Skip to main content
Log in

Articular Diffusion of Meloxicam After a Single Oral Dose

Relationship to Cyclo-Oxygenase Inhibition in Synovial Cells

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Objective

To investigate the distribution of meloxicam in the human knee joint and to compare it with the inhibition of cyclo-oxygenase (COX) activity in synovial cells.

Design

Prospective pharmacokinetic study and in vitro laboratory investigation.

Patients and participants

42 male and female patients aged 26 to 85 years hospitalised for rheumatic disease and requiring a diagnostic and/or therapeutic knee puncture.

Methods

After a single oral dose of meloxicam 15mg, synovial fluid and blood samples were collected once per patient at various intervals after administration. Meloxicam concentrations were determined by a validated high performance liquid chromatography assay, protein binding by equilibrium dialysis, and pharmacokinetic parameters were calculated by noncompartmental analysis from the mean drug concentration-time profiles. The inhibitory effect of meloxicam on COX activity was investigated separately in unstimulated or interleukin-1 β-stimulated human synovial cells from osteoarthritic patients.

Results

Meloxicam was found in synovial fluid at the earliest sampling time (1 hour). Peak concentrations were reached approximately 6 hours postdose in both plasma (842 µg/L) and synovial fluid (320 µg/L). A plateau was observed after the distribution phase (6 hours), corresponding to a constant ratio of drug concentration between synovial fluid and plasma of about 0.47. This ratio was higher in patients with acute inflammation (0.58) than in those with no inflammation (0.38). Meloxicam was extensively bound to protein, mainly to serum albumin. The area under the drug concentration-time curve (AUC) in plasma was more than 2.5 times that in synovial fluid. The AUC for free meloxicam was similar in plasma and synovial fluid. The 50% inhibitory concentrations (IC50) for basal and stimulated COX activity in human synovial cells were 33.7 nmol/L+ (11.8 µg/L) and 2.0 nmol/L (0.70 µg/L), respectively. The free concentration of meloxicam in synovial fluid was higher than the IC50 for stimulated COX activity from 6 to 36 hours postdose.

Conclusion

On the basis of free synovial concentrations and the IC50 for stimulated COX activity, meloxicam is expected to have a long duration of action. Inhibition of COX activity is expected to be more marked in inflamed synovium compared with non-inflamed synovium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Table I
Fig. 2
Fig. 3
Fig. 4
Table II
Fig. 5
Table III
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Netter P, Bannwarth B, Royer-Morrot MJ. Recent findings on the pharmacokinetics of nonsteroidal anti-inflammatory drugs in synovial fluid. Clin Pharmacokinet 1989; 17: 145–62.

    Article  PubMed  CAS  Google Scholar 

  2. Vane JR. Inhibition of prostaglandin synthesis as a mechanism of action of aspirin-like drugs. Nature 1971; 231: 232–5.

    CAS  Google Scholar 

  3. Vane JR, Botting RM. New insights into the mode of action of anti-inflammatory drugs. Inflamm Res 1995; 44: 1–10.

    Article  PubMed  CAS  Google Scholar 

  4. Engelhardt G, Bogel R, Schnitzer C, et al. Meloxicam: influence on arachidonic acid metabolism: 1. In vitro findings. Biochem Pharmacol 1996; 51: 21–8.

    Article  PubMed  CAS  Google Scholar 

  5. Lemmel EM, Bolten W, Burgos-Vargas R, et al. Efficacy and safety of meloxicam in patients with rheumatoid arthritis. J Rheumatol 1997; 24: 282–90.

    PubMed  CAS  Google Scholar 

  6. Noble S, Balfour JA. Meloxicam. Drugs 1996; 51: 424–30.

    Article  PubMed  CAS  Google Scholar 

  7. Engelhardt G, Bogel R, Schnitzler C, et al. Meloxicam: influence on arachidonic acid metabolism: 2. In vivo findings. Biochem Pharmacol 1996; 51: 29–38.

    Article  PubMed  CAS  Google Scholar 

  8. Schmid J, Busch U, Heinzel G, et al. Meloxicam: pharmacokinetics and metabolic pattern after intravenous infusion and oral administration to healthy subjects. Drug Metab Dispos 1995; 23: 1206–13.

