Skip to main content
Log in

Fosphenytoin

Clinical Pharmacokinetics and Comparative Advantages in the Acute Treatment of Seizures

  • Review Article
  • Drug Disposition
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Fosphenytoin is a phosphate ester prodrug developed as an alternative to intravenous phenytoin for acute treatment of seizures. Advantages include more convenient and rapid intravenous administration, availability for intramuscular injection, and low potential for adverse local reactions at injection sites. Drawbacks include the occurrence of transient paraesthesias and pruritus at rapid infusion rates, and cost.

Fosphenytoin is highly bound (93–98%) to plasma proteins. Saturable binding at higher plasma concentrations accounts for an increase in its distribution volume and clearance with increasing dose and infusion rate.

Fosphenytoin is entirely eliminated through metabolism to phenytoin by blood and tissue phosphatases. The bioavailability of the derived phenytoin relative to intravenous phenytoin is approximately 100% following intravenous or intramuscular administration. The half-life for conversion of fosphenytoin to phenytoin ranges from 7–15 minutes.

Faster intravenous infusion rates and competitive displacement of derived phenytoin from plasma protein binding sites by fosphenytoin compensate for the expected conversion-related delay in appearance of phenytoin in the plasma. Unbound phenytoin plasma concentrations achieved with intravenous fosphenytoin loading doses of 100–150 or 50–100mg phenytoin sodium equivalents/min are comparable, and achieved at similar times, to those with equimolar doses of intravenous phenytoin at 50 (maximum recommended rate) or 20–40 mg/min, respectively. The rapid achievement of effective concentrations permits the use of fosphenytoin in emergency situations, such as status epilepticus. Following intramuscular administration, therapeutic phenytoin plasma concentrations are observed within 30 minutes and maximum plasma concentrations occur at approximately 30 minutes for fosphenytoin and at 2–4 hours for derived phenytoin. Plasma concentration profiles for fosphenytoin and total and unbound phenytoin in infants and children closely approximate those in adults following intravenous or intramuscular fosphenytoin at comparable doses and infusion rates.

Earlier and higher unbound phenytoin plasma concentrations, and thus an increase in systemic adverse effects, may occur following intravenous fosphenytoin loading doses in patients with a decreased ability to bind fosphenytoin and phenytoin (renal or hepatic disease, hypoalbuminaemia, the elderly). Close monitoring and reduction in the infusion rate by 25–50% are recommended when intravenous loading doses of fosphenytoin are administered in these patients. The potential exists for clinically significant interactions when fosphenytoin is coadministered with other highly protein bound drugs.

The pharmacokinetic properties of fosphenytoin permit the drug to serve as a well tolerated and effective alternative to parenteral phenytoin in the emergency and non-emergency management of acute seizures in children and adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Table I
Table II
Table III
Fig. 2
Fig. 3
Fig. 4
Table IV
Table V

Similar content being viewed by others

References

  1. Morton LD, Pellock JM. Treatment options for acute seizure care. CNS Drugs 1998 Dec; 10(6): 405–16

    Article  CAS  Google Scholar 

  2. Kuijlen JMA, Teernstra OPM, Kessels AGH, et al. Effectiveness of antiepileptic prophylaxis used with supratentorial craniotomies: a meta-analysis. Seizure 1996; 5: 291–8

    Article  PubMed  CAS  Google Scholar 

  3. Iudice A, Murri L. Pharmacological prophylaxis of post-traumatic epilepsy. Drugs 2000 May; 59(5): 1091–9

    Article  PubMed  CAS  Google Scholar 

  4. Lowenstein DH, Alldredge BK. Status epilepticus. N Engl J Med 1998 Apr 2; 338(14): 970–6

    Article  PubMed  CAS  Google Scholar 

  5. Wallis W, Kutt H, McDowell F. Intravenous diphenylhydantoin in the treatment of acute repetitive seizures. Neurology 1968 Jun; 18: 513–25

    Article  PubMed  CAS  Google Scholar 

  6. Cranford RE, Leppik IL, Patrick B, et al. Intravenous phenytoin: clinical and pharmacokinetic aspects. Neurology 1978 Sep; 28: 874–80

