphenoxy][benzyl]morpholine FCE 20124. Tetrahedron. 1985; 41: 1393–9.

    Article  CAS  Google Scholar 

  94. Melloni P, Carniel G, Delia Torre A, et al. Potential antidepressant agents, α-aryloxy-benzyl derivatives of ethanolamine and morpholine. Eur J Med Chem Chim Ther. 1984; 19: 235–42.

    CAS  Google Scholar 

  95. Strolin Benedetti M, Frigerio E, Tocchetti P, et al. Stereoselective and species-dependent kinetics of reboxetine in mouse and rat. Chirality. 1995; 7: 285–9.

    Article  PubMed  CAS  Google Scholar 

  96. Renshaw PF, Guimaraes AR, Fava M, et al. Accumulation of fluoxetine and norfluoxetine in human brain during therapeutic administration. Am J Psychiatry. 1992; 149: 1592–4.

    PubMed  CAS  Google Scholar 

  97. Bergami A, Fracasso C, Garattini S, et al. Brain uptake and acute indole-depleting effect of dexfenfluramine in squirrel monkeys after a high-dose regimen. Pharm Sci. 1995; 1: 45–8.

    CAS  Google Scholar 

  98. Dostert P, Benedetti MS, Poggesi I. Review of the pharmacokinetics and metabolism of reboxetine, a selective noradrenaline reuptake inhibitor. Eur Neuropsychopharmacol. 1997; 7 Suppl. 1: S23–35.

    Article  PubMed  CAS  Google Scholar 

  99. Cocchiara G, Battaglia R, Pevarello P, et al. Comparison of the disposition and of the metabolic patterns of reboxetine, a new antidepressant, in the rat, dog, monkey and man. Eur J Drug Metab Pharmacokinet. 1991; 16: 231–9.

    Article  PubMed  CAS  Google Scholar 

  100. Pellizzoni C, Poggesi I, Jorgensen NP, et al. Pharmacokinetics of reboxetine in healthy volunteers: single against repeated oral doses and lack of enzymatic alterations. Biopharm Drug Dispos. 1996; 17: 623–33.

    Article  PubMed  CAS  Google Scholar 

  101. Edwards DMF, Pellizzoni C, Breuel HP, et al. Pharmacokinetics of reboxetine in healthy volunteers: single oral doses, linearity and plasma protein binding. Biopharm Drug Dispos. 1995; 16: 443–60.

    Article  PubMed  CAS  Google Scholar 

  102. Davis R, Whittington R, Bryson HM. Nefazodone: a review of its pharmacology and clinical efficacy in the management of major depression. Drugs. 1997; 53: 608–36.

    Article  PubMed  CAS  Google Scholar 

  103. Mayol RF, Cole CA, Luke GM, et al. Characterization of the metabolites of the antidepressant drug nefazodone in human urine and plasma. Drug Metab Dispos. 1994; 22: 304–11.

    PubMed  CAS  Google Scholar 

  104. Caccia S, Fong MH, Garattini S, et al. Plasma concentrations of trazodone and 1-(3-chlorophenyl)-piperazine in man after a single oral dose of trazodone. J Pharm Pharmacol. 1982; 34: 605–6.

    Article  PubMed  CAS  Google Scholar 

  105. Caccia S, Garattini S. 1-Arylpiperazine as active metabolites of (4-substituted aryl-1-piperazinyl)alkyl heterocyclic drugs. Acta Pharm Jugosl. 1990; 40: 441–60.

    CAS  Google Scholar 

  106. Caccia S, Vigano GL, Mingardi G, et al. Clinical pharmacokinetics of oral buspirone in patients with impaired renal function. Clin Pharmacokinet. 1988; 14: 171–7.

    Article  PubMed  CAS  Google Scholar 

  107. Bianchi G, Caccia S, Delia Vedova F, et al. The alpha2-adrenoceptor antagonist activity of ipsapirone and gepirone is mediated by their common metabolite 1-(2-pyrimidinyl)-piperazine (PmP). Eur J Pharmacol. 1988; 151: 365.

    Article  PubMed  CAS  Google Scholar 

  108. Schmider J, Greenblatt DJ, von Moltkr LL, et al. Inhibition of cytochrome P450 by nefazodone in vitro: studies of dextromethorphan O- and N-demethylation. Br J Clin Pharmacol. 1996; 41: 339–43.

