Skip to main content
Log in

Pharmacokinetic Interactions with Rifampicin

Clinical Relevance

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

The antituberculosis drug rifampicin (rifampin) induces a number of drug-metabolising enzymes, having the greatest effects on the expression of cytochrome P450 (CYP) 3A4 in the liver and in the small intestine. In addition, rifampicin induces some drug transporter proteins, such as intestinal and hepatic P-glycoprotein. Full induction of drug-metabolising enzymes is reached in about 1 week after starting rifampicin treatment and the induction dissipates in roughly 2 weeks after discontinuing rifampicin.

Rifampicin has its greatest effects on the pharmacokinetics of orally administered drugs that are metabolised by CYP3A4 and/or are transported by P-glycoprotein. Thus, for example, oral midazolam, triazolam, simvastatin, verapamil and most dihydropyridine calcium channel antagonists are ineffective during rifampicin treatment. The plasma concentrations of several anti-infectives, such as the antimycotics itraconazole and ketoconazole and the HIV protease inhibitors indinavir, nelfinavir and saquinavir, are also greatly reduced by rifampicin. The use of rifampicin with these HIV protease inhibitors is contraindicated to avoid treatment failures. Rifampicin can cause acute transplant rejection in patients treated with immunosuppressive drugs, such as cyclosporin. In addition, rifampicin reduces the plasma concentrations of methadone, leading to symptoms of opioid withdrawal in most patients.

Rifampicin also induces CYP2C-mediated metabolism and thus reduces the plasma concentrations of, for example, the CYP2C9 substrate (S)-warfarin and the sulfonylurea antidiabetic drugs. In addition, rifampicin can reduce the plasma concentrations of drugs that are not metabolised (e.g. digoxin) by inducing drug transporters such as P-glycoprotein.

Thus, the effects of rifampicin on drug metabolism and transport are broad and of established clinical significance. Potential drug interactions should be considered whenever beginning or discontinuing rifampicin treatment. It is particularly important to remember that the concentrations of many of the other drugs used by the patient will increase when rifampicin is discontinued as the induction starts to wear off.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Table I
Table II
Table III
Fig. 4
Table IV
Table V
Fig. 5
Table VI
Table VII

Similar content being viewed by others

References

  1. Campbell EA, Korzheva N, Mustaev A, et al. Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell 2001; 104: 901–12

    Article  PubMed  CAS  Google Scholar 

  2. Douglas JG, McLeod MJ. Pharmacokinetic factors in the modern drug treatment of tuberculosis. Clin Pharmacokinet 1999; 37: 127–46

    Article  PubMed  CAS  Google Scholar 

  3. Turnidge J, Grayson ML. Optimum treatment of staphylococcal infections. Drugs 1993; 45: 353–66

    Article  PubMed  CAS  Google Scholar 

  4. Combalbert J, Fabre I, Fabre G, et al. Metabolism of cyclosporin A: IV. purification of the rifampicin-inducible human liver cytochrome P-450 (cyclosporin A oxidase) as a product of P450IIIA gene subfamily. Drug Metab Dispos 1989; 17: 197–207

    PubMed  CAS  Google Scholar 

  5. Kolars JC, Schmiedlin-Ren P, Schuetz JD, et al. Identification of rifampin-inducible P450IIIA4 (CYP3A4) in human small bowel enterocytes. J Clin Invest 1992; 90: 1871–8

    Article  PubMed  CAS  Google Scholar 

  6. Backman JT, Olkkola KT, Ojala M, et al. Concentrations and effects of oral midazolam are greatly reduced in patients treated with carbamazepine or phenytoin. Epilepsia 1996; 37: 253–7

    Article  PubMed  CAS  Google Scholar 

  7. Backman JT, Olkkola KT, Neuvonen PJ. Rifampin drastically reduces plasma concentrations and effects of oral midazolam. Clin Pharmacol Ther 1996; 59: 7–13

    Article  PubMed  CAS  Google Scholar 

  8. Backman JT, Kivistö KT, Olkkola KT, et al. The area under the plasma concentration-time curve for oral midazolam is 400-fold larger during treatment with itraconazole than with rifampicin. Eur J Clin Pharmacol 1998; 54: 53–8

    Article  PubMed  CAS  Google Scholar 

  9. Ucar M, Dahlqvist R, Granberg K, et al. Induction of the metabolism of simvastatin by carbamazepine [abstract]. Pharmacol Toxicol 2001; 89 Suppl. 1: 72

    Google Scholar 

  10. Kyrklund C, Backman JT, Kivistö RT, et al. Rifampin greatly reduces plasma simvastatin and simvastatin acid concentrations. Clin Pharmacol Ther 2000; 68: 592–7

    Article  PubMed  CAS  Google Scholar 

  11. Lehmann JM, McRee DD, Watson MA, et al. The human orphan nuclear receptor PXR is activated by compounds that regulate CYP3A4 gene expression and cause drug interactions. J Clin Invest 1998; 102: 1016–23

    Article  PubMed  CAS  Google Scholar 

  12. Goodwin B, Redinbo MR, Kliewer SA. Regulation of CYP3A gene transcription by the pregnane X receptor. Annu Rev Pharmacol Toxicol 2002; 42: 1–23

    Article  PubMed  CAS  Google Scholar 

  13. Schuetz EG, Beck WT, Schuetz JD. Modulators and substrates of P-glycoprotein and cytochrome P4503A coordinately upregulate these proteins in human colon carcinoma cells. Mol Pharmacol 1996; 49: 311–8

    PubMed  CAS  Google Scholar 

  14. Rae JM, Johnson MD, Lippman ME, et al. Rifampin is a selective, pleiotropic inducer of drug metabolism genes in human hepatocytes: studies with cDNA and oligonucleotide expression arrays. J Pharmacol Exp Ther 2001; 299: 849–57

    PubMed  CAS  Google Scholar 

  15. Sumida A, Fukuen S, Yamamoto I, et al. Quantitative analysis of constitutive and inducible CYPs mRNA expression in the HepG2 cell line using reverse transcription-competitive PCR. Biochem Biophys Res Commun 2000; 267: 756–60

    Article  PubMed  CAS  Google Scholar 

  16. Dalet-Beluche I, Boulenc X, Fabre G, et al. Purification of two cytochrome P450 isozymes related to Cyp2A and CYP3A gene families from monkey (baboon, Papio papio) liver microsomes: cross reactivity with human forms. Eur J Biochem 1992; 204: 641–8

    Article  PubMed  CAS  Google Scholar 

  17. Chang TRH, Yu L, Maurel P, et al. Enhanced cyclophosphamide and ifosfamide activation in primary human hepatocyte cultures: response to cytochrome P-450 inducers and autoinduction by oxazophosphorines. Cancer Res 1997; 57: 1946–54

    PubMed  CAS  Google Scholar 

  18. Morel F, Beaune PH, Ratanasavanh D, et al. Expression of cytochrome P-450 enzymes in cultured human hepatocytes. Eur J Biochem 1990; 191: 437–44

    Article  PubMed  CAS  Google Scholar 

  19. Gerbal-Chaloin S, Pascussi JM, Pichard-Garcia L, et al. Induction of CYP2C genes in human hepatocytes in primary culture. Drug Metab Dispos 2001; 29: 242–51

    PubMed  CAS  Google Scholar 

  20. Syvälahti E, Pihlajamäki R, Iisalo E. Effect of tuberculostatic agents on the response of serum growth hormone and immunoreactive insulin to intravenous tolbutamide, and on the half-life of tolbutamide. Int J Clin Pharmacol Biopharm 1976; 13: 83–9

    PubMed  Google Scholar 

  21. Feng HJ, Huang SL, Wang W, et al. The induction effect of rifampicin on activity of mephenytoin 4′-hydrolase related to Ml mutation of CYP2C19 and gene dose. Br J Clin Pharmacol 1998; 45: 27–9

    Article  PubMed  CAS  Google Scholar 

  22. Heimark LD, Gibaldi M, Trager WF, et al. The mechanism of the warfarin-rifampin drug interaction in humans. Clin Pharmacol Ther 1987; 42: 388–94