    Article  PubMed  CAS  Google Scholar 

  7. Working Group on Status Epilepticus. Treatment of convulsive status epilepticus: recommendations of the Epilepsy Foundation of America’s Working Group on Status Epilepticus. JAMA 1993 Aug 18; 270(7): 854–9

    Article  Google Scholar 

  8. Bauman JL, Siepler JK, Fitzloff J. Phenytoin crystallization in intravenous fluids. Drug Intell Clin Pharm 1977 Nov; 11: 646–9

    CAS  Google Scholar 

  9. Earnest MP, Marx JA, Drury LR. Complications of intravenous phenytoin for acute treatment of seizures. JAMA 1983 Feb; 249(6): 762–5

    Article  PubMed  CAS  Google Scholar 

  10. Carducci B, Hedges JR, Beal JC, et al. Emergency phenytoin loading by constant intravenous infusion. Ann Emerg Med 1984 Nov;13(11): 1027–31

    Article  PubMed  CAS  Google Scholar 

  11. DelaCruz FG, Kanter MZ, Fischer JH, et al. Efficacy of individualized phenytoin sodium loading doses administered by intravenous infusion. Clin Pharm 1988 Mar; 7: 219–24

    CAS  Google Scholar 

  12. Spengler RF, Arrowsmith JB, Kilarski DJ, et al. Severe soft-tissue injury following intravenous infusion of phenytoin: patient and drug administration risk factors. Arch Intern Med 1988 Jun; 148: 1329–33

    Article  PubMed  CAS  Google Scholar 

  13. O’Brien TJ, Cascino GD, So EL, et al. Incidence and clinical consequence of the purple glove syndrome in patients receiving intravenous phenytoin. Neurology 1998 Oct; 51(4): 1034–9

    Article  PubMed  Google Scholar 

  14. Louis S, Kutt H, McDowell F. The cardiocirculatory changes caused by intravenous dilantin and its solvent. Am Heart J 1967 Oct; 74: 525–9

    Article  Google Scholar 

  15. Donovan PJ, Cline D. Phenytoin administration by constant intravenous infusion: selective rates of administration. Ann Emerg Med 1991 Feb; 20(2): 139–42

    Article  PubMed  CAS  Google Scholar 

  16. Serrano EE, Wilder BJ. Intramuscular administration of diphenylhydantoin: histologic follow-up studies. Arch Neurol 1974 Oct; 31: 276–8

    Article  PubMed  CAS  Google Scholar 

  17. Wilensky AJ, Lowden JA. Inadequate serum levels after intramuscular administration of diphenylhydantoin. Neurology 1973 Mar; 23: 318–24

    Article  PubMed  CAS  Google Scholar 

  18. Kostenbauder HB, Rapp RP, McGovren JP, et al. Bioavailability and single-dose pharmacokinetics of intramuscular phenytoin. Clin Pharmacol Ther 1975; 18(4): 449–56

    PubMed  CAS  Google Scholar 

  19. Boucher BA. Fosphenytoin: a novel phenytoin prodrug. Pharmacotherapy 1996; 16(5): 777–91

    PubMed  CAS  Google Scholar 

  20. Knapp LE, Kugler AR. Clinical experience with fosphenytoin in adults: pharmacokinetics, safety, and efficacy. J Child Neurol 1998 Oct; 13 Suppl. 1: S15–8

    Article  PubMed  Google Scholar 

  21. Fischer JH, Cwik MJ, Luer MS, et al. Stability of fosphenytoin sodium with intravenous solutions in glass bottles, polyvinyl chloride bags, and polypropylene syringes. Ann Pharmacother 1997 May; 31: 553–9

    PubMed  CAS  Google Scholar 

  22. Boucher BA, Feler CA, Dean JC, et al. The safety, tolerability, and pharmacokinetics of fosphenytoin after intramuscular and intravenous administration in neurosurgery patients. Pharmacotherapy 1996; 16(4): 638–45

    PubMed  CAS  Google Scholar 

  23. Fischer J, Turnbull T, Uthman B, et al. Safety, tolerance, and pharmacokinetics of intravenous loading doses of fos-phenytoin (Cerebyx®) versus dilantin® [abstract]. Neurology 1995 Apr; 45 Suppl. 4: A202–3

    Google Scholar 

  24. Ramsay RE, Philbrook B, Fischer JH, et al. Safety and pharmacokinetics of fosphenytoin (Cerebyx®) compared to Dilantin® following rapid iv administration [abstract]. Neurology 1996 Feb; 46 Suppl. 2: A245

