Skip to main content
Log in

Factors Affecting the Clinical Development of Cytochrome P450 3A Substrates

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

The objective of this review is to evaluate the risks associated with the discovery and development of cytochrome P450 (CYP) 3A substrates.

CYP3A is the most abundant P450 enzyme in human liver and is highly expressed in the intestinal tract. The enzyme contributes substantially to metabolism of approximately 50% of currently marketed drugs that undergo oxidative metabolism. As a result, drug-drug interactions involving inhibitors of CYP3A-mediated metabolism can be of great clinical consequence.

It is the position of the authors that, because of the factors responsible for the broad substrate specificity of CYP3A, discovery and development of compounds across a large and broad portfolio that are completely devoid of CYP3A metabolism is not feasible. Thus, it is important that scientifically valid approaches to the discovery and development of compounds metabolised by CYP3A be realised. The clinical relevance of CYP3A metabolism is dependent on a multitude of factors that include the degree of intestinal and hepatic CYP3A-mediated first-pass extraction, the therapeutic index of the compound and the adverse event associated with inhibition of CYP3A metabolism. Thus, a better understanding of the disposition of a CYP3A-metabolised compound relative to the projected or observed therapeutic index (or safety margin) can provide ample evidence to support the continued development of a CYP3A substrate.

This document will highlight current practices as well as the benefits and risks associated with those practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II
Table III
Table IV
Table V
Table VI
Table VII

Similar content being viewed by others

References

  1. Pelkonen O, Maenpaa J, Taavitsainen P, et al. Inhibition and induction of human cytochrome P450 (CYP) enzymes. Xenobiotica 1998; 28: 1203–53

    Article  PubMed  CAS  Google Scholar 

  2. Lin JH, Lu AYH. Inhibition and induction of cytochrome P450 and the clinical implications. Clin Pharmacokinet 1998; 35: 361–90

    Article  PubMed  CAS  Google Scholar 

  3. Ito K, Iwatsubo T, Kanamitsu S, et al. Prediction of pharmacokinetic alterations caused by drug-drug interactions: metabolic interaction in the liver. Pharmacol Rev 1998; 50: 387–411

    PubMed  CAS  Google Scholar 

  4. Yuan R, Flockhart DA, Balian JD. Pharmacokinetic and pharmacodynamic consequences of metabolism-based drug interactions with alprazolam, midazolam, and triazolam. J Clin Pharmacol 1999; 39: 1109–25

    PubMed  CAS  Google Scholar 

  5. Guengerich FP. Cytochrome P450 3A4: regulation and role in drug metabolism. Annu Rev Pharmacol Toxicol 1999; 39: 1–17

    Article  PubMed  CAS  Google Scholar 

  6. de Wildt SN, Kearns GL, Leeder JS, et al. Cytochrome P450 3A: ontogeny and drug disposition. Clin Pharmacokinet 1999; 37: 485–505

    Article  PubMed  Google Scholar 

  7. Lin JH. Sense and nonsense in the prediction of drug-drug interactions. Curr Drug Metab 2000; 1: 305–31

    Article  PubMed  CAS  Google Scholar 

  8. Dresser GK, Spence JD, Bailey DG. Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition. Clin Pharmacokinet 2000; 38: 41–57

    Article  PubMed  CAS  Google Scholar 

  9. Lin JH, Lu AYH. Interindividual variability in inhibition and induction of cytochrome P450 enzymes. Annu Rev Pharmacol Toxicol 2001; 41: 535–67

    Article  PubMed  CAS  Google Scholar 

  10. Wrighton SA, Ring BJ. Predicting drug interactions and pharmacokinetic variability with in vitro methods: the olanzapine experience. Drug Metab Rev 1999; 31: 15–28

    Article  PubMed  CAS  Google Scholar 

  11. Benet LZ, Kroetz DL, Sheiner LB. Pharmacokinetics: the dynamics of drug absorption, distribution, and elimination. In: Hardman JH, Molinoff PB, Ruddon RW, Gilman AG, editors. Goodman & Gilman’s the pharmacological basis of therapeutics. 9th ed. New York: McGraw-Hill, 1996: 3–28

    Google Scholar 

  12. Rendic S, Di Carlo FJ. Human cytochrome P450 enzymes: a status report summarizing their reactions, substrates, inducers, and inhibitors. Drug Metab Rev 1997; 29 (1 & 2): 413–580

