Skip to main content
Log in

Clinical Pharmacokinetics of Cisatracurium Besilate

  • Review Articles
  • Drug Disposition
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Cisatracurium besilate, one of the 10 stereoisomers that comprise atracurium besilate, is a nondepolarising neuromuscular blocking agent with an intermediate duration of action. Following a 5- to 10-sec intravenous bolus dose of cisatracurium besilate to healthy young adult surgical patients, elderly patients and patients with renal or hepatic failure, the concentration versus time profile of cisatracurium besilate is best characterised by a 2-compartment model. The volume of distribution (Vd) of cisatracurium besilate is small because of its relatively large molecular weight and high polarity.

Cisatracurium besilate undergoes Hofmann elimination, a process dependent on pH and temperature. Unlike atracurium besilate, cisatracurium besilate does not appear to be degraded directly by ester hydrolysis. Hofmann elimination, an organ independent elimination pathway, occurs in plasma and tissue, and is responsible for approximately 77% of the overall elimination of cisatracurium besilate.

The total body clearance (CL), steady-state Vd and elimination half-life of cisatracurium besilate in patients with normal organ function are approximately 0.28 L/h/kg (4.7 ml/min/kg), 0.145 L/kg and 25 minutes, respectively. The magnitude of interpatient variability in the CL of cisatracurium besilate is low (16%), a finding consistent with the strict physiological control of the factors that effect the Hofmann elimination of cisatracurium besilate (i.e. temperature and pH). There is a unique relationship between plasma clearance and Vd because the primary elimination pathway for cisatracurium besilate is not dependent on organ function.

There are minor differences in the pharmacokinetics of cisatracurium besilate in various patient populations. These differences are not associated with clinically significant differences in the recovery profile of cisatracurium besilate, but may be associated with differences in the time to onset of neuromuscular block.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Welch RM, Brown A, Ravitch J, et al. The in vitro degradation of cisatracurium, the R, cis-R’-isomer of atracurium, in human and rat plasma. Clin Pharmacol Ther 1995 Aug; 58: 132–42.

    Google Scholar 

  2. Belmont MR, Lien CA, Quessy S, et al. The clinical neuromuscular pharmacology of 51 W89 in patients receiving nitrous oxide/opioid/barbiturate anesthesia. Anesthesiology 1995 May; 82: 1139–45.

    Google Scholar 

  3. Fisher DM, Rosen JI. A pharmacokinetic explanation for increasing recovery time following larger or repeated doses of non-depolarizing muscle relaxants. Anesthesiology 1986 Sep; 65: 286–91.

    Google Scholar 

  4. Kopman A. Pancuronium, gallamine, and d-tubocurarine compared: is speed of onset inversely related to drug potency? Anesthesiology 1989 Jun; 70: 915–20.

    Google Scholar 

  5. Lien CA, Belmont MR, Abalos A, et al. The cardiovascular effects and histamine-releasing properties of 51W89 in patients receiving nitrous oxide/opioid/barbiturate anesthesia. Anesthesiology 1995 May; 82: 1131–8.

    Google Scholar 

  6. Bryson HM, Faulds D. Cisatracurium besilate: a review of its pharmacology and clinical potential in anaesthetic practice. Drugs 1997 May; 53: 848–66.

    Google Scholar 

  7. Ornstein E, Lien CA, Matteo RS, et al. Pharmacodynamics and pharmacokinetics of cisatracurium in geriatric surgical patients. Anesthesiology 1996 Mar; 84: 520–5.

    Google Scholar 

  8. DeWolf AM, Freeman JA, Scott VL, et al. Pharmacokinetics and pharmacodynamics of cisatracurium in patients with end-stage liver disease undergoing liver transplantation. Br J Anaesth 1996 May; 76: 624–8.

    Google Scholar 

  9. Lien CA, Schmith VD, Belmont MR, et al. Pharmacokinetics of cisatracurium in patients receiving nitrous oxide/op-ioid/barbiturate anesthesia. Anesthesiology 1996 Feb; 84: 300–8.

    Google Scholar 

  10. Sorooshian SS, Stafford MA, Eastwood NB, et al. Pharmacokinetics and pharmacodynamics of cisatracurium in young and elderly adult patients. Anesthesiology 1996 May; 84: 1083–91.

    Google Scholar 

  11. Schmith VD, Phillips L, Kisor DF, et al. Pharmacokinet-ics/pharmacodynamics of cisatracurium in healthy adult patients. Curr Opin Anesthesiol 1996; 9 Suppl. 1: S9–15.

    Google Scholar 

  12. Schmith VD, Fiedler-Kelly J, Phillips L, et al. Prospective use of population pharmacokinetics/pharmacodynamics in the development of cisatracurium. Pharm Res 1997 Jan; 14: 91–7.