    Article  PubMed  CAS  Google Scholar 

  23. Gläser H, Drescher S, Burk O, et al. Induction of CYP2C8, CYP2C9, and CYP3A4 by rifampin in shedded human enterocytes [abstract]. Drug Metab Rev 2001; 33 Suppl. 1: 90

    Google Scholar 

  24. Branch RA, Adedoyin A, Frye RF, et al. In vivo modulation of CYP enzymes by quinidine and rifampin. Clin Pharmacol Ther 2000; 68: 401–11

    Article  PubMed  CAS  Google Scholar 

  25. Fuhr U, Rost RL. Simple and reliable CYP1A2 phenotyping by the paraxanthine/caffeine ratio in plasma and in saliva. Pharmacogenetics 1994; 4: 109–16

    Article  PubMed  CAS  Google Scholar 

  26. Caraco Y, Sheller J, Wood AJJ. Pharmacogenetic determinants of codeine induction by rifampin: the impact on codeine’s respiratory, psychomotor and miotic effects. J Pharmacol Exp Ther 1997; 281: 330–6

    PubMed  CAS  Google Scholar 

  27. Eichelbaum M, Mineshita S, Ohnhaus EE, et al. The influence of enzyme induction on polymorphic sparteine oxidation. Br J Clin Pharmacol 1986; 22: 49–53

    Article  PubMed  CAS  Google Scholar 

  28. Shaheen O, Biollaz J, Roshakji RP, et al. Influence of debrisoquin phenotype on the inducibility of propranolol metabolism. Clin Pharmacol Ther 1989; 45: 439–43

    Article  PubMed  CAS  Google Scholar 

  29. Dilger R, Hofmann U, Klotz U. Enzyme induction in the elderly: effect of rifampin on the pharmacokinetics and pharmacodynamics of propafenone. Clin Pharmacol Ther 2000; 67: 512–20

    Article  PubMed  CAS  Google Scholar 

  30. Doostdar H, Grant MH, Melvin WT, et al. The effects of inducing agents on cytochrome P450 and UDP-glucuronyltransferase activities in human HepG2 hepatoma cells. Biochem Pharmacol 1993; 46: 629–35

    Article  PubMed  CAS  Google Scholar 

  31. Kern A, Bader A, Pichlmayr R, et al. Drug metabolism in hepatocyte sandwich cultures of rats and humans. Biochem Pharmacol 1997; 54: 761–72

    Article  PubMed  CAS  Google Scholar 

  32. Prescott LF, Critchley JAJH, Balali-Mood M, et al. Effects of microsomal enzyme induction on paracetamol metabolism in man. Br J Clin Pharmacol 1981; 12: 149–53

    PubMed  CAS  Google Scholar 

  33. Fromm MF, Eckhardt R, Li S, et al. Loss of analgesic effect of morphine due to coadministration of rifampin. Pain 1997; 72: 261–7

    Article  PubMed  CAS  Google Scholar 

  34. Greiner B, Eichelbaum M, Fritz P, et al. The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin. J Clin Invest 1999; 104: 147–53

    Article  PubMed  CAS  Google Scholar 

  35. Fromm MF. P-glycoprotein: a defence mechanism limiting oral bioavailability and CNS accumulation of drugs. Int J Clin Pharmacol Ther 2000; 38: 69–74

    PubMed  CAS  Google Scholar 

  36. Rarlsson J, Ruo SM, Ziemniak J, et al. Transport of celiprolol across human intestinal epithelial (Caco-2) cells: mediation of secretion by multiple transporters including P-glycoprotein. Br J Pharmacol 1993; 110: 1009–16

    Article  Google Scholar 

  37. Saeki T, Ueda R, Tanigawara Y, et al. Human P-glycoprotein transports cyclosporin A and FR506. J Biol Chem 1993; 268: 6077–80

    PubMed  CAS  Google Scholar 

  38. Ueda R, Okamura N, Hirai M, et al. Human P-glycoprotein transports Cortisol, aldosterone, and dexamethasone, but not progesterone. J Biol Chem 1992; 267: 24248–52

    PubMed  CAS  Google Scholar 

  39. de Lannoy IA, Silverman M. The MDR1 gene product, P-glycoprotein, mediates the transport of the cardiac glycoside, digoxin. Biochem Biophys Res Commun 1992; 189: 551–7

    Article  PubMed  Google Scholar 

  40. Saeki T, Ueda R, Tanigawara Y, et al. P-glycoprotein-mediated transcellular transport of MDR-reversing agents. FEBS Lett 1993; 324: 99–102

    Article  PubMed  CAS  Google Scholar 

  41. Schuetz EG, Yasuda R, Arimori R, et al. Human MDR1 and mouse mdrla P-glycoprotein alter the cellular retention and disposition of erythromycin, but not of retinoic acid or benzo(a)pyrene. Arch Biochem Biophys 1998; 350: 340–7

    Article  PubMed  CAS  Google Scholar 

  42. Kim RB, Fromm MF, Wandel C, et al. The drug transporter P-glycoprotein limits oral absorption and brain entry of HIV-1 protease inhibitors. J Clin Invest 1998; 101: 289–94

    Article  PubMed  CAS  Google Scholar 

  43. Schinkel AH, Wagenaar E, Mol CA, et al. P-glycoprotein in the blood-brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J Clin Invest 1996; 97: 2517–24

    Article  PubMed  CAS  Google Scholar 

  44. Callaghan R, Riordan JR. Synthetic and natural opiates interact with P-glycoprotein in multidrug-resistant cells. J Biol Chem 1993; 268: 16059–64

    PubMed  CAS  Google Scholar 

  45. Fardel O, Lecureur V, Loyer P, et al. Rifampicin enhances anticancer drug accumulation and activity in multidrug-resistant cells. Biochem Pharmacol 1995; 49: 1255–60

    Article  PubMed  CAS  Google Scholar 

  46. Kim RB, Wandel C, Leake B, et al. Interrelationship between substrates and inhibitors of human CYP3A and P-glycoprotein. Pharm Res 1999; 16: 408–14

    Article  PubMed  CAS  Google Scholar 

  47. Geick A, Eichelbaum M, Burk O. Nuclear receptor response elements mediate induction of intestinal MDR1 by rifampin. J Biol Chem 2001; 276: 14581–7

    Article  PubMed  CAS  Google Scholar 

  48. Kliewer SA, Moore JT, Wade L, et al. An orphan nuclear receptor activated by pregnanes defines a novel steroid signaling pathway. Cell 1998; 92: 73–82

    Article  PubMed  CAS  Google Scholar 

  49. Westphal K, Weibrenner A, Zschieske M, et al. Induction of P-glycoprotein by rifampin increases intestinal secretion of talinolol in human beings: a new type of drug/drug interaction. Clin Pharmacol Ther 2000; 68: 345–55

    Article  PubMed  CAS  Google Scholar 

  50. Hamman MA, Bruce MA, Haehner-Daniels BD, et al. The effect of rifampin administration on the disposition of fexofenadine. Clin Pharmacol Ther 2001; 69: 114–21

    Article  PubMed  CAS  Google Scholar 

  51. Fromm MF, Kauffman HM, Fritz P, et al. The effect of rifampin treatment on intestinal expression of human MRP transporters. Am J Pathol 2000; 157: 1575–80

    Article  PubMed  CAS  Google Scholar 

  52. König J, Nies AT, Cui Y, et al. Conjugate export pumps of the multidrug resistance protein (MRP) family: localization, substrate specificity, and MRP2-mediated drug resistance. Biochim Biophys Acta 1999; 1461: 377–94

    Article  PubMed  Google Scholar 

  53. Staudinger J, Liu Y, Madan A, et al. Coordinate regulation of xenobiotic and bile acid homeostasis by pregnane X receptor. Drug Metab Dispos 2001; 29: 1467–72

    PubMed  CAS  Google Scholar 

  54. Reichel C, Gao B, van Montfoort J, et al. Localization and function of the organic anion-transporting polypeptide Oatp2 in rat liver. Gastroenterology 1999; 117: 688–95