    Article  PubMed  CAS  Google Scholar 

  13. Grange JM, Winstanley PA, Davies PD. Clinically significant drug interactions with antituberculosis agents. Drug Saf 1994; 11: 242–51

    Article  PubMed  CAS  Google Scholar 

  14. Gillum JG, Israel DS, Polk RE. Pharmacokinetic drug interactions with antimicrobial agents. Clin Pharmacokinet 1993; 25: 450–82

    Article  PubMed  CAS  Google Scholar 

  15. Thummel KE, Wilkinson GR. In vitro and in vivo drug interactions involving human CYP3A. Annu Rev Pharmacol Toxicol 1998; 38: 389–430

    Article  PubMed  CAS  Google Scholar 

  16. Gibbs MA, Kunze KL, Howald WN, et al. Effect of inhibitor depletion on inhibitory potency: tight binding inhibition of CYP3A by clotrimazole. Drug Metab Dispos 1999; 27: 596–9

    PubMed  CAS  Google Scholar 

  17. Maurice M, Pichard L, Daujat M, et al. Effects of imidazole derivatives on cytochromes P450 from human hepatocytes in primary culture. FASEB J 1992; 6: 752–8

    PubMed  CAS  Google Scholar 

  18. Gibbs MA, Thummel KE, Shen DD, et al. Inhibition of CYP3A in human intestinal and liver microsomes: comparison of Ki values and impact of CYP3A5 expression. Drug Metab Dispos 1999; 27: 180–7

    PubMed  CAS  Google Scholar 

  19. Bourrie M, Meunier V, Berger Y, et al. Cytochrome P450 isoform inhibitors as a tool for the investigation of metabolic reactions catalyzed by human liver microsomes. J Pharmacol Exp Ther 1996; 277: 321–32

    PubMed  CAS  Google Scholar 

  20. Wrighton SA, Ring BJ. Inhibition of human CYP3A catalyzed l′-hydroxymidazolam formation by ketoconazole, nifedipine, erythromycin, cimetidine, and nizatidine. Pharm Res 1994; 11: 921–3

    Article  PubMed  CAS  Google Scholar 

  21. Lampen A, Christians U, Guengerich FP, et al. Metabolism of the immunosuppressant tacrolimus in the small intestine: cytochrome P450, drug interactions, and interindividual variability. Drug Metab Dispos 1995; 23: 1315–24

    PubMed  CAS  Google Scholar 

  22. von Moltke LL, Greenblatt DJ, Schmider J, et al. Midazolam hydroxylation by human liver microsomes in vitro: inhibition by fluoxetine, norfluoxetine, and by azole antifungal agents. J Clin Pharmacol 1996; 36: 783–91

    Google Scholar 

  23. Pichard L, Fabre I, Fabre G, et al. Cyclosporin A drug interactions: screening for inducers and inhibitors of cytochrome P-450 (cyclosporin A oxidase) in primary cultures of human hepatocytes and in liver microsomes. Drug Metab Dispos 1990; 18: 595–605

    PubMed  CAS  Google Scholar 

  24. Kunze KL, Wienkers LC, Thummel KE, et al. Warfarinfluconazole I: inhibition of the human cytochrome P450-dependent metabolism of warfarin by fluconazole: in vitro studies. Drug Metab Dispos 1996; 24: 414–21

    PubMed  CAS  Google Scholar 

  25. Kumar GN, Rodrigues AD, Buko AM, et al. Cytochrome P450-mediated metabolism of the HIV-1 protease inhibitor ritonavir (ABT-538) in human liver microsomes. J Pharmacol Exp Ther 1996; 277: 423–31

    PubMed  CAS  Google Scholar 

  26. Fitzsimmons ME, Collins JM. Selective biotransformation of the human immunodeficiency virus protease inhibitor saquinavir by human small-intestinal cytochrome P4503A4: a potential contribution to high first-pass metabolism. Drug Metab Dispos 1997; 25: 256–66

    PubMed  CAS  Google Scholar 

  27. Marre F, de Soussa G, Orloff AM, et al. In vitro interaction between cyclosporin A and macrolide antibiotics. Br J Clin Pharmacol 1993; 35: 447–78

