Skip to main content
Log in

Mechanism-Based Inhibition of Cytochrome P450 3A4 by Therapeutic Drugs

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Consistent with its highest abundance in humans, cytochrome P450 (CYP) 3A is responsible for the metabolism of about 60% of currently known drugs. However, this unusual low substrate specificity also makes CYP3A4 susceptible to reversible or irreversible inhibition by a variety of drugs. Mechanism-based inhibition of CYP3A4 is characterised by nicotinamide adenine dinucleotide phosphate hydrogen (NADPH)-, time- and concentration-dependent enzyme inactivation, occurring when some drugs are converted by CYP isoenzymes to reactive metabolites capable of irreversibly binding covalently to CYP3A4. Approaches using in vitro, in silico and in vivo models can be used to study CYP3A4 inactivation by drugs. Human liver microsomes are always used to estimate inactivation kinetic parameters including the concentration required for half-maximal inactivation (K I) and the maximal rate of inactivation at saturation (k inact).

Clinically important mechanism-based CYP3A4 inhibitors include antibacterials (e.g. clarithromycin, erythromycin and isoniazid), anticancer agents (e.g. tamoxifen and irinotecan), anti-HIV agents (e.g. ritonavir and delavirdine), anti-hypertensives (e.g. dihydralazine, verapamil and diltiazem), sex steroids and their receptor modulators (e.g. gestodene and raloxifene), and several herbal constituents (e.g. bergamottin and glabridin). Drugs inactivating CYP3A4 often possess several common moieties such as a tertiary amine function, furan ring, and acetylene function. It appears that the chemical properties of a drug critical to CYP3A4 inactivation include formation of reactive metabolites by CYP isoenzymes, preponderance of CYP inducers and P-glycoprotein (P-gp) substrate, and occurrence of clinically significant pharmacokinetic interactions with coadministered drugs.

Compared with reversible inhibition of CYP3A4, mechanism-based inhibition of CYP3A4 more frequently cause pharmacokinetic-pharmacodynamic drug-drug interactions, as the inactivated CYP3A4 has to be replaced by newly synthesised CYP3A4 protein. The resultant drug interactions may lead to adverse drug effects, including some fatal events. For example, when aforementioned CYP3A4 inhibitors are coadministered with terfenadine, cisapride or astemizole (all CYP3A4 substrates), torsades de pointes (a life-threatening ventricular arrhythmia associated with QT prolongation) may occur.

However, predicting drug-drug interactions involving CYP3A4 inactivation is difficult, since the clinical outcomes depend on a number of factors that are associated with drugs and patients. The apparent pharmacokinetic effect of a mechanism-based inhibitor of CYP3A4 would be a function of its K I, k inact and partition ratio and the zero-order synthesis rate of new or replacement enzyme. The inactivators for CYP3A4 can be inducers and P-gp substrates/inhibitors, confounding in vitro-in vivo extrapolation. The clinical significance of CYP3A inhibition for drug safety and efficacy warrants closer understanding of the mechanisms for each inhibitor. Furthermore, such inactivation may be exploited for therapeutic gain in certain circumstances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II
Fig. 1
Table III
Table IV

Similar content being viewed by others

References

  1. Nelson D. Cytochrome P450 homepage [online]. Available from URL: http://drnelson.utmem.edu/CytochromeP450.html [Accessed 2005 Feb 3]

  2. Rendic S. Summary of information on human CYP enzymes: human P450 metabolism data. Drug Metab Rev 2002; 34(1–2): 83–448

    Article  PubMed  CAS  Google Scholar 

  3. Rendic S, Di Carlo FJ. Human cytochrome P450 enzyme: a status report summarizing their reactions, substrates, induction, and inhibitors. Drug Metab Rev 1997; 29(1–2): 413–580

    Article  PubMed  CAS  Google Scholar 

  4. Nelson DR, Koymans L, Kamataki T, et al. P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics 1996; 6(1): 1–42

    Article  PubMed  CAS  Google Scholar 

  5. Gonzalez FJ. Evolution of the P450 gene superfamily: animal-plant ‘warfare’, molecular drive and human genetic differences in drug oxidation. Trends Genet 1990; 6(6): 182–6

    Article  PubMed  CAS  Google Scholar 

  6. Nebert DW, Russell DW. Clinical importance of the cytochromes P450. Lancet 2002; 360(9340): 1155–62

    Article  PubMed  CAS  Google Scholar 

  7. Porter TD, Coon MJ. Cytochrome P450: multiplicity of isoforms, substrates, and catalytic and regulatory mechanisms. J Biol Chem 1991; 266: 13469–72

    PubMed  CAS  Google Scholar 

  8. Wormhoudt LW, Commandeur JNM, Vermeulen NPE. Genetic polymorphisms of human N-acetyltransferase, cytochrome P450, glutathione-S-transferase, and epoxide hydrolase enzymes: relevance to xenobiotic metabolism and toxicity. Crit Rev Toxicol 1999; 29(1): 59–124

    Article  PubMed  CAS  Google Scholar 

  9. Rodrigues AD, Rushmore TH. Cytochrome P450 pharmacogenetics in drug development: in vitro studies and clinical consequences. Curr Drug Metab 2002; 3(3): 289–309

    Article  PubMed  CAS  Google Scholar 

  10. Domanski TL, Finta C, Halpert JR, et al. cDNA cloning and initial characterization of CYP3A43, a novel human cytochrome P450. Mol Pharmacol 2001; 59: 386–92

    PubMed  CAS  Google Scholar 

  11. Shimada T, Yamazaki H, Mimura M, et al. Interindividual variations in human liver cytochrome P450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals. J Pharmacol Exp Ther 1994; 270(1): 414–23

    PubMed  CAS  Google Scholar 

  12. Kuehl P, Zhang J, Lin Y, et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet 2001; 27(4): 383–91

    Article  PubMed  CAS  Google Scholar 

  13. Westlind-Johnsson A, Malmebo S, Johansson A, et al. Comparative analysis of CYP3A expression in human liver suggests only a minor role for cyp3a5 in drug metabolism. Drug Metab Dispos 2003; 31(6): 755–61

    Article  PubMed  CAS  Google Scholar 

  14. Wrighton SA, Brian WR, Sari MA, et al. Studies on the expression and metabolic capabilities of human liver cytochrome P450IIIA5 (HLp3). Mol Pharmacol 1990; 38(2): 207–13

    PubMed  CAS  Google Scholar 

  15. Schuetz JD, Beach DL, Guzelian PS. Selective expression of cytochrome P450 CYP3A mRNAs in embryonic and adult human liver. Pharmacogenetics 1994; 4: 11–20

