Skip to main content
Log in

Clinical Pharmacokinetics and Pharmacodynamics of Isepamicin

  • Drug Disposition
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Isepamicin is an aminoglycoside antibacterial with properties similar to those of amikacin, but with better activity against strains producing type I 6′-acetyltransferase. The antibacterial spectrum includes Enterobacteriaceae and staphylococci. Anaerobes, Neisseriaceae and streptococci are resistant. The lower and upper break-points are 8 and 16 mg/L. Like other aminoglycosides, isepamicin exhibits a strong concentration-dependent bactericidal effect, a long post-antibiotic effect (several hours) and induces adaptive resistance.

Isepamicin is administered intravenously or intramuscularly at a dosage of 15 mg/kg once daily or 7.5 mg/kg twice daily. Isepamicin is not bound to plasma proteins, and it distributes in extracellular fluids and into some cells (outer hair cells, kidney cortex) by active transport. Isepamicin is not metabolised and is eliminated solely via the renal route with an elimination half-life (t½,β) of 2 to 3 hours in adults with normal renal function. The clearance of isepamicin is reduced in neonates, and 7.5 mg/kg once daily is recommended in children <16 days old. Clearance is also reduced in the elderly, but no dosage adjustment is required. In patients with chronic renal impairment, isepamicin clearance is proportional to creatinine clearance (CLCR); the recommended regimen is 8 mg/kg with an administration interval of 24 hours in moderate impairment, 48 hours in severe impairment, 72 hours for CLCR 0.6 to 1.14 L/h (10 to 19 ml/min) and 96 hours for CLCR 0.36 to 0.54 L/h (6 to 9 ml/min). In end-stage renal failure, isepamicin is eliminated by haemodialysis, but the administration interval should be determined by monitoring the plasma concentration.

Compared with healthy volunteers, patients in the intensive care unit or with neutropenic cancer have an increased volume of distribution and a lower clearance, but the 15 mg/kg once daily regimen remains adequate. Isepamicin kinetics are linear in the range 7.5 to 25 mg/kg, so that dosage adjustments, if necessary, are straightforward. Isepamicin can induce nephro-, vestibulo- and oto-toxicity. However, animal and clinical studies show that isepamicin is one of the less toxic aminoglycosides.

The usefulness of maintaining serum aminoglycoside concentrations within a therapeutic range remains controversial. With isepamicin, it is proposed to achieve a 1-hour concentration (30 minutes after a 30-minute infusion) >40 mg/L to maximise bactericidal efficacy, and a ‘trough’ concentration (at the end of the administration interval) <5 mg/L to minimise toxicity. These thresholds should be modified on an individual basis, considering covariates such as concomitant treatment, underlying disease, nature of bacterial strain and site of infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Table I
Fig. 2
Fig. 3
Table II
Table III
Table IV
Fig. 4
Table V
Table VI

Similar content being viewed by others

References

  1. Lacy MK, Nicolau DP. The pharmacodynamics of aminoglycosides. Clin Infect Dis 1998; 27: 23–7.

    Article  PubMed  CAS  Google Scholar 

  2. Barclay ML, Kirkpatrick CMJ, Begg EJ. Once daily aminoglycoside therapy: is it less toxic than multiple daily doses and how should it be monitored? Clin Pharmacokinet 1999; 36: 89–98.

    Article  PubMed  CAS  Google Scholar 

  3. Gilbert DN. Editorial response: meta-analysis are no longer required for determining the efficacy of single daily dosing of aminoglycosides. Clin Infect Dis 1997; 24: 816–9.

    Article  PubMed  CAS  Google Scholar 

  4. Bertino JS, Rotschafer JC. Editorial response: single daily dosing of aminoglycosides — a concept whose time has not yet come. Clin Infect Dis 1997; 24: 820–3.