    PubMed  CAS  Google Scholar 

  9. Türck D, Roth W, Busch U. Areview of the clinical pharmacokinetics of meloxicam. Br J Rheumatol 1996; 35 Suppl. 1: 13–6.

    Article  PubMed  Google Scholar 

  10. Lapicque F, Netter P, Bannwarth B, et al. The identification and simultaneous determination of non-steroidal antiinflamma-tory drugs using high-performance chromatography. J Chro-matogr 1989; 496: 301–20.

    CAS  Google Scholar 

  11. Lapicque F, Netter P, Monot C, et al. Détermination de la fixation protéique des médicaments par dialyse a l’équilibre: in-fluence du déplacement de volume sous l’effet de la pression osmotique. J Pharmacol (Paris) 1986; 17: 295–300.

    CAS  Google Scholar 

  12. Heinzel G, Woloszczak W, Thomann P. Topfit V. 2.0: pharmacokinetic and pharmacodynamic data analysis system. Stuttgart: Gustav Fischer Verlag, 1992.

    Google Scholar 

  13. Bonnet C, Bertin P, Cook-Moreau J, et al. Lipoxygenase products and expression of 5-lipoxygenase and 5-lipoxygenase-activating protein in human cultured synovial cells. Prostaglandins 1995; 50: 127–35.

    Article  PubMed  CAS  Google Scholar 

  14. Vergne P, Bertin P, Liagre B, et al. Differential inhibition of cyclooxygenases-1 and -2 by nonsteroidal anti-inflamma-tory drugs in cultured cells. Arthritis Rheum 1997; 40 Suppl. 375: S93.

    Google Scholar 

  15. De Lean A, Munson PJ, Rodbard D. Simultaneous analysis of families of sigmoidal curves: application to bioassay, radioligand assay, and physiological dose-response curves. Am JPhysiol 1978; 235: E97–102.

    Google Scholar 

  16. Brauer W, Short CL, Bennet GA. The manner of removal of proteins from normal joints. J Exp Med 1933; 57: 419–32.

    Article  Google Scholar 

  17. Woodhouse KW, Wynne H. The pharmacokinetics of nonsteroidal anti-inflammatory drugs in the elderly. Clin Pharmacokinet 1987; 12: 111–22.

    Article  PubMed  CAS  Google Scholar 

  18. Sheiner LB. The population approach to pharmacokinetic data analysis: rationale and standard data analysis methods. Drug Metab Rev 1984; 15: 153–71.

    Article  PubMed  CAS  Google Scholar 

  19. Sander O, Graham GG, Williams KM, et al. Meloxicam pharmacokinetics in elderly compared to younger male and female patients with rheumatoid arthritis [abstract]. Rheumatol Eur 1995; 24 Suppl. 3: 221.

    Google Scholar 

  20. Benveniste C, Striberni R, Dyer P. Indirect assessment of the enterohepatic recirculation of piroxicam and tenoxicam. Eur J Clin Pharmacol 1990; 38: 457–9.

    Article  Google Scholar 

  21. Ishizaki T, Nomura T, Abe T. Pharmacokinetics of piroxicam, a new non-steroidal anti-inflammatory agent, under fasting and postprandial states in man. J Pharmacokinet Biopharm 1979; 7: 369–81.

    PubMed  CAS  Google Scholar 

  22. Türck D, Busch U, Heinzel G, et al. Effect of food on the pharmacokinetics of meloxicam after oral administration. Clin Drug Invest 1995; 9: 270–6.

    Article  Google Scholar 

  23. de Korwin JD, Lapicque F, Kaletka C, et al. Unknown intake of non steroidal anti-inflammatory drugs and digestive bleeding: clinical and drug assay assessment. Am J Gastroenterol 1993; 88: 1298–9.

    PubMed  Google Scholar 

  24. Day RO, McLachlan AJ, Graham GG, et al. Pharmacokinetics of nonsteroidal anti-inflammatory drugs in synovial fluid. Clin Pharmacokinet 1999; 36: 191–210.

    Article  PubMed  CAS  Google Scholar 

  25. Hobbs DS. Piroxicam pharmacokinetics: recent clinical results relating kinetics and plasma levels to age, sex and adverse events. Am J Med 1986; Suppl. 5B: 22–8.