    Article  PubMed  CAS  Google Scholar 

  55. Fromm MF, Busse D, Kroemer HK, et al. Differential induction of prehepatic and hepatic metabolism of verapamil by rifampin. Hepatology 1996; 24: 796–801

    Article  PubMed  CAS  Google Scholar 

  56. Kroemer HK, Gautier JC, Beaune P, et al. Identification of P450 enzymes involved in metabolism of verapamil in humans. Naunyn Schmiedebergs Arch Pharmacol 1993; 348: 332–7

    Article  PubMed  CAS  Google Scholar 

  57. Busse D, Cosme J, Beaune P, et al. Cytochromes of the P450 2C subfamily are the major enzymes involved in the O-demethylation of verapamil in humans. Naunyn Schmiedebergs Arch Pharmacol 1995; 353: 116–21

    Article  PubMed  CAS  Google Scholar 

  58. Tran JQ, Kovacs SJ, McIntosh TS, et al. Morning spot and 24-hour urinary 6β-hydroxycortisol to Cortisol ratios: intraindividual variability and correlation under basal conditions and conditions of CYP 3A4 induction. J Clin Pharmacol 1999; 39: 487–94

    PubMed  CAS  Google Scholar 

  59. Lee KH, Shin JG, Chong WS, et al. Time course of the changes in prednisolone pharmacokinetics after co-administration or discontinuation of rifampin. Eur J Clin Pharmacol 1993; 45: 287–9

    Article  PubMed  CAS  Google Scholar 

  60. Ndanusa BU, Mustapha A, Abdu-Aguye I. The effect of single dose of rifampicin on the pharmacokinetics of oral nifedipine. J Pharm Biomed Anal 1997; 15: 1571–5

    Article  PubMed  CAS  Google Scholar 

  61. Kivisto KT, Brookjans G, Fromm MF, et al. Expression of CYP3A4, CYP3A5 and CYP3A7 in human dudenal tissue. Br J Clin Pharmacol 1996; 42: 387–9

    Article  PubMed  CAS  Google Scholar 

  62. Zhang QY, Dunbar D, Ostrowska A, et al. Characterization of human small intestinal cytochromes P-450. Drug Metab Dispos 1999; 27: 804–9

    PubMed  CAS  Google Scholar 

  63. Glaeser H, Drescher S, van der Kuip H, et al. Shed human enterocytes as a tool for the study of expression and function of intestinal drug-metabolizing enzymes and transporters. Clin Pharmacol Ther 2002; 71: 131–40

    Article  PubMed  CAS  Google Scholar 

  64. Alionen H, Ziegler G, Klotz U. Midazolam kinetics. Clin Pharmacol Ther 1981; 30: 653–61

    Article  Google Scholar 

  65. Smith MT, Eadie MJ, Brophy TO. The pharmacokinetics of midazolam in man. Eur J Clin Pharmacol 1981; 19: 271–8

    Article  PubMed  Google Scholar 

  66. Holtbecker N, Fromm MF, Kroemer HK, et al. The nifedipinerifampin interaction: evidence for induction of gut wall metabolism. Drug Metab Dispos 1996; 24: 1121–3

    PubMed  CAS  Google Scholar 

  67. Smith RB, Kroboth PD, Vanderlugt JT, et al. Pharmacokinetics and pharmacodynamics of alprazolam after oral and IV administration. Psychopharmacology 1984; 84: 452–6

    Article  PubMed  CAS  Google Scholar 

  68. Schmider J, Brockmöller J, Arold G, et al. Simultaneous assessment of CYP3A4 and CYP1A2 activity in vivo with alprazolam and caffeine. Pharmacogenetics 1999; 9: 725–34

    Article  PubMed  CAS  Google Scholar 

  69. Foster DJ, Somogyi AA, Bochner F. Methadone N-demethylation in human liver microsomes: lack of stereoselectivity and involvement of CYP3A4. Br J Clin Pharmacol 1999; 47: 403–12

    Article  PubMed  CAS  Google Scholar 

  70. Kreek MJ, Garfield JW, Gutjahr CL, et al. Rifampin-induced methadone withdrawal. N Engl J Med 1976; 294: 1104–6

    Article  PubMed  CAS  Google Scholar 

  71. Bending MR, Skacel PO. Rifampicin and methadone withdrawal [letter]. Lancet 1977; I: 1211

    Article  Google Scholar 

  72. Holmes VF. Rifampin-induced methadone withdrawal in AIDS [letter]. J Clin Psychopharmacol 1990; 10: 443–4

    PubMed  CAS  Google Scholar 

  73. Raistrick D, Hay A, Wolff K. Methadone maintenance and tuberculosis treatment. BMJ 1996; 313: 925–6

    Article  PubMed  CAS  Google Scholar 

  74. Kharasch ED, Russell M, Mautz D, et al. The role of cytochrome P450 3A4 in alfentanil clearance. Anesthesiology 1997; 87: 36–50

    Article  PubMed  CAS  Google Scholar 

  75. Porras AG, Gertz B, Buschmeier A, et al. The effects of metabolic induction by rifampin (Rf) on the elimination of celecoxib (CXB) and the effect of CXB on CYP2D6 metabolism [abstract]. Clin Pharmacol Ther 2001; 69: P58

    Google Scholar 

  76. Manyike PT, Kharasch ED, Kalhorn TF, et al. Contribution of CYP2E1 and CYP3A to acetaminophen reactive metabolite formation. Clin Pharmacol Ther 2000; 67: 275–82

    Article  PubMed  CAS  Google Scholar 

  77. Mortimer O, Persson K, Ladona MG, et al. Polymorphic formation of morphine from codeine in poor and extensive metabolizers of dextromethorphan: relationship to the presence of immunoidentified cytochrome P-450IID1. Clin Pharmacol Ther 1990; 47: 27–35

    Article  PubMed  CAS  Google Scholar 

  78. Yue QY, Svensson JO, Alm C, et al. Codeine O-demethylation co-segregates with polymorphic debrisoquine hydroxylation. Br J Clin Pharmacol 1989; 28: 639–45

    Article  PubMed  CAS  Google Scholar 

  79. Yue QY, Hasselström J, Svensson JO, et al. Pharmacokinetics of codeine and its metabolites in Caucasian healthy volunteers: comparisons between extensive and poor hydroxylators of debrisoquine. Br J Clin Pharmacol 1991; 31: 635–42

    Article  PubMed  CAS  Google Scholar 

  80. Sindrup SH, Brøsen K, Bjerring P, et al. Codeine increases pain thresholds to copper vapor laser stimuli in extensive but not poor metabolizers of sparteine. Clin Pharmacol Ther 1990; 48: 686–93

    Article  PubMed  CAS  Google Scholar 

  81. Desmeules J, Gascon MP, Dayer P, et al. Impact of environmental and genetic factors on codeine analgesia. Eur J Clin Pharmacol 1991; 41: 23–6

    Article  PubMed  CAS  Google Scholar 

  82. Glare PA, Walsh TD. Clinical pharmacokinetics of morphine. Ther Drug Monit 1991; 13: 1–23

    Article  PubMed  CAS  Google Scholar 

  83. Pond SM, Kretschzmar KM. Effect of phenytoin on meperidine clearance and normeperidine formation. Clin Pharmacol Ther 1981; 30: 680–6

    Article  PubMed  CAS  Google Scholar 

  84. Tempelhoff R, Modica PA, Spitznagel Jr EL. Anticonvulsant therapy increases fentanyl requirements during anaesthesia for craniotomy. Can J Anaesth 1990; 37: 327–32

    Article  PubMed  CAS  Google Scholar 

  85. Stockley IH. Drug interactions. 5th ed. London: Pharmaceutical Press, 1999: 81

    Google Scholar 

  86. Goldstein JA, de Morais SM. Biochemistry and molecular biology of the human CYP2C subfamily. Pharmacogenetics 1994; 4: 285–99