    Article  PubMed  CAS  Google Scholar 

  28. Zhou X-J, Zhou-Pan X-R, Gauthier T, et al. Human liver microsomal cytochrome P450 3A isozymes mediated vindesine biotransformation: metabolic drug reactions. Biochem Pharmacol 1993; 45: 853–61

    Article  PubMed  CAS  Google Scholar 

  29. Ring BJ, Binkley SN, Roskos L, et al. Effect of fluoxetine, norfluoxetine, sertraline and desmethylsertraline on human CYP3A catalyzed 1′-hydroxy midazolam formation in vitro. J Pharmacol Exp Ther 1995; 275: 1131–5

    PubMed  CAS  Google Scholar 

  30. von Moltke LL, Greenblatt DJ, Cortreau-Bibbo MM, et al. Inhibitors of alprazolam metabolism in vitro: effect of serotonin-reuptake-inhibitor antidepressants, ketoconazole and quinidine. Br J Clin Pharmacol 1994; 38: 23–31

    Article  CAS  Google Scholar 

  31. Guengerich FP, Muller-Enoch D, Blair IA. Oxidation of quinidine by human liver cytochrome P-450. Mol Pharmacol 1986; 30: 287–95

    PubMed  CAS  Google Scholar 

  32. Ring BJ, Parli CJ, George MC, et al. In vitro metabolism of zatosetron interspecies comparison and role of CYP3A. Drug Metab Dispos 1994; 22: 352–7

    PubMed  CAS  Google Scholar 

  33. Gorski JC, Jones DR, Wrighton SA, et al. Characterization of dextromethorphan N-demethylation by human liver microsomes: contribution of the cytochrome P450 3A (CYP3A) subfamily. Biochem Pharmacol 1994; 48: 173–82

    Article  PubMed  CAS  Google Scholar 

  34. Combalbert J, Fabre I, Fabre G, et al. Metabolism of cyclosporin A: IV. purification and identification of the rifampicininducible human liver cytochrome P-450 (cyclosporin A oxidase) as a product of P450 IIIA gene subfamily. Drug Metab Dispos 1989; 17: 197–207

    PubMed  CAS  Google Scholar 

  35. Westphal JF. Macrolide-induced clinically relevant drug interactions with cytochrome P-450 (CYP) 3A4: an update focused on clarithromycin, azithromycin and dirithromycin. Br J Clin Pharmacol 2000; 50: 285–95

    Article  PubMed  CAS  Google Scholar 

  36. Pessayre D, Descatoire V, Konstantinova-Mitcheve M, et al. Self-induction by triacetyloleandomycin of its own transformation into a metabolite forming a stable 456 nm-absorbing complex with cytochrome P-450. Biochem Pharmacol 1981; 30: 553–8

    Article  PubMed  CAS  Google Scholar 

  37. Ma B, Prueksaritanont T, Lin JH. Drug interactions with calcium channel blockers: possible involvement of metaboliteintermediate complexation with CYP3A. Drug Metab Dispos 2000; 28: 125–30

    PubMed  CAS  Google Scholar 

  38. Edwards DJ, Bellevue III FH, Woster PM. Identification of 6′,7′-dihydroxybergamottin, a cytochrome P450 inhibitor, in grapefruit juice. Drug Metab Dispos 1996; 24: 1287–90

    PubMed  CAS  Google Scholar 

  39. Schmiedlin-Ren P, Edwards DJ, Fitzsimmons ME, et al. Mechanisms of enhanced oral availability of CYP3A4 substrates by grapefruit constituents: decreased enterocyte CYP3A4 concentration and mechanism-based inactivation by furanocoumarins. Drug Metab Dispos 1997; 25: 1228–33

    PubMed  CAS  Google Scholar 

  40. Guengerich FP. Mechanism-based inactivation of human liver microsomal cytochrome P-450 IIIA4 by gestodene. Chem Res Toxicol 1990; 3: 363–71

    Article  PubMed  CAS  Google Scholar 

  41. Guengerich FP. Oxidation of 17alpha-ethynylestradiol by human liver cytochrome P450. Mol Pharmacol 1988; 33: 500–8

    PubMed  CAS  Google Scholar 

  42. Kenworthy KE, Bloomer JC, Clarke SE, et al. CYP3A4 drug interactions: correlation of 10 in vitro probe substrates. Br J Clin Pharmacol 1999; 48: 716–27