    Article  PubMed  CAS  Google Scholar 

  16. Komori M, Nishio K, Kitada M, et al. Fetus-specific expression of a form of cytochrome P-450 in human livers. Biochemistry 1990; 29(18): 4430–3

    Article  PubMed  CAS  Google Scholar 

  17. Thummel KE, Wilkinson GR. In vitro and in vivo drug interactions involving human CYP3A. Annu Rev Pharmacol Toxicol 1998; 38: 389–430

    Article  PubMed  CAS  Google Scholar 

  18. Silverman RB. Mechanism-based enzyme inactivation: chemistry and enzymology. Boca Raton (FL): CRC Press, 1988

    Google Scholar 

  19. Kent UM, Juschyshyn MI, Hollenberg PF. Mechanism-based inactivators as probes of cytochrome P450 structure and function. Curr Drug Metab 2001; 2(3): 215–43

    Article  PubMed  CAS  Google Scholar 

  20. Ito K, Iwatsubo T, Kanamitsu S, et al. Prediction of pharmacokinetic alterations caused by drug-drug interactions: metabolic interaction in the liver. Pharmacol Rev 1998; 50: 387–411

    PubMed  CAS  Google Scholar 

  21. Silverman RB. Mechanism-based enzyme inactivation: chemistry and enzymology. Boca Raton (FL): CRC Press, 1998

    Google Scholar 

  22. Chen Q, Ngui JS, Doss GA, et al. Cytochrome P450 3A4-mediated bioactivation of raloxifene: irreversible enzyme inhibition and thiol adduct formation. Chem Res Toxicol 2002; 15(7): 907–14

    Article  PubMed  CAS  Google Scholar 

  23. Hengstler JG, Utesch D, Steinberg P, et al. Cryopreserved primary hepatocytes as a constantly available in vitro model for the evaluation of human and animal drug metabolism and enzyme induction. Drug Metab Rev 2000; 32: 81–118

    Article  PubMed  CAS  Google Scholar 

  24. Crespi CL, Miller VP. The use of heterologously expressed drug metabolizing enzymes: state of the art and prospects for the future. Pharmacol Ther 1999; 84: 121–31

    Article  PubMed  CAS  Google Scholar 

  25. Streetman DS, Bertino JS, Nafziger AN. Phenotyping of drug-metabolizing enzymes in adults: a review of in-vivo cytochrome P450 phenotyping probes. Pharmacogenetics 2000; 10: 187–216

    Article  PubMed  CAS  Google Scholar 

  26. Crespi CL, Penman BW. Use of cDNA-expressed human cytochrome P450 enzymes to study potential drug-drug interactions. Adv Pharmacol 1997; 43: 171–88

    Article  PubMed  CAS  Google Scholar 

  27. Hollenberg PF. Characteristics and common properties of inhibitors, inducers, and activators of CYP enzymes. Drug Metab Rev 2002; 34(1–2): 17–35

    Article  PubMed  CAS  Google Scholar 

  28. Yuan R, Madani S, Wei XX, et al. Evaluation of cytochrome p450 probe substrates commonly used by the pharmaceutical industry to study in vitro drug interactions. Drug Metab Dispos 2002; 30(12): 1311–9

    Article  PubMed  CAS  Google Scholar 

  29. Kenworthy KE, Bloomer JC, Clarke SE, et al. CYP3A4 drug interactions: correlation of 10 in vitro probe substrates. Br J Clin Pharmacol 1999; 48(5): 716–27

    Article  PubMed  CAS  Google Scholar 

  30. Wang RW, Newton DJ, Liu N, et al. Human cytochrome P-450 3A4: in vitro drug-drug interaction patterns are substrate-dependent. Drug Metab Dispos 2000; 28(3): 360–6

    PubMed  CAS  Google Scholar 

  31. Labroo RB, Thummel KE, Kunze KL, et al. Catalytic role of cytochrome P4503A4 in multiple pathways of alfentanil metabolism. Drug Metab Dispos 1995; 23(4): 490–6

    PubMed  CAS  Google Scholar 

  32. Kharasch ED, Thummel KE. Human alfentanil metabolism by cytochrome P450 3A3/4: an explanation for the interindividual variability in alfentanil clearance? Anesth Analg 1993; 76(5): 1033–9

    Article  PubMed  CAS  Google Scholar 

  33. Yun CH, Wood M, Wood AJ, et al. Identification of the pharmacogenetic determinants of alfentanil metabolism: cytochrome P-450 3A4: an explanation of the variable elimination clearance. Anesthesiology 1992; 77(3): 467–74

    Article  PubMed  CAS  Google Scholar 

  34. Kharasch ED, Hoffer C, Walker A, et al. Disposition and miotic effects of oral alfentanil: a potential noninvasive probe for first-pass cytochrome P4503A activity. Clin Pharmacol Ther 2003; 73(3): 199–208

    Article  PubMed  CAS  Google Scholar 

  35. Labroo R, Kharasch ED. Gas chromatographic-mass spectrometric analysis of alfentanil metabolites: application to human liver microsomal alfentanil biotransformation. J Chromatogr B Biomed Appl 1994; 660(1): 85–94

    Article  PubMed  CAS  Google Scholar 

  36. Ahonen J, Olkkola KT, Salmenperä M, et al. Effect of diltiazem on midazolam and alfentanil disposition in patients undergoing coronary artery bypass grafting. Anesthesiology 1996; 85(6): 1246–51

    Article  PubMed  CAS  Google Scholar 

  37. Bartkowski RR, Goldberg ME, Larijani GE, et al. Inhibition of alfentanil metabolism by erythromycin. Clin Pharmacol Ther 1989; 46(1): 99–102

    Article  PubMed  CAS  Google Scholar 

  38. Gorski JC, Jones DR, Hamman MA, et al. Biotransformation of alprazolam by members of the human cytochrome P4503A subfamily. Xenobiotica 1999; 29(9): 931–44

    Article  PubMed  CAS  Google Scholar 

  39. Schmith VD, Cox SR, Zemaitis MA, et al. New high-performance liquid chromatographic method for the determination of alprazolam and its metabolites in serum: instability of 4-hydroxyalprazolam. J Chromatogr 1991; 568(1): 253–60

    Article  PubMed  CAS  Google Scholar 

  40. Yasui N, Otani K, Kaneko S, et al. A kinetic and dynamic study of oral alprazolam with and without erythromycin in humans: in vivo evidence for the involvement of CYP3A4 in alprazolam metabolism. Clin Pharmacol Ther 1996; 59(5): 514–9