    Article  PubMed  CAS  Google Scholar 

  87. Miners JO, Birkett DJ. Cytochrome P4502C9: an enzyme of major importance in human drug metabolism. Br J Clin Pharmacol 1998; 45: 525–38

    Article  PubMed  CAS  Google Scholar 

  88. Zand R, Nelson SD, Slattery JT, et al. Inhibition and induction of cytochrome P4502El-catalyzed oxidation by isoniazid in humans. Clin Pharmacol Ther 1993; 52: 142–9

    Article  Google Scholar 

  89. Wen X, Wang JS, Neuvonen PJ, et al. Isoniazid is a mechanism-based inhibitor of cytochrome P450 1A2, 2A6, 2C19 and 3A4 isoforms in human liver microsomes. Eur J Clin Pharmacol 2002; 57: 799–804

    Article  PubMed  Google Scholar 

  90. Kidd RS, Straugh AB, Meyer MC, et al. Pharmacokinetics of chlorpheniramine, phenytoin, glipizide and nifedipine in an individual homozygous for the CYP2C9*3 altele. Pharmacogenetics 1999; 9: 71–80

    Article  PubMed  CAS  Google Scholar 

  91. Kirchheiner J, Brockmöller J, Meineke I, et al. Impact of CYP2C9 amino acid polymorphisms on glyburide kinetics and on the insulin and glucose response in healthy volunteers. Clin Pharmacol Ther 2002; 71: 286–96

    Article  PubMed  CAS  Google Scholar 

  92. Langtry HD, Balfour JA. Glimepiride: a review of its use in the management of type 2 diabetes mellitus. Drugs 1998; 55: 563–84

    Article  PubMed  CAS  Google Scholar 

  93. Niemi M, Kivistö KT, Backman JT, et al. Effect of rifampicin on the pharmacokinetics and pharmacodynamics of glimepiride. Br J Clin Pharmacol 2000; 50: 591–5

    Article  PubMed  CAS  Google Scholar 

  94. Niemi M, Backman JT, Neuvonen M, et al. Effects of rifampin on the pharmacokinetics and pharmacodynamics of glyburide and glipizide. Clin Pharmacol Ther 2001; 69: 400–6

    Article  PubMed  CAS  Google Scholar 

  95. Surekha V, Peter JV, Jeyaseelan L, et al. Drug interaction: rifampicin and glibenclamide. Natl Med J India 1997; 10: 11–2

    PubMed  CAS  Google Scholar 

  96. Kihara Y, Otsuki M. Interaction of gliclazide and rifampicin [letter]. Diabetes Care 2000; 23: 1204–5

    Article  PubMed  CAS  Google Scholar 

  97. Niemi M, Backman JT, Neuvonen M, et al. Rifampin decreases the plasma concentrations and effects of repaglinide. Clin Pharmacol Ther 2000; 68: 495–500

    Article  PubMed  CAS  Google Scholar 

  98. Bidstrup TB, Bjørnsdottir I, Thomsen MS, et al. CYP2C8 and CYP3A4 are the principle enzymes involved in the in vitro biotransformation of the insulin secretagogue repaglinide [abstract]. Pharmacol Toxicol 2001; 89 Suppl. 1: 65

    Google Scholar 

  99. Kalbag JB, Walter YH, Nedelman JR, et al. Mealtime glucose regulation with nateglinide in healthy volunteers: comparison with repaglinide and placebo. Diabetes Care 2001; 24: 73–7

    Article  PubMed  CAS  Google Scholar 

  100. Dunn CJ, Faulds D. Nateglinide. Drugs 2000; 60: 607–15

    Article  PubMed  CAS  Google Scholar 

  101. Weaver ML, Orwig BA, Rodriguez LC, et al. Pharmacokinetics and metabolism of nateglinide in humans. Drug Metab Dispos 2001; 29: 415–21

    PubMed  CAS  Google Scholar 

  102. Dunn CJ, Peters DH. Metformin: a review of its pharmacological properties and therapeutic use in non-insulin-dependent diabetes mellitus. Drugs 1995; 49: 721–49

    Article  PubMed  CAS  Google Scholar 

  103. Mudaliar S, Henry RR. New oral therapies for type 2 diabetes mellitus: the glitazones or insulin sensitizers. Annu Rev Med 2001; 52: 239–57

    Article  PubMed  CAS  Google Scholar 

  104. Ono S, Hatanaka T, Miyazawa S, et al. Human liver microsomal diazepam metabolism using cDNA-expressed cytochrome P450s: role of CYP2B6, 2C19 and the 3A subfamily. Xenobiotica 1996; 26: 1155–66

    Article  PubMed  CAS  Google Scholar 

  105. Ochs HR, Greenblatt DJ, Roberts GM, et al. Diazepam interaction with antituberculosis drugs. Clin Pharmacol Ther 1981; 29: 671–8

    Article  PubMed  CAS  Google Scholar 

  106. Ohnhaus EE, Brockmeyer N, Dylewicz P, et al. The effect of antipyrine and rifampin on the metabolism of diazepam. Clin Pharmacol Ther 1987; 42: 148–56

    Article  PubMed  CAS  Google Scholar 

  107. Breimer DD, Zilly W, Richter E. Influence of rifampin on drug metabolism: differences between hexobarbital and antipyrine. Clin Pharmacol Ther 1977; 21: 470–81

    PubMed  CAS  Google Scholar 

  108. Smith DA, Chandler MHH, Shedlofsky SI, et al. Age-dependent stereoselective increase in the oral clearance of hexobarbitone isomers caused by rifampicin. Br J Clin Pharmcol 1991; 32: 735–9

    CAS  Google Scholar 

  109. Ebert U, Thong NQ, Oertel R, et al. Effects of rifampicin and cimetidine on pharmacokinetics and pharmacodynamics of lamotrigine in healthy subjects. Eur J Clin Pharmacol 2000; 56: 299–304

    Article  PubMed  CAS  Google Scholar 

  110. Kay L, Kampmann JP, Svendsen TL, et al. Influence of rifampicin and isoniazid on the kinetics of phenytoin. Br J Clin Pharmacol 1985; 20: 323–6

    Article  PubMed  CAS  Google Scholar 

  111. Valproate sodium injection (Depacon®) prescribing information. North Chicago (IL): Abbott Laboratories, 2000

  112. Kim YH, Cha IJ, Shim JC, et al. Effect of rifampin on the plasma concentration and the clinical effect of haloperidol concomitantly administered to schizophrenic patients. J Clin Psychopharmacol 1996; 16: 247–52

    Article  PubMed  CAS  Google Scholar 

  113. Lamberg TS, Kivisto KT, Neuvonen PJ. Concentrations and effects of buspirone are considerably reduced by rifampicin. Br J Clin Pharmacol 1998; 45: 381–5

    Article  PubMed  CAS  Google Scholar 

  114. Brockmeyer NH, Mertins L, Klimek K, et al. Comparative effects of rifampin and/or probenecid on the pharmacokinetics of temazepam and nitrazepam. Int J Clin Pharmacol Ther Toxicol 1990; 28: 387–93

    PubMed  CAS  Google Scholar 

  115. Villikka K, Kivistö KT, Backman JT, et al. Triazolam is ineffective in patients taking rifampin. Clin Pharmacol Ther 1997; 61: 8–14

    Article  PubMed  CAS  Google Scholar 

  116. Villikka R, Kivistö RT, Luurila H, et al. Rifampin reduces plasma concentrations and effects of zolpidem. Clin Pharmacol Ther 1997; 62: 629–34

    Article  PubMed  CAS  Google Scholar 

  117. Villikka R, Kivistö RT, Lamberg TS, et al. Concentrations and effects of zopiclone are greatly reduced by rifampicin. Br J Clin Pharmacol 1997; 43: 471–4

    Article  PubMed  CAS  Google Scholar 

  118. Locniskar A, Greenblatt DJ. Oxidative versus conjugative bio-transformation of temazepam. Biopharm Drug Dispos 1990; 11: 499–506