    Article  PubMed  CAS  Google Scholar 

  43. Hosea NA, Miller GP, Guengerich FP. Elucidation of distinct ligand binding sites for cytochrome P450 3A4. Biochemistry 2000; 39: 5929–39

    Article  PubMed  CAS  Google Scholar 

  44. Wang RW, Newton DJ, Liu N, et al. Human cytochrome P450 3A4: in vitro drug-drug interaction patterns are substrate dependent. Drug Metab Dispos 2000; 28: 360–6

    PubMed  CAS  Google Scholar 

  45. Ekins S, Ring BJ, Binkley SN, et al. Autoactivation and activation of the cytochrome P450s. Int J Clin Pharmacol Ther 1998; 36: 642–51

    PubMed  CAS  Google Scholar 

  46. Hutzler JM, Tracy TS. Atypical kinetic profiles in drug metabolism reactions. Drug Metab Dispos 2002; 30: 355–62

    Article  PubMed  CAS  Google Scholar 

  47. Iyer KR, Sinz MW. Characterization of Phase 1 and Phase II hepatic drug metabolism activities in a panel of human liver preparations. Chem Biol Interact 1999; 118: 151–69

    Article  PubMed  CAS  Google Scholar 

  48. Lown LK, Castagnoli N. Metabolic changes of drug and related compounds. In: Doerge RF, editor. Wilson and Gisvold’s textbook of organic medicinal and pharmaceutical chemistry. Philadelphia (PA): Lippincott: 1982, 98–9

    Google Scholar 

  49. Shimada T, Yamazaki H, Mimura M, et al. Interindividual variations in human liver cytochrome P450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther 1994; 270: 414–23

    PubMed  CAS  Google Scholar 

  50. Bertilsson L, Dahl ML, Dalen P, et al. Molecular genetics of CYP2D6: clinical relevance with focus on psychotropic drugs. Br J Clin Pharmacol 2002; 53: 111–22

    Article  PubMed  CAS  Google Scholar 

  51. Wrighton SA, Brian WR, Sari MA, et al. Studies on the expression and metabolic capabilities of human liver cytochrome P450IIIA5 (HLp3). Mol Pharmacol 1990; 38: 207–13

    PubMed  CAS  Google Scholar 

  52. Aoyama T, Yamano S, Waxman DJ, et al. Cytochrome P-450 hPCN3, a novel cytochrome P-450IIIA gene product that is differentially expressed in adult human liver. cDNA and deduced amino acid sequence and distinct specificities of cDNA-expressed hPCN1 and hPCN3 for the metabolism of steroid hormones and cyclosporine. J Biol Chem 1989; 264: 10388–95

    PubMed  CAS  Google Scholar 

  53. Paine MF, Khalighi M, Fisher JM, et al. Characterization of inter- and intra-intestinal differences in human CYP3A-depen-dent metabolism. J Pharmacol Exp Ther 1997; 283: 1552–62

    PubMed  CAS  Google Scholar 

  54. McKinnon RA, Burgess WM, Hall PM, et al. Characterization of CYP3A gene subfamily expression in human gastrointestinal tissues. Gut 1995; 36: 259–67

    Article  PubMed  CAS  Google Scholar 

  55. Kolars JC, Lown KS, Schmiedlin-Ren P, et al. CYP3A gene expression in human gut epithelium. Pharmacogenetics 1994; 4: 247–59

    Article  PubMed  CAS  Google Scholar 

  56. Schuetz EG, Schuetz JD, Grogan WM, et al. Expression of cytochrome P450 3A in amphibian, rat and human kidney. Arch Biochem Biophys 1992; 294: 206–14

    Article  PubMed  CAS  Google Scholar 

  57. Haehner BD, Gorski JC, Vandenbranden M, et al. Bimodal distribution of renal cytochrome P450 3A activity in humans. Mol Pharmacol 1996; 50: 52–9

    PubMed  CAS  Google Scholar 

  58. Schuetz JD, Beach DL, Guzelian PS. Selective expression of cytochrome P450 CYP3A mRNAs in embryonic and adult human liver. Pharmacogenetics 1994; 4: 11–20

    Article  PubMed  CAS  Google Scholar 

  59. Thummel KE, Kunze KL, Shen DD. Enzyme-catalyzed processes of first-pass hepatic and intestinal drug extraction. Advanced Drug Delivery Reviews 1997; 27: 99–127