    Article  PubMed  CAS  Google Scholar 

  41. Greenblatt DJ, Preskorn SH, Cotreau MM, et al. Fluoxetine impairs clearance of alprazolam but not of clonazepam. Clin Pharmacol Ther 1992; 52: 479–86

    Article  PubMed  CAS  Google Scholar 

  42. Lasher TA, Fleishaker JC, Steenwyk RC, et al. Pharmacokinetic pharmacodynamic evaluation of the combined administration of alprazolam and fluoxetine. Psychopharmacology (Berl) 1991; 104(3): 323–7

    Article  CAS  Google Scholar 

  43. Rodrigues AD, Roberts EM, Mulford DJ, et al. Oxidative metabolism of clarithromycin in the presence of human liver microsomes: major role for the cytochrome P4503A (CYP3A) subfamily. Drug Metab Dispos 1997; 25(5): 623–30

    PubMed  CAS  Google Scholar 

  44. Wang JS, Wang W, Xie HG, et al. Effect of troleandomycin on the pharmacokinetics of imipramine in Chinese: the role of CYP3A. Br J Clin Pharmacol 1997; 44(2): 195–8

    Article  PubMed  CAS  Google Scholar 

  45. Albani F, Riva R, Baruzzi A. Clarithromycin-carbamazepine interaction: a case report. Epilepsia 1993; 34(1): 161–2

    Article  PubMed  CAS  Google Scholar 

  46. Sketris IS, Wright MR, West ML. Possible role of the intestinal P-450 enzyme system in a cyclosporine-clarithromycin interaction. Pharmacotherapy 1996; 16(2): 301–5

    PubMed  CAS  Google Scholar 

  47. Abel SM, Back DJ. Cortisol metabolism in vitro: III. Inhibition of microsomal 6 beta-hydroxylase and cytosolic 4-ene-reductase. J Steroid Biochem Mol Biol 1993; 46(6): 827–32

    Article  PubMed  CAS  Google Scholar 

  48. Hunt CM, Watkins PB, Saenger P, et al. Heterogeneity of CYP3A isoforms metabolizing erythromycin and cortisol. Clin Pharmacol Ther 1992; 51(1): 18–23

    Article  PubMed  CAS  Google Scholar 

  49. Joellenbeck Z, Qian L, Zarba A, et al. Urinary 6 beta-hydroxy-cortisol/cortisol ratios measured by high-performance liquid chromatography for use as a biomarker for the human cytochrome P-450 3A4. Cancer Epidemiol Biomarkers Prev 1992; 1: 567–72

    PubMed  CAS  Google Scholar 

  50. Seidegard J, Dahlstrom K, Kullberg A. Effect of grapefruit juice on urinary 6 beta-hydroxycortisol/cortisol excretion. Clin Exp Pharmacol Physiol 1998; 25(5): 379–81

    Article  PubMed  CAS  Google Scholar 

  51. Koup JR, Anderson GD, Loi CM. Effect of troglitazone on urinary excretion of 6beta-hydroxycortisol. J Clin Pharmacol 1998; 38(9): 815–8

    PubMed  CAS  Google Scholar 

  52. Micuda S, Hodac M, Sispera L, et al. Influence of amiodarone on urinary excretion of 6beta-hydroxycortisol in humans. Physiol Res 2001; 50(2): 191–6

    PubMed  CAS  Google Scholar 

  53. Hammerstein J, Daume E, Simon A, et al. Influence of gestodene and desogestrel as components of low-dose oral contraceptives on the pharmacokinetics of ethinyl estradiol (EE2), on serum CBG and on urinary cortisol and 6 beta-hydroxycortisol. Contraception 1993; 47(3): 263–81

    Article  PubMed  CAS  Google Scholar 

  54. Jurima-Romet M, Crawford K, Cyr T, et al. Terfenadine metabolism in human liver: in vitro inhibition by macrolide antibiotics and azole antifungals. Drug Metab Dispos 1994; 22(6): 849–57

    PubMed  CAS  Google Scholar 

  55. Christians U, Strohmeyer S, Kownatzki R, et al. Investigations on the metabolic pathways of cyclosporine: II. Elucidation of the metabolic pathways in vitro by human liver microsomes. Xenobiotica 1991; 21(9): 1199–210

    Article  PubMed  CAS  Google Scholar 

  56. Kronbach T, Fischer V, Meyer UA. Cyclosporine metabolism in human liver: identification of a cytochrome P-450III gene family as the major cyclosporine-metabolizing enzyme explains interactions of cyclosporine with other drugs. Clin Pharmacol Ther 1988; 43(6): 630–5

    Article  PubMed  CAS  Google Scholar 

  57. Combalbert J, Fabre I, Fabre G, et al. Metabolism of cyclosporin A: IV. Purification and identification of the rifampicin-inducible human liver cytochrome P-450 (cyclosporin A oxidase) as a product of P450IIIA gene subfamily. Drug Metab Dispos 1989; 17(2): 197–207

    PubMed  CAS  Google Scholar 

  58. Tjia JF, Back DJ, Breckenridge AM. Calcium channel antagonists and cyclosporine metabolism: in vitro studies with human liver microsomes. Br J Clin Pharmacol 1989; 28(3): 362–5

    Article  PubMed  CAS  Google Scholar 

  59. Cakaloglu Y, Tredger JM, Devlin J, et al. Importance of cytochrome P-450IIIA activity in determining dosage and blood levels of FK 506 and cyclosporine in liver transplant recipients. Hepatology 1994; 20(2): 309–16

    Article  PubMed  CAS  Google Scholar 

  60. Spicer ST, Liddle C, Chapman JR, et al. The mechanism of cyclosporine toxicity induced by clarithromycin. Br J Clin Pharmacol 1997; 43(2): 194–6

    Article  PubMed  CAS  Google Scholar 

  61. Vereerstraeten P, Thiry P, Kinnaert P, et al. Influence of erythromycin on cyclosporine pharmacokinetics. Transplantation 1987; 44(1): 155–6

    Article  PubMed  CAS  Google Scholar 

  62. Fleming CM, Branch RA, Wilkinson GR, et al. Human liver microsomal N-hydroxylation of dapsone by cytochrome P-4503A4. Mol Pharmacol 1992; 41(5): 975–80

    PubMed  CAS  Google Scholar 

  63. Gill HJ, Tingle MD, Park BK. N-hydroxylation of dapsone by multiple enzymes of cytochrome P450: implications for inhibition of haemotoxicity. Br J Clin Pharmacol 1995; 40(6): 531–8