    Google Scholar 

  13. Kisor DF, Schmith VD, Wargin WA, et al. Importance of the organ-independent elimination of cisatracurium. Anesth Analg 1996 Nov; 83: 1065–71.

    Google Scholar 

  14. Nakashima E, Benet LZ. General treatment of mean residence time, clearance, and volume parameters in linear mammillary models with elimination from any compartment. J Pharmacokinet Biopharm 1988 Oct; 16: 475–92.

    Google Scholar 

  15. Hull CJ. A model for atracurium? Br J Anaesth 1983 Feb; 55: 95–6.

    Google Scholar 

  16. Data on file, Glaxo Wellcome Incorporated.

  17. Fisher DM, Canfell PC, Fahey MR, et al. Elimination of atracurium in humans: Contribution of Hofmann elimination and ester hydrolysis versus organ-based elimination. Anesthesiology 1986 Jul; 65: 6–12.

    Google Scholar 

  18. Fisher DM. (Almost) everything you learned about pharmacokinetics was (somewhat) wrong! Anesth Analg 1996 Nov; 83: 901–3.

    Google Scholar 

  19. Wilkinson GR. Clearance approaches in pharmacology. Pharmacol Rev 1987 Mar; 39: 1–47.

    Google Scholar 

  20. Eastwood NB, Boyd AH, Parker CJR, et al. Pharmacokinetics of 1R-cis 1′R-cis atracurium besylate (51W89) and plasma laudanosine concentrations in health and chronic renal failure. Br J Anaesth 1995 Oct; 75: 431–5.

    Google Scholar 

  21. Schmautz E, Deriaz H, Vrillan MR, et al. Evaluation of 51W89 for endotracheal intubation in surgical patients during N2O2/propofol anesthesia [abstract]. Anesthesiology 1994; 81: A1081.

    Article  Google Scholar 

  22. Lepage JY, Malinovsky JM, Malinge M, et al. Comparison of equipotent doses of 51W89 and atracurium. Anes Analg 1996 Oct; 83: 823–9.

    Google Scholar 

  23. Bergeron L, Varin F, Berrill A, et al. Kinetics and dynamics of cisatracurium at 3 doses in anaesthetized patients [abstract]. Anesthesiology 1996 Sep; 85: A324.

    Google Scholar 

  24. Ducharme J, Varin F, Bevan DR, et al. Importance of early blood sampling on vecuronium pharmacokinetics and pharmacodynamic parameters. Clin Pharmacokinet 1993 Jun; 34: 507–18.

    Google Scholar 

  25. Donati F, Varin F, Ducharme J, et al. Pharmacokinetics and pharmacodynamics of atracurium obtained with arterial and venous samples. Clin Pharmacol Ther 1991 May; 49: 515–22.

    Google Scholar 

  26. Tran TV, Varin F, Fiset P. Pharmacokinetic-pharmacodynamic modeling of a short cisatracurium infusion in ASA I and II patients under propofol/sufentanil/N2O anesthesia [abstract]. Anesthesiology 1996 Sep; 85: A325.

    Google Scholar 

  27. Schmith VD, Fiedler-Kelly J, Phillips L, et al. Dose proportionality of cisatracurium. J Clin Pharmacol 1997 Jul; 37: 625–9.

    Google Scholar 

  28. Wright PM, Fisher DM. Can bioavailability of low-variance drugs be estimated with an unpaired, sparse sampling design? Clin Pharmacol Ther 1998 Apr; 63: 437–43.

    Google Scholar 

  29. Bluestein LS, Stinson Jr LW, Lennon RL, et al. Evaluation of cisatracurium, a new neuromuscular blocking agent, for tracheal intubation. Can J Anaesth 1996 Sep; 43: 925–31.

    Google Scholar 

  30. Berrill A, Kahwaji R, Bevan D, et al. ‘Pharmacodynamic half-life’ of cisatracurium [abstract]. Anesthesiology 1996 Sep; 85: A833.

    Google Scholar 

  31. Boyd AH, Eastwood NB, Parker CJR, et al. Pharmacodynamics of the 1Rcis -1′Rcis isomer of atracurium (51W89) in health and chronic renal failure. Br J Anaesth 1995 Apr; 74: 400–4.

    Google Scholar 

  32. Pavlin EG, Forrest AP, Howard M, et al. Prior administration of succinylcholine does not affect the duration of NIMBEX (51W89) neuromuscular blockade. Anesth Anal 1995; 80 Suppl. 1: S374.

    Google Scholar 

  33. Sheiner LB, Stanski DR, Vozeh S, et al. Simultaneous modeling of the pharmacokinetics and pharmacodynamics: application to D-tubocurarine. Clin Pharmacol Ther 1979 Mar; 25: 358–71.