    Google Scholar 

  25. Meek PD, Davis SN, Collins DM, et al. Panel on Nonemergency Use of Parenteral Phenytoin Products. Guidelines for non-emergency use of parenteral phenytoin products: proceedings of an expert panel consensus process. Arch Intern Med. 1999 Dec 13; 159: 2639–44

    Article  PubMed  CAS  Google Scholar 

  26. Czerwinski AW, Czerwinski AB, Whitsett TL, et al. Effects of a single, large, intravenous injection of dexamethasone. Clin Pharmacol Ther 1972; 13(5): 638–42

    PubMed  CAS  Google Scholar 

  27. Wilder BJ, Campbell K, Ramsay RE, et al. Safety and tolerance of multiple doses of intramuscular fosphenytoin substituted for oral phenytoin in epilepsy or neurosurgery. Arch Neurol 1996 Aug; 53: 764–8

    Article  PubMed  CAS  Google Scholar 

  28. Ramsay RE, Wilder BJ, Uthman BM, et al. Intramuscular fosphenytoin (Cerebyx®) in patients requiring a loading dose of phenytoin. Epilepsy Res 1997; 28: 181–7

    Article  PubMed  CAS  Google Scholar 

  29. Varia SA, Schuller S, Sloan KB, et al. Phenytoin prodrugs III: water-soluble prodrugs for oral and/or parenteral use. J Pharm Sci 1984 Aug; 73(8): 1068–73

    Article  PubMed  CAS  Google Scholar 

  30. Kearney AS, Stella VJ. Hydrolysis of pharmaceutically relevant phosphate monoester monoanions: correlation to an established structure-reactivity relationship. J Pharm Sci 1993 Jan; 82(1): 69–72

    Article  PubMed  CAS  Google Scholar 

  31. Gerber N, Mays DC, Donn KH, et al. Safety, tolerance and pharmacokinetics of intravenous doses of the phosphate ester of 3-hydroxymethyl-5,5-diphenylhydantoin: a new prodrug of phenytoin. J Clin Pharmacol 1988; 28: 1023–32

    PubMed  CAS  Google Scholar 

  32. Cwik MJ, Liang M, Deyo K, et al. Simultaneous rapid high-liquid Chromatographie determination of phenytoin and its prodrug, fosphenytoin in human plasma and ultrafiltrate. J Chromatogr B 1997; 693: 407–14

    Article  CAS  Google Scholar 

  33. Cao Z, Stapp D, Linder MW, et al. Conversion of fosphenytoin to phenytoin in vitro [abstract]. Clin Chem 1997; 43(6): S219–20

    Google Scholar 

  34. Kugler AR, Annesley TM, Nordblom GD, et al. Cross-reactivity of fosphenytoin in two human plasma phenytoin immunoassays. Clin Chem 1998; 44(7): 1474–80

    PubMed  CAS  Google Scholar 

  35. Datta P, Dasgupta A. Cross-reactivity of fosphenytoin in four phenytoin immunoassays [letter]. Clin Chem 1998; 44(3): 696–7

    PubMed  CAS  Google Scholar 

  36. Tozer TN, Winter ME. Phenytoin. In: Evans WE, Schentag JJ, Jusko WJ, editors. Applied pharmacokinetics: principles of therapeutic drug monitoring. 3rd ed. Vancouver (WA): Applied Therapeutics, 1992: 25.1–25.44

    Google Scholar 

  37. Treiman DM, Woodbury DM. Phenytoin: absorption, distribution, and excretion. In: Levy RH, Mattson RH, Meldrum BS, editors. Antiepileptic drugs. 4th ed. New York: Raven Press, 1995: 301–14

    Google Scholar 

  38. Boucher BA, Bombassaro AM, Rasmussen SN, et al. Phenytoin prodrug 3-phosphoryloxymethyl phenytoin (ACC-9653): pharmacokinetics in patients following intravenous and intramuscular administration. J Pharm Sci 1989 Nov; 78(11): 929–32

    Article  PubMed  CAS  Google Scholar 

  39. Jamerson BD, Donn KH, Dukes GE, et al. Absolute bioavailability of phenytoin after 3-phosphoryloxymethyl phenytoin disodium (ACC-9653) administration to humans. Epilepsia 1990; 31(5): 592–7