    Article  PubMed  CAS  Google Scholar 

  64. Kinirons MT, O’shea D, Downing TE, et al. Absence of correlations among three putative in vivo probes of human cytochrome P4503A activity in young healthy men. Clin Pharmacol Ther 1993; 54(6): 621–9

    Article  PubMed  CAS  Google Scholar 

  65. Frye RF, Matzke GR, Adedoyin A, et al. Validation of the five-drug Pittsburgh cocktail approach for assessment of selective regulation of drug-metabolizing enzymes. Clin Pharmacol Ther 1997; 62(4): 365–76

    Article  PubMed  CAS  Google Scholar 

  66. Joshi JV, Maitra A, Sankolli G, et al. Norethisterone and ethinyl estradiol kinetics during dapsone therapy. J Assoc Physicians India 1984; 32(2): 191–3

    PubMed  CAS  Google Scholar 

  67. Wang RW, Newton DJ, Scheri TD, et al. Human cytochrome P450 3A4-catalyzed testosterone 6 beta-hydroxylation and erythromycin N-demethylation: competition during catalysis. Drug Metab Dispos 1997; 25(4): 502–7

    PubMed  CAS  Google Scholar 

  68. Rivory LP, Slaviero KA, Hoskins JM, et al. The erythromycin breath test for the prediction of drug clearance. Clin Pharmacokinet 2001; 40(3): 151–8

    Article  PubMed  CAS  Google Scholar 

  69. Watkins PB, Wrighton SA, Maurel P, et al. Identification of an inducible form of cytochrome P-450 in human liver. Proc Natl Acad Sci U S A 1985; 82(18): 6310–4

    Article  PubMed  CAS  Google Scholar 

  70. Watkins PB, Murray SA, Winkelman LG, et al. Erythromycin breath test as an assay of glucocorticoid-inducible liver cytochromes P-450: studies in rats and patients. J Clin Invest 1989; 83(2): 688–97

    Article  PubMed  CAS  Google Scholar 

  71. Lown K, Kolars J, Turgeon K, et al. The erythromycin breath test selectively measures P450IIIA in patients with severe liver disease. Clin Pharmacol Ther 1992; 51(3): 229–38

    Article  PubMed  CAS  Google Scholar 

  72. Schmidt LE, Olsen AK, Stentoft K, et al. Early postoperative erythromycin breath test correlates with hepatic cytochrome P4503A activity in liver transplant recipients. Clin Pharmacol Ther 2001; 70(5): 446–54

    PubMed  CAS  Google Scholar 

  73. Cheng CL, Smith DE, Carver PL, et al. Steady-state pharmacokinetics of delavirdine in HIV-positive patients: effect on erythromycin breath test. Clin Pharmacol Ther 1997; 61(5): 531–43

    Article  PubMed  CAS  Google Scholar 

  74. Schmid SE, Au WY, Hill DE, et al. Cytochrome P-450-dependent oxidation of the 17 alpha-ethynyl group of synthetic steroids: D-homoannulation or enzyme inactivation. Drug Metab Dispos 1983; 11(6): 531–6

    PubMed  CAS  Google Scholar 

  75. Guengerich FP. Oxidation of 17-ethynylestradiol by human liver cytochrome P450. Mol Pharmacol 1988; 33(5): 500–8

    PubMed  CAS  Google Scholar 

  76. Guengerich FP. Mechanism-based inactivation of human liver microsomal cytochrome P-450 IIIA4 by gestodene. Chem Res Toxicol 1990; 3(4): 363–71

    Article  PubMed  CAS  Google Scholar 

  77. Ouellet D, Hsu A, Qian J, et al. Effect of ritonavir on the pharmacokinetics of ethinyl oestradiol in healthy female volunteers. Br J Clin Pharmacol 1998; 46(2): 111–6

    Article  PubMed  CAS  Google Scholar 

  78. Wang JS, Backman JT, Taavitsainen P, et al. Involvement of CYP1A2 and CYP3A4 in lidocaine N-deethylation and 3-hydroxylation in humans. Drug Metab Dispos 2000; 28(8): 959–65

    PubMed  CAS  Google Scholar 

  79. Bargetzi MJ, Aoyama T, Gonzalez FJ, et al. Lidocaine metabolism in human liver microsomes by cytochrome P450IIIA4. Clin Pharmacol Ther 1989; 46(5): 521–7

    Article  PubMed  CAS  Google Scholar 

  80. Imaoka S, Enomoto K, Oda Y, et al. Lidocaine metabolism by human cytochrome P-450s purified from hepatic microsomes: comparison of those with rat hepatic cytochrome P-450s. J Pharmacol Exp Ther 1990; 255: 1385–91

    PubMed  CAS  Google Scholar 

  81. O’Neal CL, Poklis A. Sensitive HPLC for simultaneous quantification of lidocaine and its metabolites monoethylglycinexylidide and glycinexylidide in serum. Clin Chem 1996; 42(2): 330–1

    PubMed  Google Scholar 

  82. Testa R, Caglieris S, Risso D, et al. Monoethylglycinexylidide formation measurement as a hepatic function test to assess severity of chronic liver disease. Am J Gastroenterol 1997; 92(12): 2268–73

    PubMed  CAS  Google Scholar 

  83. Swart EL, van der Hoven B, Groeneveld AB, et al. Correlation between midazolam and lignocaine pharmacokinetics and MEGX formation in healthy volunteers. Br J Clin Pharmacol 2002; 53(2): 133–9

    Article  PubMed  CAS  Google Scholar 

  84. Orszulak-Michalak D, Owczarek J, Wiktorowska-Owczarek AK. The influence of midazolam on plasma concentrations and pharmacokinetic parameters of lidocaine in rabbits. Pharmacol Res 2002; 45(1): 11–4

    Article  PubMed  CAS  Google Scholar 

  85. Tanaka E, Breimer DD. In vivo function tests of hepatic drug-oxidizing capacity in patients with liver disease. J Clin Pharm Ther 1997; 22(4): 237–49

    Article  PubMed  CAS  Google Scholar 

  86. Isohanni MH, Neuvonen P, Olkkola KT. Effect of erythromycin and itraconazole on the pharmacokinetics of oral lignocaine. Pharmacol Toxicol 1999; 84(3): 143–6

    Article  PubMed  CAS  Google Scholar 

  87. Gorski JC, Hall SD, Jones DR, et al. Regioselective biotransformation of midazolam by members of the human cytochrome P450 3A (CYP3A) subfamily. Biochem Pharmacol 1994; 47(9): 1643–53