    Google Scholar 

  26. Kurowski M, Dunky A. Transsynovial kinetics of piroxicam in patients with rheumatoid arthritis. Eur J Clin Pharmacol 1988; 34: 401–6.

    Article  PubMed  CAS  Google Scholar 

  27. Day RO, Williams KM, Graham S, et al. The pharmacokinetics of total and unbound concentrations of tenoxicam in synovial fluid and plasma. Arthritis Rheum 1991; 34: 751–60.

    Article  PubMed  CAS  Google Scholar 

  28. Degner FL, Heinzel G, Busch U. Transsynovial kinetics of meloxicam [abstract]. Scand J Rheumatol 1994; 98 Suppl.: 121.

    Google Scholar 

  29. Strusberg A, Montrull H, Meirovich, CI. Anti-prostaglandin and anti-inflammatory short-term efficacy of piroxicam in rheumatoid arthritis. Eur J Rheum Inflam. 1983; 6: 41–45.

    CAS  Google Scholar 

  30. Bannwarth B, Netter P, Lapicque F, et al. Concentrations de l’isoxicam dans le plasma et le liquide synovial [abstract]. J Pharmacol (Paris) 1986; 17: 459.

    Google Scholar 

  31. Bird HA, Allen JG, Dixon JS, et al. Apharmacokinetic comparison of tenoxicam in plasma and synovial fluid. J Clin Pharmacol 1985; 24: 351–6.

    CAS  Google Scholar 

  32. Farr M, Hawkins CF, Kendall MJ, et al. Some observations and speculations on the factors influencing the concentration of phenylbutazone in synovial fluid. Int J Clin Pharm Ther Tox-icol 1982; 20: 589–94.

    CAS  Google Scholar 

  33. Gaucher A, Netter P, Faure G, et al. Diffusion of oxyphenbutazone into synovial fluid, synovial tissue, joint cartilage and cerebrospinal fluid. Eur J Clin Pharmacol 1983; 25: 107–12.

    Article  PubMed  CAS  Google Scholar 

  34. Dougados M, Coste P, Stalla-Bourdillon A, et al. Influence de la nature de l’épanchement articulaire sur la diffusion des anti-inflammatoires non stéroidiens à travers la membrane synoviale: à propos du naproxène sodique 550 mg au cours de la polyarthrite rhumatoide et la gonarthrose. Rev Int Rheumatol 1986; 16: 105–9.

    Google Scholar 

  35. Cummings NA, Nordby GL. Measurement of synovial fluid pH in normal and arthritic knees. Arthritis Rheum 1966; 9: 47–56.

    Article  PubMed  CAS  Google Scholar 

  36. Wilting J, van der Giesen WF, Janssen LHM, et al. The effect of albumin conformation on the binding of warfarin to human serum albumin: the dependence of the binding of warfarin to human serum albumin on the hydrogen, calcium, and chloride ion concentrations as studied by circular dichroism, fluorescence, and equilibrium dialysis. J Biol Chem 1980; 255: 3032–7.

    PubMed  CAS  Google Scholar 

  37. Abd Ellbary A, Vallner JJ, Whitworth CW. Effect of albumin conformation on the binding of phenylbutazone and oxyphen-butazone to human serum albumin. J Pharm Sei 1982; 71: 241–4.

    Article  Google Scholar 

  38. Eyberg C, Moodley GP, Buchanan N. The pharmacology of malnutrition. I. Salicylate binding studies using normal serum/plasma and kwashiorkor serum. S Afr Med J 1974; 48: 2564–7.

    PubMed  CAS  Google Scholar 

  39. Hinderung PH, Hartmann D, Crevoisier C, et al. Integrated plasma and synovial fluid pharmacokinetics of tenoxicam in patients with rheumatoid arthritis and osteoarthritis: factors determining the synovial fluid-plasma distribution ratio. Ther Drug Monit 1988; 10: 250–60.

    Article  Google Scholar 

  40. Wanwimolruk S, Birkett DJ, Brooks PM. Protein binding of some non-steroidal anti-inflammatory drugs in rheumatoid arthritis. Clin Pharmacokinet 1982; 7: 85–92.