    Article  PubMed  Google Scholar 

  5. Dionisotti S, Bamonte F, Scaglione F, et al. Simple measurement of isepamicin, a new aminoglycoside antibiotic, in guinea pig and human plasma, using HPLC with ultraviolet detection. Ther Drug Monit 1991; 13: 73–8.

    Article  PubMed  CAS  Google Scholar 

  6. Maloney JA, Awni WM. HPLC determination of isepamicin in plasma, urine and dialysate. J Chromatogr 1990; 526: 487–96.

    Article  PubMed  CAS  Google Scholar 

  7. Uematsu T, Mizumo A, Suzuki Y, et al. Evaluation of a FPIA procedure for quantitation of isepamicin, a new aminoglycoside antibiotic. Ther Drug Monit 1988; 10: 459–62.

    Article  PubMed  CAS  Google Scholar 

  8. Korduba C. Analysis of SCH21420 in plasma by RIA, microbiological assay and HPLC: a comparative study [study report]. Levallois-Perret: Laboratoire Schering-Plough, 1992 (Data on file).

    Google Scholar 

  9. Jones RN. Isepamicin: microbiological characteristics including antimicrobial potency and spectrum of activity. J Chemother 1995; 7: 7–16.

    PubMed  CAS  Google Scholar 

  10. Vincent P, Vachée A, Izard D. Sensibilité d PseuJomonas aeruginosa à l’amikacine et à l’isépamicine en chirurgie et en réanimation. Pathol Biol 1997; 45: 771–5.

    PubMed  CAS  Google Scholar 

  11. The Aminoglycoside Resistance Study Groups. The most frequently occuring aminoglycoside resistance mechanisms: combined results of surveys in eight regions of the world. J Chemother 1995; 7: 17–30.

    Google Scholar 

  12. Miller GH, Sabatelli FJ, Naples L, et al. The changing nature of aminoglycoside resistance mechanisms and the role of isepamicin: a new broad-spectrum aminoglycoside. J Chemother 1995; 7: 31–44.

    PubMed  CAS  Google Scholar 

  13. Wu HY, Miller GH, Guzman Blanco M, et al. Cloning and characterization of an aminoglycoside 6′-N-acetyltransferase gene from Citrobacter freundii which confers an altered resistance profile. Antimicrob Agents Chemother 1997; 41: 2439–47.

    PubMed  CAS  Google Scholar 

  14. Craig WA. Once-daily versus multiple daily dosing of aminoglycosides. J Chemother 1995; 7: 47–52.

    PubMed  CAS  Google Scholar 

  15. Thornsberry C, Barry AL, Jones RN, et al. Comparison of in. vitro activity of SCH21420, a derivative of gentamicin B, with that of amikacin, gentamicin, netilmicin, sisomicin and tobramycin. Antimicrob Agents Chemother 1980; 18: 338–45.

    Article  PubMed  CAS  Google Scholar 

  16. Daikos GL, Lolans VT, Jackson GG. First exposure adaptive resistance to aminoglycoside antibiotics in vivo with meaning for optimal clinical use. Antimicrob Agents Chemother 1991; 35: 117–23.

    Article  PubMed  CAS  Google Scholar 

  17. Xiong Y, Caillon J, Kergueris MF, et al. Adaptive resistance of Pseudomonas aeruginosa induced by aminoglycosides and killing kinetics in a rabbit endocarditis model. Antimicrob Agents Chemother 1997; 41: 823–6.

    PubMed  CAS  Google Scholar 

  18. Zhanel GG, Hoban DJ, Harding GKM. The post-antibiotic effect: a review of in vitro and in vivo data. DICP Ann Pharmacother 1991; 25: 153–63.

    CAS  Google Scholar 

  19. Fantin B, Ebert S, Legett J, et al. Factors affecting duration of in vivo postantibiotic effect for aminoglycosides against gram-negative bacilli. J Antimicrob Chemother 1991; 27: 829–36.