    Article  PubMed  CAS  Google Scholar 

  40. Leppik IE, Boucher BJ, Wilder BJ, et al. Pharmacokinetics and safety of a phenytoin prodrug given IV or IM in patients. Neurology 1990 Mar; 40: 456–60

    Article  PubMed  CAS  Google Scholar 

  41. Hussey EK, Dukes GE, Messenheimer JA, et al. Evaluation of the pharmacokinetic interaction between diazepam and ACC-9653 (a phenytoin prodrug) in healthy male volunteers. Pharm Res 1990; 7: 1172–6

    Article  PubMed  CAS  Google Scholar 

  42. Browne TR, Szabo GK, McEntegart C, et al. Bioavailability studies of drugs with nonlinear pharmacokinetics: II. absolute bioavailability of intravenous phenytoin prodrug at therapeutic phenytoin serum concentrations determined by double-stable isotope technique. J Clin Pharmacol 1993; 33: 89–94

    PubMed  CAS  Google Scholar 

  43. Eldon MA, Loewen GR, Voightman RE, et al. Pharmacokinetics and tolerance of fosphenytoin and phenytoin administered intravenously to healthy subjects [abstract]. Can J Neurol Sci 1993; 20 Suppl. 4: S180

    Google Scholar 

  44. Andrews CO, Turnbull TL, Paloucek FP, et al. Safety and pharmacokinetics of fosphenytoin following intravenous loading dose administration [abstract]. Pharmacotherapy 1994; 14(3): 367

    Google Scholar 

  45. Fischer PA, Sloan EP, Turnbull TL, et al. Safety and pharmacokinetics of intravenous loading doses of fosphenytoin for the acute treatment of seizures [abstract]. Epilepsia 1995; 36 Suppl. 3: S160

    Google Scholar 

  46. Fischer JH, Allen FH, Runge J, et al. Fosphenytoin (Cerebyx®) in status epilepticus: safety, tolerance, and pharmacokinetics [abstract]. Epilepsia 1996; 37 Suppl. 5: 202

    Google Scholar 

  47. Morton LD, Pellock JM, Maria BL, et al. Fosphenytoin safety and pharmacokinetics in children [abstract]. Epilepsia 1997; 38 Suppl. 8: 194

    Google Scholar 

  48. Aweeka FT, Gottwald MD, Gambertoglio JG, et al. Pharmacokinetics of fosphenytoin in patients with hepatic or renal disease. Epilepsia 1999; 40(6): 777–82

    Article  PubMed  CAS  Google Scholar 

  49. Browne TR, Davoudi H, Donn KH, et al. Bioavailability of ACC-9653 (phenytoin prodrug). Epilepsia 1989; 30 Suppl. 2: S27–32

    Article  PubMed  Google Scholar 

  50. Garnett WR, Kugler AR, O’Hara KA, et al. Pharmacokinetics of fosphenytoin and phenytoin following intramuscular administration of fosphenytoin substituted for oral phenytoin in epileptic patients [abstract]. Neurology 1995 Apr; 45 Suppl. 4: A248

    Google Scholar 

  51. Boucher BA, Kugler AR, Hess MM, et al. Pharmacokinetics of fosphenytoin, a phenytoin prodrug, following intramuscular administration in critically ill neurosurgery patients [abstract]. Crit Care Med 1995 Jan; 23: A78

    Article  Google Scholar 

  52. Pryor FM, Gidal B, Ramsay RE, et al. Fosphenytoin: pharmacokinetics and tolerance of intramuscular loading doses. Epilepsia 2001; 42(2): 245–50

    Article  PubMed  CAS  Google Scholar 

  53. Lai CM, Moore P, Quon CY. Binding of fosphenytoin, phosphate ester prodrug of phenytoin, to human serum proteins and competitive binding with carbamazepine, diazepam, phenobarbital, phenylbutazone, phenytoin, valproic acid or warfarin. Res Commun Mol Pathol Pharmacol 1995; 88(1): 51–61

    PubMed  CAS  Google Scholar 

  54. Browne TR, Kugler AR, Eldon MA. Pharmacology and pharmacokinetics of fosphenytoin. Neurology 1996 Jun; 46 Suppl. 1: S3–7