    Article  PubMed  CAS  Google Scholar 

  88. Carrillo JA, Ramos SI, Agundez JA, et al. Analysis of midazolam and metabolites in plasma by high-performance liquid chromatography: probe of CYP3A. Ther Drug Monit 1998; 20(3): 319–24

    Article  PubMed  CAS  Google Scholar 

  89. Wen X, Wang JS, Neuvonen PJ, et al. Isoniazid is a mechanism-based inhibitor of cytochrome P450 1A2, 2A6, 2C19 and 3A4 isoforms in human liver microsomes. Eur J Clin Pharmacol 2002; 57(11): 799–804

    Article  PubMed  Google Scholar 

  90. Tinel M, Descatoire V, Larrey D, et al. Effects of clarithromycin on cytochrome P-450. Comparison with other macrolides. J Pharmacol Exp Ther 1989; 250(2): 746–51

    PubMed  CAS  Google Scholar 

  91. Mayhew BS, Jones DR, Hall SD. An in vitro model for predicting in vivo inhibition of cytochrome P450 3A4 by metabolic intermediate complex formation. Drug Metab Dispos 2000; 28(9): 1031–7

    PubMed  CAS  Google Scholar 

  92. Jones DR, Gorski JC, Hamman MA, et al. Diltiazem inhibition of cytochrome P-450 3A activity is due to metabolite intermediate complex formation. J Pharmacol Exp Ther 1999; 290(3): 1116–25

    PubMed  CAS  Google Scholar 

  93. Thummel KE, Shen DD, Podoll TD, et al. Use of midazolam as a human cytochrome P450 3A probe: I. In vitro-in vivo correlations in liver transplant patients. J Pharmacol Exp Ther 1994; 271(1): 549–56

    PubMed  CAS  Google Scholar 

  94. Gorski JC, Jones DR, Haehnerdaniels BD, et al. The contribution of intestinal and hepatic CYP3A to the interaction between midazolam and clarithromycin. Clin Pharmacol Ther 1998; 64(2): 133–43

    Article  PubMed  CAS  Google Scholar 

  95. Ma B, Prueksaritanont T, Lin JH. Drug interactions with calcium channel blockers: possible involvement of metabolite-intermediate complexation with CYP3A. Drug Metab Dispos 2000; 28(2): 125–30

    PubMed  CAS  Google Scholar 

  96. Gonzalez FJ, Schmid BJ, Umeno M, et al. Human P450PCN1: sequence, chromosome localization, and direct evidence through cDNA expression that P450PCN1 is nifedipine oxidase. DNA 1988; 7(2): 79–86

    Article  PubMed  CAS  Google Scholar 

  97. Breimer DD, Schellens JH, Soons PA. Nifedipine: variability in its kinetics and metabolism in man. Pharmacol Ther 1989; 44(3): 445–54

    Article  PubMed  CAS  Google Scholar 

  98. Balogh A, Gessinger S, Svarovsky U, et al. Can oral contraceptive steroids influence the elimination of nifedipine and its primary pryidine metabolite in humans? Eur J Clin Pharmacol 1998; 54(9-10): 729–34

    Article  PubMed  CAS  Google Scholar 

  99. Greenblatt DJ, von Moltke LL, Harmatz JS, et al. Differential impairment of triazolam and zolpidem clearance by ritonavir. J Acquir Immune Defic Syndr 2000; 24(2): 129–36

    PubMed  CAS  Google Scholar 

  100. Ling KH, Leeson GA, Burmaster SD, et al. Metabolism of terfenadine associated with CYP3A (4) activity in human hepatic microsomes. Drug Metab Dispos 1995; 23(6): 631–6

    PubMed  CAS  Google Scholar 

  101. Rodrigues AD, Mulford DJ, Lee RD, et al. In vitro metabolism of terfenadine by a purified recombinant fusion protein containing cytochrome P4503A4 and NADPH-P450 reductase: comparison to human liver microsomes and precision-cut liver tissue slices. Drug Metab Dispos 1995; 23(7): 765–75

    PubMed  CAS  Google Scholar 

  102. Yun CH, Okerholm RA, Guengerich FP. Oxidation of the antihistaminic drug terfenadine in human liver microsomes: role of cytochrome P-450 3A (4) in N-dealkylation and C-hydroxylation. Drug Metab Dispos 1993; 21(3): 403–9

    PubMed  CAS  Google Scholar 

  103. Terhechte A, Blaschke G. Investigation of the stereoselective metabolism of the chiral H1-antihistaminic drug terfenadine by high-performance liquid chromatography. J Chromatogr A 1995; 694(1): 219–25

    Article  PubMed  CAS  Google Scholar 

  104. Kumar GN, Rodrigues A, Buko AM, et al. Cytochrome P450-mediated metabolism of the HIV-1 protease inhibitor ritonavir (ABT-538) in human liver microsomes. J Pharmacol Exp Ther 1996; 277(1): 423–31

    PubMed  CAS  Google Scholar 

  105. Jurima-Romet M, Wright M, Neigh S. Terfenadine-antidepressant interactions: an in vitro inhibition study using human liver microsomes. Br J Clin Pharmacol 1998; 45(3): 318–21

    Article  PubMed  CAS  Google Scholar 

  106. Waxman DJ, Lapenson DP, Aoyama T, et al. Steroid hormone hydroxylase specificities of eleven cDNA-expressed human cytochrome P450s. Arch Biochem Biophys 1991; 290(1): 160–6

    Article  PubMed  CAS  Google Scholar 

  107. Draper AJ, Madan A, Smith K, et al. Development of a non-high pressure liquid chromatography assay to determine testosterone hydroxylase (CYP3A) activity in human liver microsomes. Drug Metab Dispos 1998; 26(4): 299–304

    PubMed  CAS  Google Scholar 

  108. Testino Jr SA, Ozarowski J, Thurston AW, et al. Determination of testosterone and 6beta-hydroxytestosterone by gas chromatography-selected ion monitoring-mass spectrometry for the characterization of cytochrome p450 3A activity. J Chromatogr B Biomed Sci Appl 1999; 734(1): 73–81

    Article  PubMed  CAS  Google Scholar 

  109. Hanioka N, Ozawa S, Jinno H, et al. Interaction of irinotecan (CPT-11) and its active metabolite 7-ethyl-10-hydroxy-camptothecin (SN-38) with human cytochrome P450 enzymes. Drug Metab Dispos 2002; 30(4): 391–6