    Article  PubMed  CAS  Google Scholar 

  20. Fuentes F, Izquierdo J, Martin MM, et al. Postantibiotic and sub-MIC effects of azithromycin and isepamicin against S. aureus and E. coli. Antimicrob Agents Chemother 1998; 42: 414–8.

    PubMed  CAS  Google Scholar 

  21. Hatala R, Dinh TT, Cook DJ. Single daily dosing of aminoglycosides in immunocompromised adults: a systematic review. Clin Infect Dis 1997; 24: 810–5.

    Article  PubMed  CAS  Google Scholar 

  22. Mainardi JL, Zhou XY, Goldstein F, et al. Activity of isepamicin and selection of permeability mutants to β-lactams during aminoglycoside therapy of experimental endocarditis due to K. pneumonia CF104 producing an AAC (6′) modifying enzyme and a TEM-3 β-lactamase. J Infect Dis 1994; 169: 1318–24.

    Article  PubMed  CAS  Google Scholar 

  23. Caulin E, Coutrot A, Carbon C, et al. Resistance to amikacin and isepamicin in rabbits with experimental endocarditis of an aac (6′)-Ib-bearing strain of K. pneumoniae susceptible in vitro. Antimicrob Agents Chemother 1996; 40: 2848–53.

    PubMed  CAS  Google Scholar 

  24. Vic P, Ategbo S, Turck D, et al. Tolerance, pharmacokinetics and efficacy of once daily amikacin for treatment of Pseu Jomonas aeruginosa pulmonary exacerbations in cystic fibrosis patients. Eur J Pediatr 1996; 155(11): 948–53.

    Article  PubMed  CAS  Google Scholar 

  25. Lin C, Korduba C, Affrime M, et al. Pharmacokinetics of 14Cisepamicin in humans following intravenous administration. Antimicrob Agents Chemother 1995; 39: 2201–3.

    Article  PubMed  CAS  Google Scholar 

  26. Lin CC, Radwanski E, Korduba C, et al. Pharmacokinetics of intravenously administered isepamicin in men. Antimicrob Agents Chemother 1995; 39: 2774–8.

    Article  PubMed  CAS  Google Scholar 

  27. Radwanski E, Batra V, Cayen M, et al. Pharmacokinetics of isepamicin following a single administration by intravenous infusion or intramuscular injections. Antimicrob Agents Chemother 1997; 41: 1794–6.

    PubMed  CAS  Google Scholar 

  28. Lin CC, Radwanski E, Korduba C, et al. Pharmacokinetics of intramuscularly administered isepamicin in man. Chemotherapy 1997; 43: 86–93.

    Article  PubMed  CAS  Google Scholar 

  29. Barr WH, Colucci R, Radwanski E, et al. Pharmacokinetics of isepamicin. J Chemother 1995; 7 Suppl. 2: 53–61.

    PubMed  CAS  Google Scholar 

  30. Kucers A, Benett N. Gentamicin, tobramycin, amikacin, sisomicin and netilmicin. In: Kucers A, Benett N, editors. The use of antibiotics. London: William Heinemann Medical Books, 1987: 619.

    Google Scholar 

  31. Laskin OL, Longstreth JA, Smith CK, et al. Netilmicin and gentamicin multidose kinetics in normal subjects. Clin Pharmacol Ther 1983; 34: 644–50.

    Article  PubMed  CAS  Google Scholar 

  32. Winslade NE, Adelman MH, Evans EJ, et al. Single-dose accumulation pharmacokinetics of tobramycin and netilmicin in normal volunteers. Antimicrob Agents Chemother 1987; 31: 605–9.

    Article  PubMed  CAS  Google Scholar 

  33. Petitjean A, Astier A, Louchahi M, et al. Pharmacokinetics of gentamicin in the decompensated alcoholic cirrhotic patient: therapeutic consequences. Pathol Biol 1983; 31: 399–403.