    Article  PubMed  CAS  Google Scholar 

  55. Eldon MA, Loewen GR, Voightman RE, et al. Safety, tolerance, and pharmacokinetics of intravenous fosphenytoin [abstract]. Clin Pharmacol Ther 1993 Feb; 53(2): 212

    Google Scholar 

  56. Lunde PKM, Rane A, Yaffe SJ, et al. Plasma protein binding of diphenylhydantoin in man: interaction with other drugs and the effects of temperature and plasma dilution. Clin Pharmacol Ther 1970; 11(6): 846–55

    PubMed  CAS  Google Scholar 

  57. Perucca E. Plasma protein binding of phenytoin in health and disease: relevance to therapeutic drug monitoring. Ther Drug Monit 1980; 2(4): 331–44

    PubMed  CAS  Google Scholar 

  58. Quon CY, Stampfli HF. In vitro hydrolysis of ACC-9653 (phosphate ester prodrug of phenytoin) by human, dog, rat blood and tissues [abstract]. Pharm Res 1986; 3 Suppl. 5: 134S

    Google Scholar 

  59. Dasgupta A, Warner BF, Datta P. Use of alkaline phosphatase to correct the underestimation of fosphenytoin concentration in serum measured by phenytoin immunoassays. Am J Clin Pathol 1999; 111: 557–62

    PubMed  CAS  Google Scholar 

  60. Riva R, Albani F, Contin M, et al. Pharmacokinetic interactions between antiepileptic drugs: clinical considerations. Clin Pharmacokinet 1996 Dec; 31(6): 470–93

    Article  PubMed  CAS  Google Scholar 

  61. Kugler AR, Knapp LE, Eldon MA. Attainment of therapeutic phenytoin concentrations following administration of loading doses of fosphenytoin: a meta analysis [abstract]. Neurology 1996 Feb; 46 Suppl. 2: A176

    Google Scholar 

  62. Kugler AR, Knapp LE, Eldon MA. Intravenous administration of fosphenytoin: pharmacokinetics and dosing considerations in special populations [abstract]. Epilepsia 1996; 37 Suppl. 5: 156

    Google Scholar 

  63. Bach B, Hansen JM, Kampmann JP, et al. Disposition of antipyrine and phenytoin correlated with age and liver volume in man. Clin Pharmacokinet 1981 Sep/Oct; 6(5): 389–96

    Article  PubMed  CAS  Google Scholar 

  64. Bauer LA, Blouin RA. Age and phenytoin kinetics in adult epileptics. Clin Pharmacol Ther 1982 Mar; 31(3): 301–4

    Article  PubMed  CAS  Google Scholar 

  65. Hatzopoulos FK, Carlos MA, Fischer JH. Safety and pharmacokinetics of intramuscular fosphenytoin in neonates [abstract]. Pediatr Res 1998 Apr; 43(4): 60A

    Article  Google Scholar 

  66. Takeoka M, Krishnamoorthy KS, Soman TB, et al. Fosphenytoin in infants. J Child Neurol 1998 Nov; 13(11): 537–40

    Article  PubMed  CAS  Google Scholar 

  67. Loughnan PM, Greenwald A, Purton WW, et al. Pharmacokinetic observations of phenytoin disposition in the newborn and young infant. Arch Dis Child 1977; 52: 302–9

    Article  PubMed  CAS  Google Scholar 

  68. Blain PG, Mucklow JC, Bacon CJ, et al. Pharmacokinetics of phenytoin in children. Br J Clin Pharmacol 1981; 12: 659–61

    Article  PubMed  CAS  Google Scholar 

  69. Whelan HT, Hendeles L, Haberkern CM, et al. High intravenous phenytoin dosage requirement in a newborn infant. Neurology 1983 Jan; 33: 106–8

    Article  PubMed  CAS  Google Scholar 

  70. Leff RD, Fischer LJ, Roberts RJ. Phenytoin metabolism in infants following intravenous and oral administration. Dev Pharmacol Ther 1986; 9: 217–23

    PubMed  CAS  Google Scholar 

  71. Blaschke TF, Meffin PJ, Melmon KL, et al. Influence of acute viral hepatitis on phenytoin kinetics and protein binding. Clin Pharmacol Ther 1975; 17(6): 685–91