    Article  PubMed  CAS  Google Scholar 

  109. Greene DS, Barbhaiya RH. Clinical pharmacokinetics of nefazodone. Clin Pharmacokinet. 1997; 33: 260–75.

    Article  PubMed  CAS  Google Scholar 

  110. Barbhaiya RH, Buch AB, Greene DS. Single and multiple dose pharmacokinetics of nefazodone in subjects classified as extensive and poor metabolizers of dextromethorphan. Br J Clin Pharmacol. 1996; 42: 573–81.

    PubMed  CAS  Google Scholar 

  111. Marino MR, Langenbacher KM, Uderman HD. Interaction of nefazodone (N) and fluoxetine (F). Clin Pharmacol Ther. 1996; 59: 180.

    Article  Google Scholar 

  112. Yasui N, Otani K, Kaneko S, et al. Inhibition of trazodone metabolism of thioridazine in humans. Ther Drug Monit. 1995; 17: 333–5.

    Article  PubMed  CAS  Google Scholar 

  113. Hamik A, Peroutka SJ. 1-(m-chlorophenyl)piperazine (mCPP) interactions with neurotransmitter receptors in the human brain. Biol Psychiatry. 1989; 25: 569–75.

    Article  PubMed  CAS  Google Scholar 

  114. Murphy DL, Lesch KP, Aulakh CS, et al. Serotonin-selective arylpiperazines with neuroendocrine, behavioral, temperature, and cardiovascular effects in humans. Pharmacol Rev. 1991; 43: 527–50.

    PubMed  CAS  Google Scholar 

  115. Benjamin J, Greenberg BD, Murphy DL. Daily administration of m-chlorophenylpiperazine to healthy human volunteers rapidly attenuates many of its behavioral, hormonal, cardiovascular and temperature effects. Psychopharmacology. 1996; 127: 140–9.

    Article  PubMed  CAS  Google Scholar 

  116. Barbhaiya RH, Buch AB, Greene DS. A study of the effect of age and gender on the pharmacokinetics of nefazodone after single and multiple doses. J Clin Psychopharmacol. 1996; 16: 19–25.

    Article  PubMed  CAS  Google Scholar 

  117. Barbhaiya RH, Shukla UA, Greene DS. Single-dose pharmacokinetics of nefazodone in healthy young and elderly subjects and in subjects with renal or hepatic impairment. Eur J Clin Pharmacol. 1995; 49: 221–8.

    PubMed  CAS  Google Scholar 

  118. Barbhaiya RH, Brady ME, Shukla UA, et al. Steady-state pharmacokinetics of nefazodone in subjects with normal and impaired renal function. Eur J Clin Pharmacol. 1995; 49: 229–35.

    PubMed  CAS  Google Scholar 

  119. Barbhaiya RH, Shukla UA, Natarajan CS, et al. Single- and multiple-dose pharmacokinetics of nefazodone in patients with hepatic cirrhosis. Clin Pharmacol Ther. 1995; 58: 390–8.

    Article  PubMed  CAS  Google Scholar 

  120. Mocaër E, Rettori MC, Kamoun A. Pharmacological antidepressive effects and tianeptine-induced 5-HT uptake increase. Clin Neuropharmacol. 1988; 11 Suppl. 2: S32–42.

    PubMed  Google Scholar 

  121. Mennini T, Garattini S. Neurobiology of tianeptine: a new pharmaceutic agent. Presse Med. 1991; 20: 1823–7.

    PubMed  CAS  Google Scholar 

  122. Ansseau M. The paradox of tianeptine. Eur Psychiatry. 1993; 8 Suppl. 2: 89S–93S.

    Google Scholar 

  123. Wilde MI, Benfield P. Tianeptine: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in depression and coexisting anxiety and depression. Drugs. 1995; 49: 411–39.

    Article  PubMed  CAS  Google Scholar 

  124. Grislain L, Gele P, Bertrand M, et al. The metabolic pathways of tianeptine, a new antidepressant, in healthy volunteers. Drug Metab Dispos. 1990; 18: 804–8.