    PubMed  CAS  Google Scholar 

  34. Santre C, Georges H, Jacquier JM, et al. Amikacin levels in bronchial secretions of 10 pneumonia patients with respiratory support treated once daily versus twice daily. Antimicrob Agents Chemother 1995; 39: 264–7.

    Article  PubMed  CAS  Google Scholar 

  35. Krampe P, Colucci R, Cutler D, et al. Lung and chest tissue penetration of isepamicin in patients undergoing lung resection or bronchoscopy [abstract 0602]. Can J Infect Dis 1995; 6 Suppl. C: 281.

    Google Scholar 

  36. Scaglione F, Vigano A, Colucci R, et al. Pharmacokinetics of isepamicin in pediatric patients. J Chemother 1995; 7 Suppl. 2: 63–9.

    PubMed  CAS  Google Scholar 

  37. Banfield C, Jen F, Colucci R, et al. Effect of age on the pharmacokinetics of isepamicin, a new once daily aminoglycoside. Clin Pharmacol Ther 1996; 59: 185.

    Article  Google Scholar 

  38. Nomeir AA, Radwanski E, Cutler D, et al. Single dose pharmacokinetics of isepamicin in young and geriatric volunteers. J Clin Pharmacol 1997; 37: 1021–30.

    PubMed  CAS  Google Scholar 

  39. Halstenson CE, Kelloway JS, Affrime MB, et al. Isepamicin disposition in subjects with various degrees of renal function. Antimicrob Agents Chemother 1991; 35: 2832–7.

    Article  Google Scholar 

  40. Uematsu T. Population pharmacokinetic analysis of new aminoglycosides, astromicin and isepamicin, and evaluation of Bayesian prediction method for approximation of individual clearance of drag. Int J Clin Pharmacol Ther Toxicol 1993; 31: 606–10.

    PubMed  CAS  Google Scholar 

  41. Kuranari M, Nawata T, Sato Y, et al. Effect of hemodialysis on serum concentrations of isepamicin in a patient with endstage renal failure. Ann Pharmacother 1993; 27: 1284.

    PubMed  CAS  Google Scholar 

  42. Halstenson CE, Wong MO, Herman CS, et al. Effect of concomitant administration of piperacillin on the dispositions of isepamicin and gentamicin in patients with endstage renal disease. Antimicrob Agents Chemother 1992; 36: 1832–6.

    Article  PubMed  CAS  Google Scholar 

  43. Prins JM, Weverling GJ, De Blok K, et al. Validation and nephrotoxicity of a simplified once-daily aminoglycoside schedule and guidelines for monitoring therapy. Antimicrob Agents Chemother 1996; 40: 2494–9.

    PubMed  CAS  Google Scholar 

  44. Pai S, Zhu GR, Colucci R, et al. Isepamicin dosage regimen estimation in patients with renal dysfunction using a population pharmacokinetic approach [abstract 3231]. Can J Infect Dis 1995; 6 Suppl. C: 429.

    Google Scholar 

  45. Nicolau DP, Freeman CD, Belliveau PP, et al. Experience with once-daily aminoglycoside program administered to 2184 adult patients. Antimicrob Agents Chemother 1995; 39: 650–5.

    Article  PubMed  CAS  Google Scholar 

  46. Halstenson CE, Aweeka F, Keane WF, et al. Disposition of isepamicin in continuous peritoneal dialysis patients [abstract P-III-122]. 94th Meeting of American Society for Clinical Pharmacology and Therapeutics; 1993 Mar 24–26; Honolulu.

  47. Tod M, Padoin C, Minozzi C, et al. Population pharmacokinetic study of isepamicin with intensive care unit patients. Antimicrob Agents Chemother 1996; 40: 983–7.

    PubMed  CAS  Google Scholar 

  48. Tod M, Minozzi C, Beaucaire G, et al. Isepamicin in intensive care unit patients with nosocomial pneumonia: population pharmacokinetic-pharmacodynamic study. J Antimicrob Chemother 1999.