    PubMed  CAS  Google Scholar 

  72. Liponi DF, Winter ME, Tozer TN. Renal function and therapeutic concentrations of phenytoin. Neurology 1984 Mar; 34: 395–7

    Article  PubMed  CAS  Google Scholar 

  73. Patterson M, Heazelwood R, Smithurst B, et al. Plasma protein binding of phenytoin in the aged: in vivo studies. Br J Clin Pharmacol 1982; 13: 423–5

    Article  PubMed  CAS  Google Scholar 

  74. McClain CJ, Bernhard H, Ott LG, et al. Mechanisms and implications of hypoalbuminemia in head-injured patients. J Neurosurg 1988 Sep; 69: 386–92

    Article  PubMed  CAS  Google Scholar 

  75. Nation RL, Evans AM, Milne RW. Pharmacokinetic drug interactions with phenytoin (Pt I). Clin Pharmacokinet 1990; 18(1): 37–60

    Article  PubMed  CAS  Google Scholar 

  76. Lowenstein DH, Alldredge BK. Status epilepticus at an urban public hospital in the 1980s. Neurology 1993 Mar; 43: 483–8

    Article  PubMed  CAS  Google Scholar 

  77. Towne AR, Pellock JM, Ko D, et al. Determinants of mortality in status epilepticus. Epilepsia 1994; 35(1): 27–34

    Article  PubMed  CAS  Google Scholar 

  78. Mazarati AM, Baldwin RA, Sankar R, et al. Time-dependent decrease in the effectiveness of antiepileptic drugs during the course of self-sustaining status epilepticus. Brain Res 1998; 814: 179–85

    Article  PubMed  CAS  Google Scholar 

  79. Treiman DM, Meyers PD, Walton NY, et al. A comparison of four treatments for generalized convulsive status epilepticus. N Engl J Med 1998 Sep 12; 339(12): 792–8

    Article  PubMed  CAS  Google Scholar 

  80. Leppik IE, Derivan AT, Homan RW, et al. Double-blind study of lorazepam and diazepam in status epilepticus. JAMA 1983 Mar 18; 249(11): 1452–4

    Article  PubMed  CAS  Google Scholar 

  81. Alldredge BK, Wall DB, Ferriero DM. Effect of prehospital treatment on the outcome of status epilepticus in children. Pediatr Neurol 1995; 12(3): 213–6

    Article  PubMed  CAS  Google Scholar 

  82. Bell DS. Dangers of treatment of status epilepticus with diazepam. BMJ 1969 Jan 18; 1: 159–61

    Article  PubMed  CAS  Google Scholar 

  83. Bleck TP. Management approaches to prolonged seizures and status epilepticus. Epilepsia 1999; 40 Suppl. 1: S59–63

    Article  PubMed  Google Scholar 

  84. Bebin EM. Additional modalities for treating acute seizures in children: overview. J Child Neurol 1998 Oct; 13 Suppl. 1: S23–6

    Article  PubMed  Google Scholar 

  85. Deutschman CS, Haines SJ. Anticonvulsant prophylaxis in neurological surgery. Neurosurgery 1985 Sep; 17(3): 510–7

    Article  PubMed  CAS  Google Scholar 

  86. Temkin NR. Antiepileptogenesis and seizure prevention trials with antiepileptic drugs: meta-analysis of controlled trials. Epilepsia 2001; 42(4): 515–24

    Article  PubMed  CAS  Google Scholar 

  87. Beenen LFM, Lindeboom J, Trenite DGA, et al. Comparative double-blind trial of phenytoin and sodium valproate as anticonvulsant prophylaxis after craniotomy: efficacy, tolerability, and cognitive effects. J Neurol Neurosurg Psychiatry 1999 Oct; 67(4): 474–80

    Article  PubMed  CAS  Google Scholar 

  88. Temkin NR, Dikmen SS, Anderson GD, et al. Valproate therapy for prevention of posttraumatic seizures: a randomized trial. J Neurosurg 1999 Oct; 91: 593–600

    Article  PubMed  CAS  Google Scholar 

  89. Temkin NR, Dikmen SS, Wilensky AJ, et al. A randomized, double-blind study of phenytoin for the prevention of post-traumatic seizures. N Engl J Med. 1990 Aug 23; 323(8): 497–502