    Article  PubMed  CAS  Google Scholar 

  41. Busch U, Heinzel G, Narjes H, et al. Pharmacokinetics of meloxicam in patients with hepatic cirrhosis in comparison with healthy volunteers. Clin Drug Invest 1996; 11: 97–107.

    Article  CAS  Google Scholar 

  42. Netter P, Monot C, Stalars MC, et al. Decrease of in vitro serum protein binding of salicylate in rheumatoid arthritis. Eur J Drug Metab Pharmacokinet 1984; 9: 109–16.

    Article  PubMed  CAS  Google Scholar 

  43. Netter P, Bannwarth B, Lapicque F, et al. Total and free ketoprofen in serum and synovial fluid after intramuscular injection. Clin Pharmacol Ther 1987; 42: 555–61.

    Article  PubMed  CAS  Google Scholar 

  44. Day RO, Francis H, Vial J, et al. Naproxen concentrations in plasma and synovial fluid and effects on prostanoid concentrations. J Rheumatol 1995, 22: 2295–303.

    PubMed  CAS  Google Scholar 

  45. Kraml M, Hicks DR, McKean M, et al. The pharmacokinetics of etodolac in serum and synovial fluid of patients with arthritis. Clin Pharmacol Ther 1988; 43: 571–6.

    Article  PubMed  CAS  Google Scholar 

  46. Owen SG, Francis HW, Roberts MS. Disappearance kinetics of solutes from synovial fluid after intra-articular injection. Br J Clin Pharmacol 1994; 38: 349–55.

    Article  PubMed  CAS  Google Scholar 

  47. Siegle I, Klein T, Backman JT, et al. Expression of cyclooxygenase 1 and cyclooxygenase 2 in human synovial tissue. Arthritis Rheum 1998; 41: 122–9.

    Article  PubMed  CAS  Google Scholar 

  48. Crofford LJ, Wilder RL, Ristimäki AP, et al. Cyclooxygenase-1 and -2 expression in rheumatoid synovial tissues: effects of interleukin-lß, phorbol ester, and corticosteroids. J Clin Invest 1994; 93: 1095–101.

    Article  PubMed  CAS  Google Scholar 

  49. Knott I, Dieu M, Burton M, et al. Induction of cyclooxygenase by interleukin 1: comparative study between human synovial cells and chondrocytes. J Rheumatol 1994; 21: 462–6.

    PubMed  CAS  Google Scholar 

  50. Angel J, Berenbaum F, Ledenmat C, et al. Interleukin-1-induced prostaglandin E2 biosynthesis in human synovial cells involves the activation of cytosolic phospholipase A2 and cyclooxygenase-2. Eur J Biochem 1994; 226: 125–31.

    Article  PubMed  CAS  Google Scholar 

  51. Pairet M, Ryn van J, Mauz A, et al. Differential inhibition of COX-1 and COX-2 by NSAIDs: a summary of results obtained using various test systems. In: Vane J, Botting J, editors. Selective COX-2 inhibitors: pharmacology, clinical effects and therapeutic potential. London: William Harvey Press, 1998: 24–46.

    Google Scholar 

  52. Churchill L, Graham AG, Shih C-K, et al. Selective inhibition of human cyclooxygenase-2 by meloxicam. Inflammo-pharmacology 1996; 4: 125–35.

    Article  CAS  Google Scholar 

  53. Wittenberg RH, Willburger RE, Kleemeyer KS, et al. In vitro release of prostaglandins and leukotrienes from synovial tissue, cartilage, and bone in degenerative joint diseases. Arthritis Rheum 1993; 36: 1444–50.

    Article  PubMed  CAS  Google Scholar 

  54. Türck D, Busch U, Heinzel G, et al. Clinical pharmacokinetics of meloxicam. Arzneimittelforschung 1997; 47 (I): 253–8.

    PubMed  Google Scholar 

  55. Bertin P, Lapicque F, Payan E, et al. Sodium naproxen: concentration and effect on inflammatory response mediators in human rheumatoid synovial fluid. Eur J Clin Pharmacol 1994; 46: 3–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Netter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lapicque, F., Vergne, P., Jouzeau, JY. et al. Articular Diffusion of Meloxicam After a Single Oral Dose. Clin Pharmacokinet 39, 369–382 (2000). https://doi.org/10.2165/00003088-200039050-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200039050-00005

Keywords

Navigation