    Article  PubMed  CAS  Google Scholar 

  110. Zhao XJ, Jones DR, Wang YH, et al. Reversible and irreversible inhibition of CYP3A enzymes by tamoxifen and metabolites. Xenobiotica 2002; 32(10): 863–78

    Article  PubMed  CAS  Google Scholar 

  111. Masubuchi Y, Horie T. Mechanism-based inactivation of cytochrome P450s 1A2 and 3A4 by dihydralazine in human liver microsomes. Chem Res Toxicol 1999; 12(10): 1028–32

    Article  PubMed  CAS  Google Scholar 

  112. Masubuchi Y, Horie T. Dihydralazine-induced inactivation of cytochrome P450 enzymes in rat liver microsomes. Drug Metab Dispos 1998; 26(4): 338–42

    PubMed  CAS  Google Scholar 

  113. He K, Woolf TF, Hollenberg PF. Mechanism-based inactivation of cytochrome P-450-3A4 by mifepristone (RU486). J Pharmacol Exp Ther 1999; 288(2): 791–7

    PubMed  CAS  Google Scholar 

  114. He K, Iyer KR, Hayes RN, et al. Inactivation of cytochrome P450 3A4 by bergamottin, a component of grapefruit juice. Chem Res Toxicol 1998; 11(4): 252–9

    Article  PubMed  CAS  Google Scholar 

  115. von Moltke LL, Greenblatt DJ, Harmatz JS, et al. Triazolam biotransformation by human liver microsomes in vitro: effects of metabolic inhibitors and clinical confirmation of a predicted interaction with ketoconazole. J Pharmacol Exp Ther 1996; 276(2): 370–9

    Google Scholar 

  116. Perloff MD, von Moltke LL, Court MH, et al. Midazolam and triazolam biotransformation in mouse and human liver microsomes: relative contribution of CYP3A and CYP2C isoforms. J Pharmacol Exp Ther 2000; 292(2): 618–28

    PubMed  CAS  Google Scholar 

  117. Voorman RL, Maio SM, Payne NA, et al. Microsomal metabolism of delavirdine: evidence for mechanism-based inactivation of human cytochrome P450 3A. J Pharmacol Exp Ther 1998; 287(1): 381–8

    PubMed  CAS  Google Scholar 

  118. von Moltke LL, Greenblatt DJ, Grassi JM, et al. Protease inhibitors as inhibitors of human cytochromes P450: high risk associated with ritonavir. J Clin Pharmacol 1998; 38(2): 106–11

    Google Scholar 

  119. Koudriakova T, Iatsimirskaia E, Utkin I, et al. Metabolism of the human immunodeficiency virus protease inhibitors indinavir and ritonavir by human intestinal microsomes and expressed cytochrome P4503A4/3A5: mechanism-based inactivation of cytochrome P4503A by ritonavir. Drug Metab Dispos 1998; 26(6): 552–61

    PubMed  CAS  Google Scholar 

  120. von Moltke LL, Durol AL, Duan SX, et al. Potent mechanism-based inhibition of human CYP3A in vitro by amprenavir and ritonavir: comparison with ketoconazole. Eur J Clin Pharmacol 2000; 56(3): 259–61

    Article  Google Scholar 

  121. Kanamitsu S, Ito K, Green CE, et al. Prediction of in vivo interaction between triazolam and erythromycin based on in vitro studies using human liver microsomes and recombinant human CYP3A4. Pharm Res 2000; 17(4): 419–26

    Article  PubMed  CAS  Google Scholar 

  122. Greenblatt DJ, von Moltke LL, Harmatz JS, et al. Inhibition of triazolam clearance by macrolide antimicrobial agents: in vitro correlates and dynamic consequences. Clin Pharmacol Ther 1998; 64(3): 278–85

    Article  PubMed  CAS  Google Scholar 

  123. Kosuge K, Nishimoto M, Kimura M, et al. Enhanced effect of triazolam with diltiazem. Br J Clin Pharmacol 1997; 43(4): 367–72

    Article  PubMed  CAS  Google Scholar 

  124. Halpert JR, Guengerich FP, Bend JR, et al. Selective inhibitors of cytochromes P450. Toxicol Appl Pharmacol 1994; 125: 163–75

    Article  PubMed  CAS  Google Scholar 

  125. Gelboin HV, Krausz KW, Gonzalez FJ, et al. Inhibitory monoclonal antibodies to human cytochrome P450 enzymes: a new avenue for drug discovery. Trends Pharmacol Sci 1999; 20(11): 432–8

    Article  PubMed  CAS  Google Scholar 

  126. Voorman RL, Maio SM, Hauer MJ, et al. Metabolism of delavirdine, a human immunodeficiency virus type-1 reverse transcriptase inhibitor, by microsomal cytochrome P450 in humans, rats, and other species: probable involvement of CYP2D6 and CYP3A. Drug Metab Dispos 1998; 26(7): 631–9

    PubMed  CAS  Google Scholar 

  127. Treluyer JM, Bowers G, Cazali N, et al. Oxidative metabolism of amprenavir in the human liver. Effect of the CYP3A maturation. Drug Metab Dispos 2003; 31(3): 275–81

    Article  PubMed  CAS  Google Scholar 

  128. Jacobsen W, Christians U, Benet LZ. In vitro evaluation of the disposition of A novel cysteine protease inhibitor. Drug Metab Dispos 2000; 28(11): 1343–51

    PubMed  CAS  Google Scholar 

  129. Lin HL, Kent UM, Hollenberg PF. Mechanism-based inactivation of cytochrome P450 3A4 by 17 alpha-ethynylestradiol: evidence for heme destruction and covalent binding to protein. J Pharmacol Exp Ther 2002; 301(1): 160–7

    Article  PubMed  CAS  Google Scholar 

  130. Decker CJ, Laitinen LM, Bridson GW, et al. Metabolism of amprenavir in liver microsomes: role of CYP3A4 inhibition for drug interactions. J Pharm Sci 1998; 87(7): 803–7

    Article  PubMed  CAS  Google Scholar 

  131. Pessayre D, Tinel M, Larrey D, et al. Inactivation of cytochrome P-450 by a troleandomycin metabolite: protective role of glutathione. J Pharmacol Exp Ther 1983; 224(3): 685–91

    PubMed  CAS  Google Scholar 

  132. Miura T, Iwasaki M, Komori M, et al. Decrease in a constitutive form of cytochrome P-450 by macrolide antibiotics. J Antimicrob Chemother 1989; 24(4): 551–9

    Article  PubMed  CAS  Google Scholar 

  133. Chan WK, Delucchi AB. Resveratrol, a red wine constituent, is a mechanism-based inactivator of cytochrome P450 3A4. Life Sci 2000; 67(25): 3103–12