    Article  PubMed  CAS  Google Scholar 

  60. Zhang Q-Y, Dunbar D, Ostrowska A, et al. Characterization of human small intestinal cytochromes P-450. Drug Metab Dispos 1999; 27: 804–9

    PubMed  CAS  Google Scholar 

  61. Sata F, Sapone A, Elizondo G, et al. CYP3A4 allelic variants with amino acid substitutions in exons 7 and 12: evidence for an allelic variant with altered catalytic activity. Clin Pharmacol Ther 2000; 67: 48–56

    Article  PubMed  CAS  Google Scholar 

  62. Wandel C, Witte JS, Hall JM, et al. CYP3A activity in African American and European American men: population differences and functional effect of the CYP3A4*lB5′-promoter region polymorphism. Clin Pharmacol Ther 2000; 68: 82–91

    Article  PubMed  CAS  Google Scholar 

  63. Kuehl P, Zhang J, Lin Y, et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet 2001; 27: 383–91

    Article  PubMed  CAS  Google Scholar 

  64. Domanski TL, Finta C, Halpert JR, et al. cDNA cloning and initial characterization of CYP3A43, a novel human cytochrome P450. Mol Pharmacol 2001; 59: 386–92

    PubMed  CAS  Google Scholar 

  65. Thummel KE, Shen DD, Podoll TD, et al. Use of midazolam as a human cytochrome P450 3A probe: II. characterization of inter- and intra-individual hepatic P4503A variability after liver transplantation. J Pharmacol Exp Ther 1994; 271: 557–66

    PubMed  CAS  Google Scholar 

  66. Chauret N, Gauthier A, Martin J, et al. In vitro comparison of cytochrome P450-mediated metabolic activities in human, dog, cat and horse. Drug Metab Dispos 1997; 25: 1130–5

    PubMed  CAS  Google Scholar 

  67. Sharer JE, Shipley LA, Vandenbranden MR, et al. Comparisons of phase I and phase II in vitro hepatic enzyme activities of human dog, rhesus monkey, and cynomolgus monkey. Drug Metab Dispos 1995; 23: 1231–41

    PubMed  CAS  Google Scholar 

  68. Stevens JC, Shipley LA, Cashman JR, et al. Comparison of human and rhesus monkey in vitro Phase I and Phase II hepatic drug metabolism activities. Drug Metab Dispos 1993; 32: 753–60

    Google Scholar 

  69. Pearce RE, Mclntyre CJ, Madan A, et al. Effects of freezing, thawing and storing human liver microsomes on cytochrome P450 activity. Arch Biochem Miophys 1996; 331: 145–69

    Article  CAS  Google Scholar 

  70. Yamazaki H, Inoui K, Turvy CG, et al. Effects of freezing, thawing and storing human liver samples on the microsomal contents and activities of cytochrome P450 enzymes. Drug Metab Dispos 1997; 25: 168–74

    PubMed  CAS  Google Scholar 

  71. Lown KS, Kolars JC, Thummel KE, et al. Interpatient heterogeneity in expression of CYP3A4 and CYP3A5 in small bowel: lack of prediction by the erythromycin breath test. Drug Metab Dispos 1994; 22: 947–55

    PubMed  CAS  Google Scholar 

  72. Kronbach T, Mathys D, Umeno M, et al. Oxidation of midazolam and triazolam by human liver cytochrome P450IIIA4. Mol Pharmacol 1989; 36: 89–96

    PubMed  CAS  Google Scholar 

  73. Hebert MF, Roberts JP, Prueksaritanont T, et al. Bioavailability of cyclosporine with concomitant rifampin administration is markedly less than predicted by hepatic enzyme induction. Clin Pharmacol Ther 1992; 52: 453–7

    Article  PubMed  CAS  Google Scholar 

  74. Gomez DY, Wacher VJ, Tomlanovich SJ, et al. The effects of ketoconazole on the intestinal metabolism and bioavailability of cyclosporine. Clin Pharmacol Ther 1995; 58: 15–9

    Article  PubMed  CAS  Google Scholar 

  75. Weber A, Jager R, Borner A, et al. Can grapefruit juice influence ethinylestradiol bioavailability? Contraception 1996; 53: 41–7