    Article  PubMed  CAS  Google Scholar 

  90. DeToledo JC, Ramsay RE. Fosphenytoin and phenytoin in patients with status epilepticus: improved tolerability versus increased costs. Drug Saf 2000 Jun; 22(6): 459–66

    Article  PubMed  CAS  Google Scholar 

  91. Medical Economics Company. 2001 drug topics redbook. Montvale (NJ): Medical Economics Co Inc, 2001

  92. Marchetti A, Mager R, Fischer J, et al. A pharmacoeconomic evaluation of intravenous fosphenytoin (Cerebyx®) versus intravenous phenytoin (Dilantin®) in hospital emergency departments. Clin Ther 1996; 18(5): 953–66

    Article  PubMed  CAS  Google Scholar 

  93. Johnson NE, Doyle JJ. A stepwise approach to performing a preliminary pharmacoeconomic analysis: focus on fosphenytoin. P&T 1996 Nov; 21(11): 611–28

    Google Scholar 

  94. Armstrong EP, Sauer KA, Downey MJ. Phenytoin and fosphenytoin: a model of cost and clinical outcomes. Pharmacotherapy 1999; 19(7): 844–53

    Article  PubMed  CAS  Google Scholar 

  95. Touchette DR, Rhoney DH. Cost-minimization analysis of phenytoin and fosphenytoin in the emergency department. Pharmacotherapy 2000; 20(8): 908–16

    Article  PubMed  CAS  Google Scholar 

  96. Graves N. Pharmacoeconomic considerations in treatment options for acute seizures. J Child Neurol 1998 Oct; 13 Suppl. 1: S27–9

    Article  PubMed  Google Scholar 

  97. Holliday SM, Benfield P, Plosker GL. Fosphenytoin: pharmacoeconomic implications of therapy. Pharmacoeconomics 1998 Dec; 14(6): 685–90

    Article  PubMed  CAS  Google Scholar 

  98. Salem RB, Wilder BJ, Yost RL, et al. Rapid infusion of phenytoin sodium loading doses. Am J Hosp Pharm 1981 Mar; 38: 354–7

    PubMed  CAS  Google Scholar 

  99. Goff DA, Spunt AL, Jung D, et al. Absorption characteristics of three phenytoin sodium products after administration of oral loading doses. Clin Pharm 1984 Nov; 3: 634–8

    PubMed  CAS  Google Scholar 

  100. Osborn HH, Zisfein J, Sparano R. Single-dose oral phenytoin loading. Ann Emerg Med 1987 Apr; 16(4): 407–12

    Article  PubMed  CAS  Google Scholar 

  101. Dalen JE, Evans GL, Banas JS, et al. The hemodynamic and respiratory effects of diazepam (Valium®). Anesthesiology 1969 Mar; 30(3): 259–63

    Article  PubMed  CAS  Google Scholar 

  102. Dundee JW, McGowan WAW, Lilburn JK, et al. Comparison of the actions of diazepam and lorazepam. Br J Anaesth 1979; 51: 439–46

    Article  PubMed  CAS  Google Scholar 

  103. Paulson OB, Gyory A, Hertz MM. Blood-brain barrier transfer and cerebral uptake of antiepileptic drugs. Clin Pharmacol Ther 1982 Oct; 43(4): 466–77

    Article  Google Scholar 

  104. Delgado-Escueta AV, Wasterlain C, Treiman DM, et al. Management of status epilepticus. N Engl J Med 1982 Jun 3; 306(22): 1337–40

    Article  PubMed  CAS  Google Scholar 

  105. Milligan N, Dhillon S, Richens A, et al. Rectal diazepam in the treatment of absence status: a pharmacodynamic study. J Neurol Neurosurg Psychiatry 1981; 44: 914–7

    Article  PubMed  CAS  Google Scholar 

  106. Lombroso CT. Intermittent home treatment of status and clusters of seizures. Epilepsia 1989; 30 Suppl. 2: S11–4

    Article  PubMed  Google Scholar 

  107. Kriel RL, Cloyd JC, Hadsall RS, et al. Home use of rectal diazepam for cluster and prolonged seizures: efficacy, adverse reactions, quality of life, and cost analysis. Pediatr Neurol 1991; 7(1): 13–7