  49. Tod M, Minozzi C, Louchahi K, et al. Population pharmacokinetic study of isepamicin in febrile neutropenic patients [abstract A23]. 36th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1996 Sep 15–18; New Orleans.

  50. Beaucaire G. Evaluation of the efficacy and safety of isepamicin compared with amikacin in the treatment of nosocomial pneumonia and septicemia. J Chemother 1995; 7: 165–73.

    PubMed  CAS  Google Scholar 

  51. Herbrecht R, Blaise D, Espinousse D, et al. Isepamicin once daily plus ceftriaxone versus amikacin plus ceftriaxone in febrile neutropenic patients. J Chemother 1995; 7: 103–10.

    PubMed  CAS  Google Scholar 

  52. Shinoda Y, Mochizuki D, Hokonohara T, et al. The neuromuscular blocking activity of isepamicin sulfate compared with other aminoglycoside antibiotics. Jpn J Antibiot 1987; 40: 136–44.

    PubMed  CAS  Google Scholar 

  53. Williams SE, Zenner HP, Schacht J. Three molecular steps of aminoglycoside ototoxicity demonstrated in outer hair cells. Hear Res 1987; 30: 11–8.

    Article  PubMed  CAS  Google Scholar 

  54. Hutchin T, Cortopaser G. Proposed molecular and cellular mechanism for aminoglycoside ototoxicity. Antimicrob Agents Chemother 1994; 38: 2517–20.

    Article  PubMed  CAS  Google Scholar 

  55. Priuska EM, Schacht J. Formation of free radicals by gentamicin and iron and evidence for an iron/gentamicin complex. Biochem Pharmacol 1995; 27: 1749–52.

    Article  Google Scholar 

  56. Sha SH, Schacht J. Stimulation of free radical formation by aminoglycoside antibiotics. Hear Res 1999; 128: 112–8.

    Article  PubMed  CAS  Google Scholar 

  57. Fredelius L, Bamonte F, Dionisotti S, et al. Auditory impairment in guinea pigs treated with isepamicin. J Chemother 1995; 7: 71–6.

    PubMed  CAS  Google Scholar 

  58. Blum D. An overview of the safety of isepamicin in adults. J Chemother 1995; 7: 87–94.

    PubMed  CAS  Google Scholar 

  59. Casano RA, Johnson DF, Bykhovskaya Y, et al. Inherited susceptibility to aminoglycoside ototoxicity: heterogeneity and clinical implications. Am J Otolaryngol 1999; 20: 151–6.

    Article  PubMed  CAS  Google Scholar 

  60. Usami S, Abe S, Tono T, et al. Isepamicin sulfate-induced sensoneurinal hearing loss in patients with the 1555 A→G mitochodrial mutation. ORL 1998; 60: 164–9.

    Article  PubMed  CAS  Google Scholar 

  61. Giulano RA, Verpooten GA, Verbist L, et al. In vivo uptake kinetics of aminoglycosides in the kidney cortex of rats. J Pharmacol Exp Ther 1986; 236: 470–5.

    Google Scholar 

  62. Mingeot-Leclerq MP, Brasseur R, Schank A. Molecular parameters involved in aminoglycoside nephrotoxicity. J Toxicol Environ Health 1995; 44: 263–300.

    Article  Google Scholar 

  63. Mouedden MEL, Laurent G, Mingeot-Leclerq MP, et al. Comparative studies of aminoglycoside-induced apoptosis in rat kidneys: study with gentamicin, netilmicin, amikacin and isepamicin [abstract A-88]. 38th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1998 Sep 24–27; San Diego.

  64. Matsumoto K, Lambricht P, Kishore BK, et al. In vitro and in vivo evaluation of the early renal alterations induced by HAPA-gentamicin B (isepamicin) [abstract 1503]. 28th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1988 Oct 23–26; Los Angeles.