    PubMed  CAS  Google Scholar 

  125. Oluyomi AO, Datla KP, Curzon G. Effects of the (+) and (−)-enantiomers of the antidepressant drug tianeptine on 5-HTP-induced behaviour. Neuropharmacology. 1997; 36: 383–7.

    Article  PubMed  CAS  Google Scholar 

  126. Larrey D, Tinel M, Letteron P, et al. Metabolic activation of the new tricyclic antidepressant tianeptine by human liver cytochrome P450. Biochem Pharmacol. 1990; 40: 545–50.

    Article  PubMed  CAS  Google Scholar 

  127. Couet W, Girault J, Latrille F, et al. Kinetic profiles of tianeptine and its MC5 metabolite in plasma, blood and brain after single and chronic intraperitoneal administration in the rat. Eur J Drug Metab Pharmacokinet. 1990; 15: 69–74.

    Article  PubMed  CAS  Google Scholar 

  128. Carlhant D, Le Garrec J, Guedes Y, et al. Pharmacokinetics and bioavailability of tianeptine in the elderly. Drug Invest. 1990; 2: 167–72.

    Google Scholar 

  129. Demotes-Mainard F, Galley P, Manciet G, et al. Pharmacokinetics of the antidepressant tianeptine at steady state in the elderly. J Clin Pharmacol. 1991; 31: 174–8.

    PubMed  CAS  Google Scholar 

  130. Salvadori C, Merdjan H, Brouard R, et al. Tianeptine and its main metabolite. Disposition in chronic renal failure and haemodialysis. Fundam Clin Pharmacol. 1990; 4: 663–71.

    Article  PubMed  CAS  Google Scholar 

  131. Royer RJ, Royer-Morrot MJ, Paille F, et al. Tianeptine and its main metabolite. Pharmacokinetics in chronic alcoholism and cirrhosis. Clin Pharmacokinet. 1989; 16: 186–91.

    Article  PubMed  CAS  Google Scholar 

  132. Sitsen JMA, Zivkov M. Mirtazapine: clinical profile. CNS Drugs. 1995; 4 Suppl. 1: 39–48.

    Article  CAS  Google Scholar 

  133. Nutt D. Mirtazepine: pharmacology in relation to adverse effects. Acta Psychiatr Scand. 1997; 96 Suppl. 391: 31–7.

    Article  Google Scholar 

  134. de Boer Th, Maura G, Raiteri M, et al. Neurochemical and autonomic pharmacological profiles of the 6-aza-analogue of mianserin, ORG 3770 and its enantiomers. Neuropharmacology. 1988; 27: 399–408.

    Article  PubMed  Google Scholar 

  135. Davis R, Wilde MI. Mirtazapine: a review of its pharmacology and therapeutic potential in the management of major depression. CNS Drugs 1996; 389–402.

  136. Sandker GW, Vos RME, Delbressine LPC, et al. Metabolism of three pharmacologically active drugs in isolated human and rat hepatocytes: analysis of interspecies variability and comparison with metabolism in vivo. Xenobiotica. 1994; 24: 143–55.

    Article  PubMed  CAS  Google Scholar 

  137. Dahl M-L, Voortman G, Alm C, et al. In vitro and in vivo studies on the disposition of mirtazepine in humans. Clin Drug Invest. 1997; 13: 37–46.

    Article  CAS  Google Scholar 

  138. Poirier MF, Olié JP, Loo H, et al. Activité antidépressive, caractéristiques pharmacocinétiques et proprétés biochimiques de la cimoxatone, un nouvel IMAO-A réversible. Encéphale. 1983; IX: 331–43.

    Google Scholar 

  139. Fitton A, Faulds D, Goa KL. Moclobemide: a review of its pharmacological properties and therapeutic use in depressive illness. Drugs. 1992; 43: 561–96.

    Article  PubMed  CAS  Google Scholar 

  140. Fulton B, Benfield P. Moclobemide: an update of its pharmacological properties and therapeutic use. Drugs. 1996; 52: 450–74.

    Article  PubMed  CAS  Google Scholar 

  141. Volz HP, Gleiter CH, Struck M, et al. Brofaromine: insight into the nature of drug development. CNS Drugs. 1995; 3: 1–8.