    Article  PubMed  CAS  Google Scholar 

  119. Greenblatt DJ. Clinical pharmacokinetics of oxazepam and lorazepam. Clin Pharmacokinet 1981; 6: 89–105

    Article  PubMed  CAS  Google Scholar 

  120. Greenblatt DJ, Schillings RT, Ryriakopoulos A, et al. Clinical pharmacokinetics of lorazepam: I. absorption and disposition of oral 14C-lorazepam. Clin Pharmacol Ther 1976; 20: 329–41

    PubMed  CAS  Google Scholar 

  121. Scott AR, Rhir ASM, Steele WH, et al. Oxazepam pharmacokinetics in patients with epilepsy treated long-term with phenyloin alone or in combination with phenobarbitone. Br J Clin Pharmacol 1983; 16: 441–4

    Article  PubMed  CAS  Google Scholar 

  122. Zaleplon (Sonata®) prescribing information. Philadelphia (PA): Wyeth Laboratories, 2001

  123. Pichard L, Gillet G, Bonfils C, et al. Oxidative metabolism of zolpidem by human liver cytochrome P450s. Drug Metab Dispos 1995; 23: 1253–62

    PubMed  CAS  Google Scholar 

  124. Becquemont L, Mouajjah S, Escaffre O, et al. Cytochrome P-450 3A4 and 2C8 are involved in zopiclone metabolism. Drug Metab Dispos 1999; 27: 1068–73

    PubMed  CAS  Google Scholar 

  125. Kivistö KT, Lamberg TS, Kantola T, et al. Plasma buspirone concentrations are greatly increased by erythromycin and itraconazole. Clin Pharmacol Ther 1997; 62: 348–54

    Article  PubMed  Google Scholar 

  126. Joos AAB, Frank UG, Kaschka WP. Pharmacokinetic interaction of clozapine and rifampicin in a forensic patient with an atypical mycobacterial infection [letter]. J Clin Psychopharmacol 1998; 18: 83–5

    Article  PubMed  CAS  Google Scholar 

  127. Markowitz JS, DeVane CL. Rifampin-induced selective serotonin reuptake inhibitor withdrawal syndrome in a patient treated with sertraline. J Clin Psychopharmacol 2000; 20: 109–10

    Article  PubMed  CAS  Google Scholar 

  128. Bebchuk JM, Stewart DE. Drug interaction between rifampin and nortriptyline: a case report. Int J Psychiatry Med 1991; 21: 183–7

    Article  PubMed  CAS  Google Scholar 

  129. Pihlsgård M, Eliasson E. Significant reduction of sertraline plasma levels by carbamazepine and phenytoin [letter]. Eur J Clin Pharmacol 2002; 57: 915–6

    Article  PubMed  CAS  Google Scholar 

  130. Odani A, Hashimoto Y, Otsuki Y, et al. Genetic polymorphisms of the CYP2C subfamily and its effect on the pharmacokinetics of phenytoin in Japanese patients with epilepsy. Clin Pharmacol Ther 1997; 62: 287–92

    Article  PubMed  CAS  Google Scholar 

  131. Zolezzi M. Antituberculosis agents and carbamazepine [letter]. Am J Psychiatry 2002; 159: 874

    Article  PubMed  Google Scholar 

  132. Fleenor ME, Harden JW, Curtis G. Interaction between carbamazepine and antituberculosis agents [letter]. Chest 1991; 99: 1554

    Article  PubMed  CAS  Google Scholar 

  133. Schrenzel J, Dayer P, Leemann T, et al. Influence of rifampin on fleroxacin pharmacokinetics. Antimicrob Agents Chemother 1993; 37: 2132–8

    Article  PubMed  CAS  Google Scholar 

  134. Humbert G, Brumpt I, Montay G, et al. Influence of rifampin on the pharmacokinetics of pefloxacin. Clin Pharmacol Ther 1991; 50: 682–7

    Article  PubMed  CAS  Google Scholar 

  135. Chandler MHH, Toler SM, Rapp RP, et al. Multiple-dose pharmacokinetics of concurrent oral ciprofloxacin and rifampin therapy in elderly patients. Antimicrob Agents Chemother 1990; 34: 442–7

    Article  PubMed  CAS  Google Scholar 

  136. Wallace Jr RJ, Brown BA. Reduced serum levels of clarithromycin in patients treated with multidrug regimens including rifampin or rifabutin for Mycobacterium avium-M. intracellulare infection. J Infect Dis 1995; 171: 747–50

    Article  PubMed  Google Scholar 

  137. Occhipinti DJ, Choi A, Deyo K, et al. Influence of rifampin and clarithromycin on dapsone (D) disposition and methemoglobin [abstract]. Clin Pharmacol Ther 1995; 57: 163

    Google Scholar 

  138. Garraffo R, Dellamonica P, Fournier JP, et al. The effect of rifampicin on the pharmacokinetics of doxycycline [letter]. Infection 1988; 16: 297–8

    Article  PubMed  CAS  Google Scholar 

  139. Djojosaputro M, Mustofa SS, Donatus IA, et al. The effects of doses and pre-treatment with rifampicin on the elimination kinetics of metronidazole [abstract]. Eur J Pharmacol 1990; 183: 1870–1

    Article  Google Scholar 

  140. Drusano GL, Townsend RJ, Walsh TJ, et al. Steady-state serum pharmacokinetics of novobiocin and rifampin alone and in combination. Antimicrob Agents Chemother 1986; 30: 42–5

    Article  PubMed  CAS  Google Scholar 

  141. Shaffer JL, Houston JB. The effect of rifampicin on sulphapyridine plasma concentrations following sulphasalazine administration [letter]. Br J Clin Pharmacol 1985; 19: 526–8

    Article  PubMed  CAS  Google Scholar 

  142. Emmerson AM, Grüneberg RN, Johnson ES. The pharmacokinetics in man of a combination of rifampicin and trimethoprim. J Antimicrob Chemother 1978; 4: 523–31

    Article  PubMed  CAS  Google Scholar 

  143. Ridtitid W, Wongnawa M, Mahatthanatrakul W, et al. Effect of rifampin on plasma concentrations of mefloquine in healthy volunteers. J Pharm Pharmacol 2000; 52: 1265–9

    Article  PubMed  CAS  Google Scholar 

  144. Wanwimolruk S, Kang W, Coville PF, et al. Marked enhancement by rifampicin and lack of effect of isoniazid on the elimination of quinine in man. Br J Clin Pharmacol 1995; 40: 87–91

    Article  PubMed  CAS  Google Scholar 

  145. Lazar JD, Wilner KD. Drug interactions with fluconazole. Rev Infect Dis 1990; 12 Suppl. 3: S327–33

    Article  PubMed  CAS  Google Scholar 

  146. Jaruratanasirikul S, Sriwiriyajan S. Effect of rifampicin on the pharmacokinetics of itraconazole in normal volunteers and AIDS patients. Eur J Clin Pharmacol 1998; 54: 155–8

    Article  PubMed  CAS  Google Scholar 

  147. Doble N, Shaw R, Rowland-Hill C, et al. Pharmacokinetic study of the interaction between rifampicin and ketoconazole. J Antimicrob Chemother 1988; 21: 633–5

    Article  PubMed  CAS  Google Scholar 

  148. Polk RE, Brophy DF, Israel DS, et al. Pharmacokinetic interaction between amprenavir and rifabutin or rifampin in healthy males. Antimicrob Agents Chemother 2001; 45: 502–8

    Article  PubMed  CAS  Google Scholar 

  149. Borin MT, Chambers JH, Carel BJ, et al. Pharmacokinetic study of the interaction between rifampin and delavirdine mesylate. Clin Pharmacol Ther 1997; 61: 544–53

    Article  PubMed  CAS  Google Scholar 

  150. Efavirenz (Sustiva®) prescribing information. Princeton (NJ): Bristol-Myers Squibb Company, 2002

  151. McCrea J, Wyss D, Stone J, et al. Pharmacokinetic interaction between indinavir and rifampin [abstract]. Clin Pharmacol Ther 1997; 61: 152