  65. McCormack JP, Jeweson PJ. Acritical reevaluation of the ‘therapeutic range’ of aminoglycosides. Clin Infect Dis 1992; 14: 320–39.

    Article  PubMed  CAS  Google Scholar 

  66. Blaser J, Sonte BB, Groner MC, et al. Comparative study with enoxacin and netilmicin in a pharmacodynamic model to determine importance of ratio of antibiotic peak concentration to MIC for bacterial activity and emergence of resistance. Antimicrob Agents Chemother 1987; 31: 1054–60.

    Article  PubMed  CAS  Google Scholar 

  67. Xiong YG, Caillon J, Drugeon H, et al. Effect of pH on adaptation resistance of P. aeruginosa to aminoglycosides [abstract C86]. 35th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1995 Sep 17–20; San Francisco.

  68. Bryant RE, Fox K, Oh G, et al. β lactam enhancement of aminoglycoside activity under conditions of reduced pH and oxygen tension that may exist in infected tissues. J Infect Dis 1992; 165: 676–82.

    Article  PubMed  CAS  Google Scholar 

  69. Bodem CR, Lampton LM, Miller DP, et al. Endobronchial pH. Relevance to aminoglycoside activity in Gram-negative bacillary pneumonia. Am Rev Respir Dis 1983; 127: 39–41.

    PubMed  CAS  Google Scholar 

  70. Norrby SR. Treatment failures with broad-spectrum antibiotics. Scand J Infect Dis 1991; 78 Suppl.: 64–70.

    CAS  Google Scholar 

  71. Sculier JP, Klastersky J. Significance of serum bactericidal activity in gram-negative bacillary bacteremia in patients with and without granulocytopenia. Am J Med 1984; 76: 429–35.

    Article  PubMed  CAS  Google Scholar 

  72. Moore RD, Lietman PS, Smith CR. Clinical response to aminoglycoside therapy: importance of the ratio of peak concentration to MIC. J Infect Dis 1987; 155: 93–9.

    Article  PubMed  CAS  Google Scholar 

  73. Isaksson B, Hanberger H, Maller R, et al. Synergistic post-antibiotic effect of amikacin alone and in combination with piperacillin on Gram-negative bacteria. Scand J Infect Dis 1991; 74 Suppl.: 129–32.

    Google Scholar 

  74. Jones RN, Johnson DM, Barrett MS, et al. Antimicrobial activity of isepamicin combinations with cefotaxime, ceftazidime, ceftriaxone, ciprofloxacin, imipenem, mezlocillin and piperacillin tested against gentamicin-resistant and susceptible Gram-negative bacilli and enterococci. J Chemother 1991; 3: 289–94.

    PubMed  CAS  Google Scholar 

  75. Guérillot F, Carret G, Flandrois JP. A statistical evaluation of the bactericidal effects of ceftibuten in combination with aminoglycosides and ciprofloxacin. J Antimicrob Chemother 1993; 32: 685–94.

    Article  PubMed  Google Scholar 

  76. Vogelman B, Gudmundsson S, Legett J, et al. Correlation of antimicrobial pharmacokinetic parameters with therapeutic efficacy in an animal model. J Infect Dis 1988; 158: 831–47.

    Article  PubMed  CAS  Google Scholar 

  77. Craig WA, Redington J, Ebert SC. Pharmacodynamics of amikacin in vitro and in mouse thigh and lung infections. J Antimicrob Chemother 1991; 27 Suppl. C: 29–40.

    Article  PubMed  CAS  Google Scholar 

  78. Deziel-Evans LM, Murphy JE, Martin LJ. Correlation of pharmacokinetic indices with therapeutic outcome in patients receiving aminoglycosides. Clin Pharm 1986; 5: 319–24.

    PubMed  CAS  Google Scholar 

  79. Hyatt JM, McKinnon PS, Zimmer GS, et al. The importance of pharmacokinetic/pharmacodynamic surrogate markers to outcome. Clin Pharmacokinet 1995; 28: 143–60.