    Article  CAS  Google Scholar 

  142. Mayersohn M, Guentert TW. Clinical pharmacokinetics of the monoamine oxidase-A inhibitor moclobemide. Clin Pharmacokinet. 1995; 29: 292–32.

    Article  PubMed  CAS  Google Scholar 

  143. Schoerlin MP, Mayersohn M, Korn A, et al. Disposition kinetics of moclobemide, a monoamine oxidase-A enzyme inhibitor: single and multiple dosing in normal subjects. Clin Pharmacol Ther. 1987; 42: 395–404.

    Article  PubMed  CAS  Google Scholar 

  144. Schoerlin MP, Horber FF, Frey FJ, et al. Disposition kinetics of moclobemide, a new MAO-A inhibitor, in subjects with impaired renal function. J Clin Pharmacol. 1990; 30: 272–84.

    PubMed  CAS  Google Scholar 

  145. Stoeckel K, Pfefen JP, Mayersohn M, et al. Absorption and disposition of moclobemide in patients with advanced age or reduced liver or kidney function. Acta Psychiatr Scand 1990; Suppl. 360: 94–97.

    Article  CAS  Google Scholar 

  146. Jauch R, Griesser E, Oesterhelt G, et al. Biotransformation of moclobemide in humans. Acta Psychiatr Scand 1990; Suppl. 360: 87–90.

    Article  CAS  Google Scholar 

  147. Schoerlin MP, Da Prada M. Species-specific biotransformation of moclobemide: a comparative study in rats and humans. Acta Psychiatr Scand 1990; Suppl. 360: 108–10.

    Article  CAS  Google Scholar 

  148. Da Prada M, Kettler R, Keller HH, et al. Neurochemical profile of moclobemide, a short-acting and reversible inhibitor of monoamine oxidase type A. J Pharmacol Exp Ther. 1989; 248: 400–8.

    PubMed  Google Scholar 

  149. Fritze J, Laux G, Sofic E, et al. Plasma moclobemide and metabolites: lack of correlation with clinical response and biogenic amines. Psychopharmacology. 1989; 99: 252–6.

    Article  PubMed  CAS  Google Scholar 

  150. Guentert TW, Gram LF, Grange S, et al. Reversible interaction of moclobemide with CYP2D6 and CYP2C9. Clin Pharmacol Ther. 1994; 55: PI–57.

    Google Scholar 

  151. Gram LF, Brøsen K, and the Danish University Antidepressant Group. Moclobemide treatment causes a substantial rise in the sparteine metabolic ratio. Br J Clin Pharmacol. 1993; 35: 649–52.

    Article  PubMed  CAS  Google Scholar 

  152. Spigset O, Granberg K, Hägg S, et al. Non-linear fluvoxamine disposition. Br J Clin Pharmacol. 1998; 45: 257–63.

    Article  PubMed  CAS  Google Scholar 

  153. Sperker B, Backman JT, Kroemer HK. The role of β-glucuronidase in drug disposition and drug targeting in humans. Clin Pharmacokinet. 1997; 33: 18–31.

    Article  PubMed  CAS  Google Scholar 

  154. Campbell B, Dard-Brunelle B, Caccia S. The use of pharmacokinetics in the assessment of dexfenfluramine safety. In: Nicolaidis S, editor. Obesity management and Redux™. San Diego: Academic Press, 1997: 65–80.

    Google Scholar 

  155. Matzke GR, St Peter WL. Clinical pharmacokinetics 1990. Clin Pharmacokinet. 1990; 18: 1–19.

    Article  PubMed  CAS  Google Scholar 

  156. Bartels, Albert K. Detection of Psychoative drugs using 19FMR spectroscopy. J Neural Transm Gen Sect. 1995; 99: 1–6.

    Article  PubMed  CAS  Google Scholar 

  157. Kennedy SH, Javanmard M, Vaccarino FJ. A review of functional neuroimaging in mood disorders: positron emission tomography and depression. Can J Psychiatry. 1997; 42: 467–75.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvio Caccia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caccia, S. Metabolism of the Newer Antidepressants. Clin Pharmacokinet 34, 281–302 (1998). https://doi.org/10.2165/00003088-199834040-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199834040-00002

Keywords

Navigation