    Google Scholar 

  152. Nelfinavir mesylate (Viracept®) prescribing information. La Jolla (CA): Agouron Pharmaceuticals, 2001

  153. Nevirapine (Viramune®) prescribing information. Columbus (Ohio): Roxane Laboratories, 2000

  154. Ritonavir (Norvir®) prescribing information. North Chicago (IL): Abbott Laboratories, 2000

  155. Grub S, Bryson H, Goggin T, et al. The interaction of saquinavir (soft gelatin capsule) with ketoconazole, erythromycin and rifampicin: comparison of the effect in healthy volunteers and in HIV-infected patients. Eur J Clin Pharmacol 2001; 57: 115–21

    Article  PubMed  CAS  Google Scholar 

  156. Saquinavir mesylate (Invirase®) capsules prescribing information. Nutley (NJ): Roche Pharmaceuticals, 2000

  157. Gallicano KD, Sahai J, Shukla VK, et al. Induction of zidovudine glucuronidation and animation pathways by rifampicin in HIV-infected patients. Br J Clin Pharmacol 1999; 48: 168–79

    Article  PubMed  CAS  Google Scholar 

  158. Gharaibeh MN, Gillen LP, Osborne B, et al. Effect of multiple doses of rifampin on the [14C N-methyl] erythromycin breath test in healthy male volunteers. J Clin Pharmacol 1998; 38: 492–5

    PubMed  CAS  Google Scholar 

  159. Prober CG. Effect of rifampin on chloramphenicol levels [letter]. N Engl J Med 1985; 312: 788–9

    Article  PubMed  CAS  Google Scholar 

  160. Kelly HW, Couch RC, Davis RL, et al. Interaction of chloramphenicol and rifampin. J Pediatr 1988; 112: 817–20

    Article  PubMed  CAS  Google Scholar 

  161. Fleming CM, Branch RA, Wilkinson GR, et al. Human liver microsomal N-hydroxylation of dapsone by cytochrome P-4503A4. Mol Pharmacol 1992; 41: 975–80

    PubMed  CAS  Google Scholar 

  162. Krishna DR, Rao AV, Ramanakar TV, et al. Pharmacokinetic interaction between dapsone and rifampicin in leprosy patients. Drug Dev Ind Pharm 1986; 12: 443–59

    Article  CAS  Google Scholar 

  163. Venkatesan K. Clinical pharmacokinetic considerations in the treatment of patients with leprosy. Clin Pharmacokinet 1989: 16: 365–86

    Article  PubMed  CAS  Google Scholar 

  164. Horowitz HW, Jorde UP, Wormser GP. Drug interactions in use of dapsone for Pneumocystis carinii prophylaxis [letter]. Lancet 1991; 339: 747

    Article  Google Scholar 

  165. Sarma GR, Kailasam S, NairNGK, et al. Effect of prednisolone and rifampin on isoniazid metabolism in slow and rapid inactivators of isoniazid. Antimicrob Agents Chemother 1980; 18: 661–6

    Article  PubMed  CAS  Google Scholar 

  166. Sarma GP, Immanuel C, Kailasam S, et al. Rifampin-induced release of hydrazine from isoniazid: a possible cause of hepatitis during treatment of tuberculosis with regimens containing isoniazid and rifampin. Am Rev Respir Dis 1986; 133: 1072–5

    PubMed  CAS  Google Scholar 

  167. Steele MA, Burk RF, DesPrez RM. Toxic hepatitis with isoniazid and rifampin: a meta-analysis. Chest 1991; 99: 465–71

    Article  PubMed  CAS  Google Scholar 

  168. Engelhard D, Stutman HR, Marks MI. Interaction of ketoconazole with rifampin and isoniazid. N Engl J Med 1984; 311: 1681–3

    Article  PubMed  CAS  Google Scholar 

  169. Terbinafine hydrochloride (Lamisil®) prescribing information. Dorval (Canada): Novartis Pharmaceuticals, 2001

  170. Burman WJ, Jones BE. Treatment of HIV-related tuberculosis in the era of effective antiretroviral therapy. Am J Respir Crit Care Med 2001; 164: 7–12

    PubMed  CAS  Google Scholar 

  171. Burman WJ, Gallicano K, Peloquin C. Therapeutic implications of drug interactions in the treatment of human immunodeficiency virus-related tuberculosis. Clin Infect Dis 1999; 28: 419–30

    Article  PubMed  CAS  Google Scholar 

  172. Peters U, Hausamen TU, Grosse-Brockhoff F. The effects of antituberculosis drugs on the pharmacokinetics of digitoxin [in German]. Dtsch Med Wochenschr 1974; 99: 2381–6

    Article  PubMed  CAS  Google Scholar 

  173. Boman G, Eliasson K, Odar-Cederlöf I. Acute cardiac failure during treatment with digitoxin: an interaction with rifampicin [letter]. Br J Clin Pharmacol 1980; 10: 89–90

    Article  PubMed  CAS  Google Scholar 

  174. Poor DM, Self TH, Davis HL. Interaction of rifampin and digitoxin [letter]. Arch Intern Med 1983; 143: 599

    Article  PubMed  CAS  Google Scholar 

  175. Williamson KM, Patterson JH, McQueen RH, et al. Effects of erythromycin and rifampin on losartan pharmacokinetics in healthy volunteers. Clin Pharmacol Ther 1998; 63: 316–23

    Article  PubMed  CAS  Google Scholar 

  176. Aitio ML, Mansury L, Tala E, et al. The effect of enzyme induction on the metabolism of disopyramide in man. Br J Clin Pharmacol 1981; 11: 279–85

    Article  PubMed  CAS  Google Scholar 

  177. Reichel C, Skodra T, Nacke A, et al. The lignocaine metabolite (MEGX) liver function test and P-450 induction in humans. Br J Clin Pharmacol 1998; 46: 535–9

    Article  PubMed  CAS  Google Scholar 

  178. Pentikäinen PJ, Koivula IH, Hiltunen HA. Effect of rifampicin treatment on the kinetics of mexiletine. Eur J Clin Pharmcol 1982; 23: 261–6

    Article  Google Scholar 

  179. Dilger K, Greiner B, Fromm MF, et al. Consequences of rifampicin treatment on propafenone disposition in extensive and poor metabolizers of CYP2D6. Pharmacogenetics 1999; 9: 551–9

    Article  PubMed  CAS  Google Scholar 

  180. Twum-Barima Y, Carruthers SG. Quinidine-rifampin interaction. N Engl J Med 1981; 304: 1466–9

    Article  PubMed  CAS  Google Scholar 

  181. Damkier P, Hansen LL, Brøsen K. Rifampicin treatment greatly increases the apparent oral clearance of quinidine. Pharmacol Toxicol 1999; 85: 257–62

    Article  PubMed  CAS  Google Scholar 

  182. Rice TL, Patterson JH, Celestin C, et al. Influence of rifampin on tocainide pharmacokinetics in humans. Clin Pharm 1989; 8: 200–5

    PubMed  CAS  Google Scholar 

  183. Ohnhaus EE, Kampschulte J, Mönig H. Effect of propranolol and rifampicin on liver blood flow and phenprocoumon elimination [abstract]. Acta Pharmacol Toxicol 1986; 59 Suppl. 5: 92

    Google Scholar 

  184. O’Reilly RA. Interaction of sodium warfarin and rifampin. Ann Intern Med 1974; 81: 337–40

    PubMed  Google Scholar 

  185. O’Reilly RA. Interaction of chronic daily warfarin therapy and rifampin. Ann Intern Med 1975; 83: 506–8

    PubMed  Google Scholar 

  186. Kirch W, Rose I, Klingmann I, et al. Interaction of bisoprolol with cimetidine and rifampicin. Eur J Clin Pharmacol 1986; 31: 59–62

    Article  PubMed  CAS  Google Scholar 

  187. Bennett PN, John VA, Whitmarsh VB. Effect of rifampicin on metoprolol and antipyrine kinetics. Br J Clin Pharmacol 1982; 13: 387–91