    Google Scholar 

  34. Eger EI. The pharmacology of isoflurane. Br J Anaesth 1984; 56 Suppl. 1: 71s–99s.

    PubMed  CAS  Google Scholar 

  35. Cisatracurium prescribing information. Research Triangle Park (NC): Glaxo Wellcome Inc., 1995 Dec.

  36. Boyd AH, Eastwood NB, Parker CJR, et al. Comparison of the pharmacodynamics and pharmacokinetics of an infusion of cis-atracurium (51W89) or atracurium in critically ill patients undergoing mechanical ventilation in an intensive therapy unit. Br J Anaesth 1996 Mar; 76: 382–8.

    Google Scholar 

  37. Phillips L, Schmith VD, Brandom BW, et al. Population pharmacokinetics/pharmacodynamics (PK/PD) of 51W89 in healthy pediatrie patients [abstract]. Clin Pharmacol Ther 1995; 57: 213.

    Google Scholar 

  38. Hunter JM, DeWolf A. The pharmacodynamics and pharmacokinetics of cisatracurium in patients with renal or hepatic failure. Curr Opin Anesthesiol 1996; 9 Suppl. 1: S40–4.

    Google Scholar 

  39. Brandom BW, Woelfel SK, Gronert BJ, et al. Effects of 51W89 (cisatracurium) in children during halothane nitrous oxide anesthesia [abstract]. Anesthesiology 1995 Sep; 83: A921.

    Google Scholar 

  40. O’Neill BL, Foley ER. The neuromuscular blocking effects of cisatracurium in children during sevoflurane anesthesia [abstract]. Anesthesiology 1996 Sep; 85: A1058.

    Google Scholar 

  41. Meretoja OA, Taivainen T, Wirtavuori K. Cisatracurium during halothane and balanced anaesthesia in children. Paediatr Anaesth 1996; 6: 373–8.

    Article  PubMed  CAS  Google Scholar 

  42. Prielipp RC, Coursin DB, Scuderi PE, et al. Comparison of the infusion requirements and recovery profiles of vecuronium and cisatracurium 51W89 in intensive care unit patients. Anesth Analg 1995 Jul; 81: 3–12.

    Google Scholar 

  43. Newman PJ, Quinn AC, Grounds RM, et al. A comparison of cisatracurium (51W89) and atracurium by infusion in critically ill patients. Crit Care Med 1997 Jul; 25: 1139–42.

    Google Scholar 

  44. Pearson AJ, Harper NJ, Pollard BJ. The infusion requirements and recovery characteristics of cisatracurium or atracurium in intensive care patients. Int Care Med 1996 Jul; 22: 694–8.

    Google Scholar 

  45. Tobias JD. Increased cisatracurium requirements during prolonged administration to a child. Can J Anaesth 1997; 44: 83–4.

    Google Scholar 

  46. Shi WZ, Fahey MR, Fisher DM, et al. Modification of central nervous system effects of laudanosine by inhalation anesthesia. Br J Anaesth 1989 Nov; 63: 598–600.

    Google Scholar 

  47. Hennis PJ, Fahey MR, Miller RD, et al. Pharmacology of laudanosine in dogs [abstract]. Anesthesiology 1984; 61: A305.

    Article  Google Scholar 

  48. Ingram MD, Sclabassi RJ, Cook DR, et al. Cardiovascular and electroencephalographic effects of laudanosine in ‘nephrectomized’ cats. Br J Anaesth 1986; 58 Suppl. 1: 14s–18s.

    Article  PubMed  CAS  Google Scholar 

  49. Chappie DJ, Miller AA, Ward JB, et al. Cardiovascular and neurological effects of laudanosine: studies in mice and rats, and in conscious and anesthetized dogs. Br J Anaesth 1987; 59: 218–25.

    Article  Google Scholar 

  50. Smith CE, van Miert MM, Parker CJR, et al. A comparison of the infusion pharmacokinetics and pharmacodynamics of cisatracurium, the 1R-cis 1′R-cis isomer of atracurium, with atracurium besylate in healthy patients. Anaesthesia 1997 Sep; 52: 833–41.

    Google Scholar 

  51. Fahey MR, Rupp SM, Canfell C, et al. Effect of renal failure on laudanosine excretion in man. Br J Anaesth 1985; 57: 1049–51.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David F. Kisor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kisor, D.F., Schmith, V.D. Clinical Pharmacokinetics of Cisatracurium Besilate. Clin Pharmacokinet 36, 27–40 (1999). https://doi.org/10.2165/00003088-199936010-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199936010-00003

Keywords

Navigation