    Article  PubMed  CAS  Google Scholar 

  76. Edgar B, Regårdh CG, Johnsson G, et al. Felodipine kinetics in healthy men. Clin Pharmacol Ther 1985; 38: 205–11

    Article  PubMed  CAS  Google Scholar 

  77. Lown KS, Bailey DG, Fontana RJ, et al. Grapefruit juice increases felodipine oral availability in humans by decreasing intestinal CYP3A protein expression. J Clin Investig 1997; 99: 2545–53

    Article  PubMed  CAS  Google Scholar 

  78. Kupferschmidt HHT, Ha HR, Ziegler WH, et al. Interaction between grapefruit juice and midazolam in humans. Clin Pharmacol Ther 1995; 58: 20–8

    Article  PubMed  CAS  Google Scholar 

  79. Gorski JC, Jones DR, Haehner-Daniels BD, et al. The contribution of intestinal and hepatic CYP3A to the interaction between midazolam and clarithromycin. Clin Pharmacol Ther 1998; 64: 133–43

    Article  PubMed  CAS  Google Scholar 

  80. Tsunoda SM, Velez RL, von Moltke LL, et al. Differentiation of intestinal and hepatic cytochrome P450 3A activity with use of midazolam as an in vivo probe: effect of ketoconazole. Clin Pharmacol Ther 1999; 66: 461–71

    Article  PubMed  CAS  Google Scholar 

  81. Floren LC, Bekersky I, Benet LZ, et al. Tacrolimus oral bioavailability doubles with coadministration of ketoconazole. Clin Pharmacol Ther 1997; 62: 41–9

    Article  PubMed  CAS  Google Scholar 

  82. Clifford CP, Adams DA, Murray S, et al. The cardiac effects of terfenadine after inhibition of its metabolism by grapefruit juice. Eur J Clin Pharmacol 1997; 52: 311–5

    Article  PubMed  CAS  Google Scholar 

  83. Lalonde RL, Lessard D, Gaudreault J. Population pharmacokinetics of terfenadine. Pharm Res 1996; 13: 832–8

    Article  PubMed  CAS  Google Scholar 

  84. Miceli JJ, Smith M, Robarge L, et al. The effects of ketoconazole on ziprasidone pharmacokinetics — a placebo-controlled crossover study in healthy volunteers. Br J Clin Pharmacol 2000; 49: 71S–6S

    Article  PubMed  CAS  Google Scholar 

  85. Lin YS, Lockwood G, Graham M, et al. In vivo phenotyping for CYP3A by a single-point determination of midazolam plasma concentration. Pharmacogenetics 2001; 11: 781–91

    Article  PubMed  CAS  Google Scholar 

  86. Wedlund PJ, Aslanian WS, Jacqz E, et al. Phenotypic differences in mephenytoin pharmacokinetics in normal subjects. J Pharmacol Exp Ther 1985; 234: 662–9

    PubMed  CAS  Google Scholar 

  87. Prakash C, Cui D, Baxter JG, et al. Metabolism and excretion of a new anxiolytic drug candidate, CP-93,393, in healthy male volunteers. Drug Metab Dispos 1998; 26: 448–56

    PubMed  CAS  Google Scholar 

  88. Scordo MG, Spina E, Facciola G, et al. Cytochrome P450 2D6 genotype and steady state plasma levels of risperidone and 9-hydroxyrisperidone. Psychopharmacology 1999; 147: 300–5

    Article  PubMed  CAS  Google Scholar 

  89. Fromm MF, Busse D, Kroemer HK, et al. Differential induction of prehepatic and hepatic metabolism of verapamil by rifampin. Hepatology 1996; 24: 796–801

    Article  PubMed  CAS  Google Scholar 

  90. Paine MF, Shen DD, Kunze KL, et al. First-pass metabolism of midazolam by the human intestine. Clin Pharmacol Ther 1996; 60: 14–24

    Article  PubMed  CAS  Google Scholar 

  91. Thummel KE, O’Shea D, Paine MF, et al. Oral first-pass elimination of midazolam involves both gastrointestinal and hepatic CYP3A-mediated metabolism. Clin Pharmacol Ther 1996; 59: 491–502