    Article  PubMed  CAS  Google Scholar 

  188. Herman RJ, Nakamura K, Wilkinson GR, et al. Induction of propranolol metabolism by rifampicin. Br J Clin Pharmacol 1983; 16: 565–9

    Article  PubMed  CAS  Google Scholar 

  189. Kirch W, Milferstadt S, Halabi A, et al. Interaction of tertatolol with rifampicin and ranitidine pharmacokinetics and antihypertensive activity. Cardiovasc Drugs Ther 1990; 4: 487–91

    Article  PubMed  CAS  Google Scholar 

  190. Saima S, Furule K, Yoshimoto H, et al. The effects of rifampicin on the pharmacokinetics and pharmacodynamics of orally administered nilvadipine to healthy volunteers. Br J Clin Pharmacol 2002; 53: 203–6

    Article  PubMed  CAS  Google Scholar 

  191. Barbarash RA, Bauman JL, Fischer JH, et al. Near total reduction in verapamil bioavailability by rifampin: electrocardiographic correlates [abstract]. J Am Coll Cardiol 1988; 11 Suppl. A: 205A

    Google Scholar 

  192. Fromm MF, Dilger K, Busse D, et al. Gut wall metabolism of verapamil in older people: effects of rifampicin-mediated enzyme induction. Br J Clin Pharmacol 1998; 45: 247–55

    Article  PubMed  CAS  Google Scholar 

  193. Jokubaitis LA. Updated clinical safety experience with fluvastatin. Am J Cardiol 1994; 73: 18D–24D

    Article  PubMed  CAS  Google Scholar 

  194. Affrime MB, Lowenthal DT, Rufo M. Failure of rifampin to induce the metabolism of clonidine in normal volunteers. Drug Intell Clin Pharm 1981; 15: 964–6

    PubMed  CAS  Google Scholar 

  195. Frydman A. Pharmacokinetic profile of nicorandil in humans: an overview. J Cardiovasc Pharmacol 1992; 20 Suppl. 3: S34–44

    Article  PubMed  CAS  Google Scholar 

  196. Tada Y, Tsuda Y, Otsuda T, et al. Case report: nifedipinerifampicin interaction attenuates the effect on blood pressure in a patient with essential hypertension. Am J Med Sci 1992; 303: 25–7

    Article  PubMed  CAS  Google Scholar 

  197. Capewell S, Freestone S, Critchley JAJH, et al. Reduced felodipine bioavailability in patients taking anticonvulsants. Lancet 1988; II: 480–2

    Article  Google Scholar 

  198. Tartara A, Galimberti CA, Manni R, et al. Differential effects of valproic acid and enzyme-inducing anticonvulsants on nimodipine pharmacokinetics in epileptic patients. Br J Clin Pharmacol 1991; 32: 335–40

    Article  PubMed  CAS  Google Scholar 

  199. Michelucci R, Cipolla G, Passarelli D, et al. Reduced plasma nisoldipine concentrations in phenytoin-treated patients with epilepsy. Epilepsia 1996; 37: 1107–10

    Article  PubMed  CAS  Google Scholar 

  200. Kandiah D, Penny WJ, Fraser AG, et al. A possible drug interaction between rifampicin and enalapril. Eur J Clin Pharmacol 1988; 35: 431–2

    Article  PubMed  CAS  Google Scholar 

  201. Yasar Ü, Forslund-Bergengren C, Tybring G, et al. Pharmacokinetics of losartan and its metabolite E-3174 in relation to the CYP2C9 genotype. Clin Pharmacol Ther 2002; 71: 89–98

    Article  PubMed  CAS  Google Scholar 

  202. Prueksaritanont T, Gorham LM, Ma B, et al. In vitro metabolism of simvastatin in humans: identification of metabolizing enzymes and effect of the drug on hepatic P450s. Drug Metab Dispos 1997; 25: 1191–9

    PubMed  CAS  Google Scholar 

  203. Transon C, Leemann T, Vogt N, et al. In vivo inhibition profile of cytochrome P450TB (CYP2C9) by (±)-fluvastatin. Clin Pharmacol Ther 1995; 58: 412–7

    Article  PubMed  CAS  Google Scholar 

  204. Transon C, Leemann T, Dayer P. In vitro comparative inhibition profiles of major human drug metabolising cytochrome P450 isozymes (CYP2C9, CYP2D6 and CYP3A4) by HMG-CoA reductase inhibitors. Eur J Clin Pharmacol 1996; 50: 209–15

    Article  PubMed  CAS  Google Scholar 

  205. Sennwald G. Etude de l’influence de la rifampicine sur l’effet anticoagulant de l’acenocoumarol. Rev Med Suisse Romande 1974; 94: 945–54

    PubMed  CAS  Google Scholar 

  206. Hansen JM, Siersbæk-Nielsen K, Kristensen M, et al. Effect of diphenylhydantoin on the metabolism of dicoumarol in man. Acta Med Scand 1971; 189: 15–9

    Article  PubMed  CAS  Google Scholar 

  207. Boekhout-Mussert RJ, Bieger R, van Brummelen P, et al. Inhibition by rifampin of the anticoagulant effect of phenprocoumon. JAMA 1974; 229: 1903–4

    Article  PubMed  CAS  Google Scholar 

  208. Ohnhaus EE, Studer H. A link between liver microsomal enzyme activity and thyroid hormone metabolism in man. Br J Clin Pharmacol 1983; 15: 71–6

    Article  PubMed  CAS  Google Scholar 

  209. McAllister WAC, Thompson PJ, Al-Habet SM, et al. Rifampicin reduces effectiveness and biovailability of prednisolone. BMJ 1983; 286: 923–5

    Article  PubMed  CAS  Google Scholar 

  210. Löfdahl CG, Meilstrand T, Svedmyr N, et al. Increased metabolism of prednisolone and rifampicin after rifampicin treatment [abstract]. Am Rev Respir Dis 1984; 129: A201

    Google Scholar 

  211. Powell-Jackson PR, Gray BJ, Heaton RW, et al. Adverse effect of rifampicin administration on steroid-dependent asthma. Am Rev Respir Dis 1983; 128: 307–10

    PubMed  CAS  Google Scholar 

  212. Bergrem H, Refvem OK. Altered prednisolone pharmacokinetics in patients treated with rifampicin. Acta Med Scand 1983; 213: 339–43

    Article  PubMed  CAS  Google Scholar 

  213. Schulte HM, Mönig H, Benker G, et al. Pharmacokinetics of aldosterone in patients with Addison’s disease: effect of rifampicin treatment on glucocorticoid and mineralocorticoid metabolism. Clin Endocrinol 1987; 27: 655–62

    Article  CAS  Google Scholar 

  214. Joshi JV, Joshi UM, Sankolli GM, et al. A study of interaction of a low-dose combination oral contraceptive with antitubercular drugs. Contraception 1980; 21: 617–29

    Article  PubMed  CAS  Google Scholar 

  215. Bardith-Crovo P, Trapnell CB, Ette E, et al. The effects of rifampin and rifabutin on the pharmacokinetics and pharmacodynamics of a combination oral contraceptive. Clin Pharmacol Ther 1999; 65: 428–38

    Article  Google Scholar 

  216. Bammel A, van der Mee K, Ohnhaus EE, et al. Divergent effects of different enzyme-inducing agents on endogenous and exogenous testosterone. Eur J Clin Pharmacol 1992; 42: 641–4

    Article  PubMed  CAS  Google Scholar 

  217. Hebert MF, Roberts JP, Prueksaritanont T, et al. Bioavailability of cyclosporine with concomitant rifampin administration is markedly less than predicted by hepatic enzyme induction. Clin Pharmacol Ther 1992; 52: 453–7

    Article  PubMed  CAS  Google Scholar 

  218. Sirolimus (Rapamune®) prescribing information. Philadelphia (PA): Wyeth Laboratories, 2001

  219. Hebert MF, Fisher RM, Marsh CL, et al. Effects of rifampin on tacrolimus pharmacokinetics in healthy volunteers. J Clin Pharmacol 1999; 39: 91–6