    Article  PubMed  CAS  Google Scholar 

  134. Waxman DJ. P450 gene induction by structurally diverse xenochemicals: central role of nuclear receptors CAR, PXR, and PPAR. Arch Biochem Biophys 1999; 369(1): 11–23

    Article  PubMed  CAS  Google Scholar 

  135. Sueyoshi T, Negishi M. Phenobarbital response elements of cytochrome P450 genes and nuclear receptors. Annu Rev Pharmacol Toxicol 2001; 41: 123–43

    Article  PubMed  CAS  Google Scholar 

  136. Lehmann JM, McKee DD, Watson MA, et al. The human orphan nuclear receptor PXR is activated by compounds that regulate CYP3A4 gene expression and cause drug interactions. J Clin Invest 1998; 102: 1016–23

    Article  PubMed  CAS  Google Scholar 

  137. Gibson GG, Plant NJ, Swales KE, et al. Receptor-dependent transcriptional activation of cytochrome P4503A genes: induction mechanisms, species differences and interindividual variation in man. Xenobiotica 2002; 32(3): 165–206

    Article  PubMed  CAS  Google Scholar 

  138. Quattrochi LC, Guzelian PS. CYP3A regulation: from pharmacology to nuclear receptors. Drug Metab Dispos 2001; 29(5): 615–22

    PubMed  CAS  Google Scholar 

  139. Xie W, Evans RM. Orphan nuclear receptors: the exotics of xenobiotics. J Biol Chem 2001; 276(41): 37739–42

    PubMed  CAS  Google Scholar 

  140. Goodwin B, Redinbo MR, Kliewer SA. Regulation of CYP3A gene transcription by the pregnane X receptor. Annu Rev Pharmacol Toxicol 2002; 42: 1–23

    Article  PubMed  CAS  Google Scholar 

  141. Kocarek TA, Schuetz EG, Strom SC, et al. Comparative analysis of cytochrome P4503A induction in primary cultures of rat, rabbit, and human hepatocytes. Drug Metab Dispos 1995; 23(3): 415–21

    PubMed  CAS  Google Scholar 

  142. Madan A, Graham RA, Carroll KM, et al. Effects of prototypical microsomal enzyme inducers on cytochrome P450 expression in cultured human hepatocytes. Drug Metab Dispos 2003; 31(4): 421–31

    Article  PubMed  CAS  Google Scholar 

  143. Luo G, Cunningham M, Kim S, et al. CYP3A4 induction by drugs: correlation between a pregnane X receptor reporter gene assay and CYP3A4 expression in human hepatocytes. Drug Metab Dispos 2002; 30(7): 795–804

    Article  PubMed  CAS  Google Scholar 

  144. El-Sankary W, Gibson GG, Ayrton A, et al. Use of a reporter gene assay to predict and rank the potency and efficacy of CYP3A4 inducers. Drug Metab Dispos 2001; 29(11): 1499–504

    PubMed  CAS  Google Scholar 

  145. Ledirac N, de Sousa G, Fontaine F, et al. Effects of macrolide antibiotics on CYP3A expression in human and rat hepatocytes: interspecies differences in response to troleandomycin. Drug Metab Dispos 2000; 28(12): 1391–3

    PubMed  CAS  Google Scholar 

  146. LeCluyse EL. Human hepatocyte culture systems for the in vitro evaluation of cytochrome P450 expression and regulation. Eur J Pharm Sci 2001; 13(4): 343–68

    Article  PubMed  CAS  Google Scholar 

  147. Lightning LK, Jones JP, Friedberg T, et al. Mechanism-based inactivation of cytochrome P450 3A4 by L-754,394. Biochemistry 2000; 39(15): 4276–87

    Article  PubMed  CAS  Google Scholar 

  148. Ekins S, Waller CL, Swaan PW, et al. Progress in predicting human ADME parameters in silico. J Pharmacol Toxicol Methods 2000; 44(1): 251–72

    Article  PubMed  CAS  Google Scholar 

  149. Ekins S, Bravi G, Binkley S, et al. Three- and four-dimensional quantitative structure activity relationship analyses of cytochrome P-450 3A4 inhibitors. J Pharmacol Exp Ther 1999; 290(1): 429–38

    PubMed  CAS  Google Scholar 

  150. Ekins S, Bravi G, Wikel JH, et al. Three-dimensional-quantitative structure activity relationship analysis of cytochrome P-450 3A4 substrates. J Pharmacol Exp Ther 1999; 291(1): 424–33

    PubMed  CAS  Google Scholar 

  151. Ekins S, Ring BJ, Grace J, et al. Present and future in vitro approaches for drug metabolism. J Pharmacol Toxicol Method 2000; 44(1): 313–24

    Article  CAS  Google Scholar 

  152. Lewis DFV. Molecular modeling of human cytochrome P450-substrate interactions. Drug Metab Rev 2002; 34(1–2): 55–67

    Article  PubMed  CAS  Google Scholar 

  153. Ekins S, Wrighton SA. Application of in silico approaches to predicting drug-drug interactions. J Pharmacol Toxicol Method 2001; 45(1): 65–9

    Article  CAS  Google Scholar 

  154. Ekins S, de Groot MJ, Jones JP. Pharmacophore and three-dimensional quantitative structure activity relationship methods for modeling cytochrome P450 active sites. Drug Metab Dispos 2001; 29(7): 936–44

    PubMed  CAS  Google Scholar 

  155. Boobis AR, Sesardic D, Murray BP, et al. Species variation in the response of the cytochrome P450-dependent monooxygenase system to inducers and inhibitors. Xenobiotica 1990; 20: 1139–61

    Article  PubMed  CAS  Google Scholar 

  156. Lin JH. Species similarities and differences in pharmacokinetics. Drug Metab Dispos 1995; 23(10): 1008–21

    PubMed  CAS  Google Scholar 

  157. Lewis DF, Ionnides C, Parke DV. Cytochrome P450 and species differences in xenobiotic metabolism and activation of carcinogen. Environ Health Perspect 1998; 106: 633–41

    Article  PubMed  CAS  Google Scholar 

  158. Brockmoller J, Roots I. Assessment of liver metabolic function: clinical implications. Clin Pharmacokinet 1994; 27(3): 216–48

    Article  PubMed  CAS  Google Scholar 

  159. Kim RB, Wandel C, Leake B, et al. Interrelationship between substrates and inhibitors of human CYP3A and P-glycoprotein. Pharm Res 1999; 16(3): 408–14