    Article  PubMed  CAS  Google Scholar 

  92. Landahl S, Edgar B, Gabrielsson M, et al. Pharmacokinetics and blood pressure effects of felodipine in elderly hypertensive patients: a comparison with young healthy subjects. Clin Pharmacokinet 1988; 14: 374–83

    Article  PubMed  CAS  Google Scholar 

  93. Okerholm RA, Weiner DL, Hook RH, et al. Bioavailability of terfenadine in man. Biopharm Drug Dispos 1981; 2: 185–90

    Article  PubMed  CAS  Google Scholar 

  94. Venkatakrishnan K, von Moltke LL, Greenblatt DJ. Effects of the antifungal agents on oxidative drug metabolism: clinical relevance. Clin Pharmacokinet 2000; 38: 111–80

    Article  PubMed  CAS  Google Scholar 

  95. Olkkola KT, Backman JT, Neuvonen PJ. Midazolam should be avoided in patients receiving the systemic antimycotics ketoconazole or itraconazole. Clin Pharmacol Ther 1994; 55: 481–5

    Article  PubMed  CAS  Google Scholar 

  96. Olkkola K, Ahonen J, Neuvonen P. The effect of the systemic antimycotics, itraconazole and fluconazole, on the pharmacokinetics and pharmacodynamics of intravenous and oral midazolam. Anesth Analg 1996; 82: 511–6

    PubMed  CAS  Google Scholar 

  97. Vanakoski J, Mattila MJ, Vainio P, et al. 150mg fluconazole does not substantially increase the effects of 10mg midazolam or the plasma midazolam concentrations in healthy subjects. Int J Clin Pharmacol Ther 1995; 33: 518–23

    PubMed  CAS  Google Scholar 

  98. Ahonen J, Olkkola KT, Neuvonen P. Effect of route of administration of fluconazole on the interaction between fluconazole and midazolam. Eur J Clin Pharmacol 1997; 51: 415–9

    Article  PubMed  CAS  Google Scholar 

  99. Backman JT, Rivisto KT, Olkkola KT, et al. The area under the plasma concentration-time curve for oral midazolam is 400-fold larger during treatment with itraconazole than with rifampicin. Eur J Clin Pharmacol 1998; 54: 53–8

    Article  PubMed  CAS  Google Scholar 

  100. Bjornsson TD, Callaghan JT, Einolf HJ, et al. The conduct of in vitro and in vivo drug-drug interaction studies: a Pharmaceutical Research and Manufacturers of America (PhRMA) perspective. Drug Metal Dispos 2003; 31: 815–32

    Article  CAS  Google Scholar 

  101. Gray MR, Tarn YK. Pharmacokinetics of drugs that inactivate metabolic enzymes. J Pharm Sci 1991; 80: 121–7

    Article  PubMed  CAS  Google Scholar 

  102. Fleishaker JC, Pearson PG, Wienkers LC, et al. Biotransformation of tirilazad in humans: 2. Effect of ketoconazole on tirilazad clearance and oral bioavailability. J Pharmacol Exp Ther 1996; 277: 991–8

    PubMed  CAS  Google Scholar 

  103. Lown KS, Mayo RR, Leichtman AB, et al. Role of intestinal P-glycoprotein (mdr1) in interpatient variation in the oral bioavailability of cyclosporine. Clin Pharmacol Ther 1997; 62: 248–60

    Article  PubMed  CAS  Google Scholar 

  104. Saeki T, Ueda K, Tanigawara Y, et al. Human P-glycoprotein transports cyclosporin A and FK506. J Biol Chem 1993; 268: 6077–80

    PubMed  CAS  Google Scholar 

  105. Siegsmund MJ, Cardarelli C, Aksentijevich I, et al. Ketoconazole effectively reverses multidrug resistance in highly resistant KB cells. J Urol 1994; 151: 485–91

    PubMed  CAS  Google Scholar 

  106. Wacher VJ, Wu CY, Benet LZ. Overlapping substrate specificities and tissue distribution of cytochrome P450 3A and P-glycoprotein: implications for drug delivery and activity in cancer chemotherapy. Mol Carcinog 1995; 13: 129–34

    Article  PubMed  CAS  Google Scholar 

  107. Ito K, Kusuhara H, Sugiyama Y. Effects of intestinal CYP3A4 and P-glycoprotein on oral drug absorption-theoretical approach. Pharm Res 1999; 16: 225–31