    Article  PubMed  CAS  Google Scholar 

  80. Kashuba ADM, Nafziger AN, Drusano GL, et al. Optimizing aminoglycoside therapy for nosocomial pneumonia caused by Gram-negative bacteria. Antimicrob Agents Chemother 1999; 43: 623–9.

    PubMed  CAS  Google Scholar 

  81. Beaucaire G, Minozzi C, Tod M, et al. Clinical efficacy of IV once daily dosing isepamicin used during 5 or 10 days, with or without initial loading dose in ICU ventilated patients with nosocomial pneumonia [abstract 406/P24]. 17th Réunion Interdisciplinaire de Chimiothérapie Anti-Infectieuse; 1997 Dec 4–5; Paris.

  82. De Broe ME, Giuliano RE, Verpooten GA. Insights into the renal handling of aminoglycosides: a guideline for prevention of nephrotoxicity. J Drug Dev 1988; 1 Suppl. 3: 83–92.

    Google Scholar 

  83. Verpooten GA, Giulano RE, Verbist L, et al. Once-daily dosing decreases renal accumulation of gentamicin and netilmicin. Clin Pharmacol Ther 1989; 45: 22–7.

    Article  PubMed  CAS  Google Scholar 

  84. Prins JM, Weverling GJ, Van Ketel RJ, et al. Circadian variations in serum levels and the renal toxicity of aminoglycosides in patients. Clin Pharmacol Ther 1997; 62: 106–11.

    Article  PubMed  CAS  Google Scholar 

  85. Govaerts PJ, Claes J, Van de Heynin PH, et al. Effect of isepamicin dosing scheme on concentration in cochlear tissue. Antimicrob Agents Chemother 1991; 35: 2401–6.

    Article  PubMed  CAS  Google Scholar 

  86. IACTG of the EORTC. Efficacy and toxicity of single daily doses of amikacin and ceftriaxone versus multiple daily doses of amikacin and ceftazidime for infection in patients with cancer and granulocytopenia. Ann Intern Med 1993; 119: 584–93.

    Google Scholar 

  87. Streetman DS, Nafziger AN, Destache CJ, et al. Individualized pharmacokinetic monitoring results in less aminoglycosideassociated nephrotoxicity [abstract A79]. 38th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1998 Sep 24–27; San Diego.

  88. Neumayer HH, Geliert J, Luft FC. Calcium antagonists and renal protection. Ren Fail 1993; 15: 353–8.

    Article  PubMed  CAS  Google Scholar 

  89. Song BB, Sha SH, Schacht J. Iron chelators protect from aminoglycoside-induced cochleo- and vestibulo-toxicity. Free Radic Biol Med 1998; 15: 189–95.

    Article  Google Scholar 

  90. Conlon BJ, Aran JM, Erre JP, et al. Attenuation of aminoglycoside-induced cochlear damage with the metabolic antioxidant alpha-lipoic acid. Hear Res 1999; 128: 40–4.

    Article  PubMed  CAS  Google Scholar 

  91. Garetz SL, Rhee DJ, Schacht J. Sulfhydryl compounds and antioxidants inhibit cytotoxicity to outer havi cells of a gentamicin metabolite in vitro. Hear Res 1994; 77: 75–80.

    Article  PubMed  CAS  Google Scholar 

  92. Tod M, Lortholary O, Seytre D, et al. Population pharmacokinetic study of amikacin administered once or twice daily to febrile, severely neutropenic adults. Antimicrob Agents Chemother 1998; 42: 849–56.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Tod.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tod, M., Padoin, C. & Petitjean, O. Clinical Pharmacokinetics and Pharmacodynamics of Isepamicin. Clin Pharmacokinet 38, 205–223 (2000). https://doi.org/10.2165/00003088-200038030-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200038030-00002

Keywords

Navigation