    Article  PubMed  CAS  Google Scholar 

  108. Remy C, Jourdil N, Villemain D, et al. Intrarectal diazepam in epileptic adults. Epilepsia 1992; 33(2): 353–8

    Article  PubMed  CAS  Google Scholar 

  109. Cloyd JC, Lalonde RL, Beniak TE, et al. A single-blind, crossover comparison of the pharmacokinetics and cognitive effects of a new diazepam rectal gel with intravenous diazepam. Epilepsia 1998; 39(5): 520–6

    Article  PubMed  CAS  Google Scholar 

  110. Dreifuss FE, Rosman NP, Cloyd JC, et al. A comparison of rectal diazepam gel and placebo for active repetitive seizures. N Engl J Med 1998 Jun 25; 338(26): 1869–75

    Article  PubMed  CAS  Google Scholar 

  111. Walker JE, Homan RW, Vasko MR, et al. Lorazepam in status epilepticus. Ann Neurol 1979 Sep; 6(3): 207–13

    Article  PubMed  CAS  Google Scholar 

  112. Crawford TO, Mitchell WG, Snodgrass SR. Lorazepam in childhood status epilepticus and serial seizures: effectiveness and tachyphylaxis. Neurology 1987 Feb; 37: 190–5

    Article  PubMed  CAS  Google Scholar 

  113. Wilder BJ, Ramsay RE, Willmore LJ, et al. Efficacy of intravenous phenytoin in the treatment of status epilepticus: kinetics of central nervous system penetration. Ann Neurol 1977 Jun; 1(6): 511–8

    Article  PubMed  CAS  Google Scholar 

  114. Wilensky AJ, Friel RH, Comfort CP, et al. Kinetics of phenobarbital in normal subjects and epileptic patients. Eur J Clin Pharmacol 1982; 23: 87–92

    Article  PubMed  CAS  Google Scholar 

  115. Shaner DM, McCurdy SA, Herring MO, et al. Treatment of status epilepticus: a prospective comparison of diazepam and phenytoin versus phenobarbital and optional phenytoin. Neurology 1988 Feb; 38: 202–7

    Article  PubMed  CAS  Google Scholar 

  116. Giroud M, Gras D, Escousse A, et al. Use of injectable valproic acid in status epilepticus: a pilot study. Drug Invest 1993; 5(3): 154–9

    Article  Google Scholar 

  117. Hussein Z, Patterson KJ, Lamm JE, et al. Effect of infusion duration on valproate pharmacokinetics. Biopharm Drug Dispos 1993; 14: 389–99

    Article  PubMed  CAS  Google Scholar 

  118. Devinsky O, Leppik I, Willmore LJ, et al. Safety of intravenous valproate. Ann Neurol 1995 Oct; 38(4): 670–4

    Article  PubMed  CAS  Google Scholar 

  119. Gallo BV, Slater JD, Toledo C, et al. Pharmacokinetics and muscle histopathology of intramuscular valproate. Epilepsy Res 1997; 28: 11–5

    Article  PubMed  CAS  Google Scholar 

  120. Venkataraman V, Wheless JW. Safety of rapid intravenous infusion of valproate loading doses in epilepsy patients. Epilepsy Res 1999 Jun; 35(2): 147–53

    Article  PubMed  CAS  Google Scholar 

  121. Anderson GD, Lin Y, Temkin NR, et al. Incidence of intravenous site reactions in neurotrauma patients receiving valproate or phenytoin. Ann Pharmacother 2000 Jun; 34(6): 697–702

    Article  PubMed  CAS  Google Scholar 

  122. Sinha S, Naritoku DK. Intravenous valproate is well tolerated in unstable patients with status epilepticus. Neurology 2000 Sep; 55(5): 722–4

    Article  PubMed  CAS  Google Scholar 

  123. Limdi NA, Faught E. The safety of rapid valproic acid infusion. Epilepsia 2000 Oct; 41(10): 1342–5

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this manuscript. The authors thank Dr Alan Kugler of Pfizer, Inc., for providing the data for figures 3 and 4. James H. Fischer, Pharm.D., has received research grant support from Pfizer, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James H. Fischer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, J.H., Patel, T.V. & Fischer, P.A. Fosphenytoin. Clin Pharmacokinet 42, 33–58 (2003). https://doi.org/10.2165/00003088-200342010-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200342010-00002

Keywords

Navigation