    Article  PubMed  CAS  Google Scholar 

  108. Prueksaritanont T, Gorham LM, Hochman JH, et al. Comparative studies of drug-metabolizing enzymes in dog, monkey, and human small intestines, and in Caco-2 cells. Drug Metab Dispos 1996; 24: 634–42

    PubMed  CAS  Google Scholar 

  109. Shimada T, Mimura M, Inoue K, et al. Cytochrome P450-dependent drug oxidation activities in liver microsomes of various animal species including rats, guinea pigs, dogs, monkeys, and humans. Arch Toxicol 1997; 71: 401–8

    Article  PubMed  CAS  Google Scholar 

  110. Shaw PN, Houston JB. Kinetics of drug metabolism inhibition: use of metabolic concentration-time profiles. J Pharmacokinet Biopharm 1987; 15: 497–510

    PubMed  CAS  Google Scholar 

  111. Rowland M, Matin SB. Kinetics of drug-drug interactions. J Pharmacokinet Biopharm 1973; 1: 553–6

    CAS  Google Scholar 

  112. Bertz RJ, Granneman GR. Use of in vitro and in vivo data to estimate the likelihood of metabolic pharmacokinetic interactions. Clin Pharmacokinet 1997; 32: 210–58

    Article  PubMed  CAS  Google Scholar 

  113. Yamano K, Yamamoto K, Kotaki H, et al. Correlation between in vivo and in vitro hepatic uptake of metabolic inhibitors of cytochrome P-450 in rats. Drug Metab Dispos 1999; 27: 1225–31

    PubMed  CAS  Google Scholar 

  114. Yamano K, Yamamoto K, Kotaki H, et al. Quantitative prediction of metabolic inhibition of midazolam by itraconazole and ketoconazole in rats: implication of concentrative uptake of inhibitors into liver. Drug Metab Dispos 1999; 27: 395–402

    PubMed  CAS  Google Scholar 

  115. von Moltke LL, Greenblatt DJ, Duan SX, et al. Inhibition of terfenadine metabolism in vitro by azole antifungal agents and by selective serotonin reuptake inhibitor antidepressants: relation to pharmacokinetic interactions in vivo. J Clin Psychopharmacol 1996; 16: 104–12

    Article  Google Scholar 

  116. Gibbs MA, Baillie MT, Shen DD, et al. Persistent inhibition of CYP3A4 by ketoconazole in modified caco-2 cells. Pharm Res 2000; 17: 299–305

    Article  PubMed  CAS  Google Scholar 

  117. Honig PK, Worthman DC, Zamani K, et al. Terfenadineketoconazole interaction: pharmacokinetic and electrocardiographic consequences. JAMA 1993; 269: 1513–8

    Article  PubMed  CAS  Google Scholar 

  118. Warrington JS, Shader RI, von Moltke LL, et al. In vitro biotransformation of sildenafil (Viagra): identification of human cytochromes and potential drug interactions. Drug Metab Dispos 2000; 28: 392–7

    PubMed  CAS  Google Scholar 

  119. Pfizer, Inc. Viagra® (sildenafil citrate): prescribing information [online]. Available from: http://www.pfizer.com/download/uspi_viagra.pdf [accessed 2003 July 1]

  120. Pfizer, Inc. Zoloft® (sertraline hydrochloride): prescribing information [online]. Available from: http://www.zoloft.com/index.asp?.pageid=43 [accessed 2003 July 1]

  121. Kobayashi K, Ishizuka T, Shimada N, et al. Sertraline N-Demethylation is catalyzed by multiple isoforms of human cytochrome P450 in vitro. Drug Metab Dispos 1999; 27: 763–6

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Drs R.S. Obach, J.G. Baxter, B.J. Smith, L.C. Benincosa and J.P. Gibbs and Professor K.E. Thummel for their helpful comments and review of the paper. We also thank Dr J. Miceli for personal communication of human studies with ziprasidone. No sources of funding were used to assist in the preparation of this manuscript. The authors have no conflicts of interest that are directly relevant to the content of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Megan A. Gibbs or Natilie A. Hosea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gibbs, M.A., Hosea, N.A. Factors Affecting the Clinical Development of Cytochrome P450 3A Substrates. Clin Pharmacokinet 42, 969–984 (2003). https://doi.org/10.2165/00003088-200342110-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200342110-00003

Keywords

Navigation