    Article  PubMed  CAS  Google Scholar 

  220. Stjernholm MR, Katz FH. Effects of diphenylhydantoin, phenobarbital, and diazepam on the metabolism of methyl-prednisolone and its sodium succinate. J Clin Endocrinol Metab 1975; 41: 887–93

    Article  PubMed  CAS  Google Scholar 

  221. Haque N, Thrasher K, Werk Jr EE, et al. Studies on dexamethasone metabolism in man: effect of diphenylhydantoin. J Clin Endocrinol 1972; 34: 44–50

    Article  CAS  Google Scholar 

  222. Petereit LB, Meikle AW. Effectiveness of prednisolone during phenytoin therapy. Clin Pharmacol Ther 1977; 22: 913–6

    Google Scholar 

  223. Choi Y, Thrasher K, Werk Jr EE, et al. Effect of diphenylhydantoin on cortisol kinetics in humans. J Pharmacol Exp Ther 1971; 176: 27–34

    PubMed  CAS  Google Scholar 

  224. Maisey DN, Brown RC, Day JL. Rifampicin and cortisone replacement therapy [letter]. Lancet 1974; II: 896–7

    Article  Google Scholar 

  225. Langhoff E, Madsen S. Rapid metabolism of cyclosporin and prednisone in kidney transplant patients on tuberculostatic treatment [letter]. Lancet 1983; II: 1303

    Article  Google Scholar 

  226. Carrie F, Roblot P, Bouquet S, et al. Rifampin-induced nonresponsiveness of giant cell arteritis to prednisone treatment. Arch Intern Med 1994; 154: 1521–4

    Article  PubMed  CAS  Google Scholar 

  227. Lin FL. Rifampin-induced deterioration in steroid-dependent asthma [letter]. J Allergy Clin Immunol 1996; 98: 1125

    Article  PubMed  CAS  Google Scholar 

  228. Buffington GA, Dominguez JH, Piering WF, et al. Interaction of rifampin and glucocorticoids: adverse effect on renal allograft function. JAMA 1976; 236: 1958–60

    Article  PubMed  CAS  Google Scholar 

  229. Brodie MJ, Boobis AR, Gill M, et al. Does rifampicin increase serum levels of testosterone and oestradiol by inducing sex hormone binding globulin capacity? [letter]. Br J Clin Pharmacol 1981; 12: 431–2

    Article  PubMed  CAS  Google Scholar 

  230. Li AP, Hartman NR, Lu C, et al. Effects of cytochrome P450 inducers on 17β-ethinyloestradiol (EE2) conjugation by primary human hepatocytes. Br J Clin Pharmacol 1999; 48: 733–42

    Article  PubMed  CAS  Google Scholar 

  231. Modry DL, Stinson EB, Oyer PE, et al. Acute rejection and massive cyclosporine requirements in heart transplant recipients treated with rifampin. Transplantation 1985; 39: 313–4

    Article  PubMed  CAS  Google Scholar 

  232. Coward RA, Raferty AT, Brown CB. Cyclosporin and antituberculous therapy. Lancet 1985; I: 1342–3

    Article  Google Scholar 

  233. Burman WJ, Gallicano K, Peloquin C. Comparative pharmacokinetics and pharmacodynamics of the rifamycin antibacterials. Clin Pharmacokinet 2001; 40: 327–41

    Article  PubMed  CAS  Google Scholar 

  234. Furian V, Perello L, Jacquemin E, et al. Interactions between FK506 and rifampicin or erythromycin in pediatric liver recipients. Transplantation 1995; 59: 1217–8

    Google Scholar 

  235. Kiuchi T, Inomata Y, Uemoto S, et al. A hepatic graft tuberculosis transmitted from a living-related donor. Transplantation 1997; 63: 905–7

    Article  PubMed  CAS  Google Scholar 

  236. Chenhsu RY, Loong CC, Chou MH, et al. Renal allograft dysfunction associated with rifampin-tacrolimus interaction. Ann Pharmacother 2000; 34: 27–31

    Article  PubMed  CAS  Google Scholar 

  237. Tjia JF, Colbert J, Back DJ. Theophylline metabolism in human liver microsomes: inhibition studies. J Pharmacol Exp Ther 1996; 276: 912–7

    PubMed  CAS  Google Scholar 

  238. Boyce EG, Dukes GE, Rollins DE, et al. The effect of rifampin on theophylline kinetics [abstract]. Clin Pharmacol Ther 1985; 37: 183

    Google Scholar 

  239. Powell-Jackson PR, Jamieson AP, Gray BJ, et al. Effect of rifampicin administration on theophylline pharmacokinetics in humans. Am Rev Respir Dis 1985; 131: 939–40

    PubMed  CAS  Google Scholar 

  240. Gillum JG, Sesler JM, Bruzzese VL, et al. Induction of theophylline clearance by rifampin and rifabutin in healthy male volunteers. Antimicrob Agents Chemother 1996; 40: 1866–9

    PubMed  CAS  Google Scholar 

  241. Keller E, Schollmeyer P, Brandenstein U, et al. Increased nonrenai clearance of cimetidine during antituberculous therapy. Int J Clin Pharmacol Ther Toxicol 1984; 22: 307–11

    PubMed  CAS  Google Scholar 

  242. Kerbusch T, Jansen RLH, Matht RAA, et al. Modulation of the cytochrome P450-mediated metabolism of ifosfamide by ketoconazole and rifampin. Clin Pharmacol Ther 2001; 70: 132–41

    Article  PubMed  CAS  Google Scholar 

  243. Villikka K, Kivistö KT, Neuvonen PJ. The effect of rifampin on the pharmacokinetics of oral and intravenous ondansetron. Clin Pharmacol Ther 1999; 65: 377–81

    Article  PubMed  CAS  Google Scholar 

  244. Jokinen M, Olkkola KT, Ahonen J, et al. Effect of rifampin and tobacco smoking on the pharmacokinetics of ropivacaine. Clin Pharmacol Ther 2001; 70: 344–50

    PubMed  CAS  Google Scholar 

  245. Kivistö KT, Villikka K, Nyman L, et al. Tamoxifen and toremifene concentrations in plasma are greatly decreased by rifampin. Clin Pharmacol Ther 1998; 64: 648–54

    Article  PubMed  Google Scholar 

  246. Robson RA, Miners JO, Wing LMH, et al. Theophylline-rifampicin interaction: non-selective induction of theophylline metabolic pathways. Br J Clin Pharmacol 1984; 18: 445–8

    Article  PubMed  CAS  Google Scholar 

  247. Straughn AB, Henderson RP, Lieberman PL, et al. Effect of rifampin on theophylline disposition. Ther Drug Monit 1984; 6: 153–6

    Article  PubMed  CAS  Google Scholar 

  248. Hauser AR, Lee C, Teague RB, et al. The effect of rifampin on theophylline disposition [abstract]. Clin Pharmacol Ther 1983; 33: 254

    Google Scholar 

  249. Cvetkovic M, Leake B, Fromm MF, et al. OATP and P-glycoprotein transporters mediate the cellular uptake and excretion of fexofenadine. Drug Metab Dispos 1999; 27: 866–71

    PubMed  CAS  Google Scholar 

  250. Kivistö KT, Kroemer HK, Eichelbaum M. The role of human cytochrome P450 enzymes in the metabolism of anticancer agents: implications for drug interactions. Br J Clin Pharmacol 1995; 40: 523–30

    Article  PubMed  Google Scholar 

  251. Dresser GK, Spence JD, Bailey DG. Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition. Clin Pharmacokinet 2000; 38: 41–57

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Helsinki University Central Hospital Research Fund (MN, JTB, PJN), the Robert Bosch Foundation (MFF, KTK) and the Alexander von Humboldt Foundation (MN). The authors have identified no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kari T. Kivistö.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niemi, M., Backman, J.T., Fromm, M.F. et al. Pharmacokinetic Interactions with Rifampicin. Clin Pharmacokinet 42, 819–850 (2003). https://doi.org/10.2165/00003088-200342090-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200342090-00003

Keywords

Navigation