    Article  PubMed  CAS  Google Scholar 

  160. Villikka K, Kivisto KT, Neuvonen PJ. The effect of rifampin on the pharmacokinetics of oral and intravenous ondansetron. Clin Pharmacol Ther 1999; 65(4): 377–81

    Article  PubMed  CAS  Google Scholar 

  161. Villikka K, Kivisto KT, Lamberg TS, et al. Concentrations and effects of zopiclone are greatly reduced by rifampicin. Br J Clin Pharmacol 1997; 43(5): 471–4

    Article  PubMed  CAS  Google Scholar 

  162. Villikka K, Kivisto KT, Backman JT, et al. Triazolam is ineffective in patients taking rifampin. Clin Pharmacol Ther 1997; 61(1): 8–14

    Article  PubMed  CAS  Google Scholar 

  163. Hsu A, Granneman GR, Bertz RJ. Ritonavir: clinical pharmacokinetics and interactions with other anti-HIV agents. Clin Pharmacokinet 1998; 35(4): 275–91

    Article  PubMed  CAS  Google Scholar 

  164. Larry D, Funk-Brentano C, Breil P, et al. Effect of erythromycin on hepatic drug-metabolizing enzymes in humans. Biochem Pharmacol 1983; 32(6): 1063–8

    Article  Google Scholar 

  165. Ohmori S, Ishii I, Kuriya S, et al. Effects of clarithromycin and its metabolites on the mixed function oxidase system in hepatic microsomes of rat. Drug Metab Dispos 1993; 21(2): 358–63

    PubMed  CAS  Google Scholar 

  166. Hlavica P, Golly I, Lehnerer M, et al. Primary aromatic amines: their N-oxidative bioactivation. Hum Exp Toxicol 1997; 16(8): 441–8

    Article  PubMed  CAS  Google Scholar 

  167. Hlavica P. N-oxidative transformation of free and n-substituted amine functions by cytochrome P450 as means of bioactivation and detoxication. Drug Metab Rev 2002; 34(3): 451–77

    Article  PubMed  CAS  Google Scholar 

  168. Khojasteh-Bakht SC, Koenigs LL, Peter RM, et al. (R)- (+)-menthofuran is a potent, mechanism-based inactivator of human liver cytochrome P450 2A6. Drug Metab Dispos 1998; 26(7): 701–4

    PubMed  CAS  Google Scholar 

  169. Bensoussan C, Delaforge M, Mansuy D. Particular ability of cytochromes P450 3A to form inhibitory P450-iron-metabolite complexes upon metabolic oxidation of aminodrugs. Biochem Pharmacol 1995; 49(5): 591–602

    Article  PubMed  CAS  Google Scholar 

  170. Pershing LK, Franklin MR. Cytochrome P-450 metabolic-intermediate complex formation and induction by macrolide antibiotics: a new class of agents. Xenobiotica 1982; 12: 687–99

    Article  PubMed  CAS  Google Scholar 

  171. Periti P, Mazzei T, Mini E, et al. Pharmacokinetic drug interactions of macrolides. Clin Pharmacokinet 1992; 23(2): 106–31

    Article  PubMed  CAS  Google Scholar 

  172. Ludden TM. Pharmacokinetic interactions of the macrolide antibiotics. Clin Pharmacokinet 1985; 10(1): 63–79

    Article  PubMed  CAS  Google Scholar 

  173. von Rosensteil NA, Adam D. Macrolide antibacterials: drug interactions of clinical significance. Drug Saf 1995; 13(2): 105–22

    Article  Google Scholar 

  174. Amacher DE, Schomaker SJ, Retsema JA. Comparison of the effects of the new azalide antibiotic, azithromycin, and erythromycin estolate on rat liver cytochrome P-450. Antimicrob Agents Chemother 1991; 35(6): 1186–90

    Article  PubMed  CAS  Google Scholar 

  175. Delaforge M, Jaouen M, Mansuy D. Dual effects of macrolide antibiotics on rat liver cytochrome P-450: induction and formation of metabolite-complexes: a structure-activity relationship. Biochem Pharmacol 1983; 32(15): 2309–18

    Article  PubMed  CAS  Google Scholar 

  176. Larrey D, Tinel M, Pessayre D. Formation of inactive cytochrome P-450 Fe (II)-metabolite complexes with several erythromycin derivatives but not with josamycin and midecamycin in rats. Biochem Pharmacol 1983; 32(9): 1487–93

    Article  PubMed  CAS  Google Scholar 

  177. Guengerich FP. Metabolism of 17 alpha-ethynylestradiol in humans. Life Sci 1990; 47(22): 1981–8

    Article  PubMed  CAS  Google Scholar 

  178. Chiba M, Nishime JA, Lin JH. Potent and selective inactivation of human liver microsomal cytochrome P-450 isoforms by L-754,394, an investigational human immune deficiency virus protease inhibitor. J Pharmacol Exp Ther 1995; 275(3): 1527–34

    PubMed  CAS  Google Scholar 

  179. Lin JH, Chiba M, Chen IW, et al. Time- and dose-dependent pharmacokinetics of L-754,394, an HIV protease inhibitor, in rats, dogs and monkeys. J Pharmacol Exp Ther 1995; 274(1): 264–9

    PubMed  CAS  Google Scholar 

  180. Lillibridge JH, Liang BH, Kerr BM, et al. Characterization of the selectivity and mechanism of human cytochrome P450 inhibition by the human immunodeficiency virus-protease inhibitor nelfinavir mesylate. Drug Metab Dispos 1998; 26(7): 609–16

    PubMed  CAS  Google Scholar 

  181. Khan KK, He YQ, Domanski TL, et al. Midazolam oxidation by cytochrome P450 3A4 and active-site mutants: an evaluation of multiple binding sites and of the metabolic pathway that leads to enzyme inactivation. Mol Pharmacol 2002; 61(3): 495–506

    Article  PubMed  CAS  Google Scholar 

  182. Jang GR, Benet LZ. Antiprogestin-mediated inactivation of cytochrome P450 3A4. Pharmacology 1998; 56(3): 150–7

    Article  PubMed  CAS  Google Scholar 

  183. Guengerich FP. Cytochrome P-450 3A4: regulation and role in drug metabolism. Annu Rev Pharmacol Toxicol 1999; 39: 1–17

    Article  PubMed  CAS  Google Scholar 

  184. Ishigami M, Honda T, Takasaki W, et al. A comparison of the effects of 3-hydroxy-3-methylglutaryl-coenzyme a (HMG-CoA) reductase inhibitors on the CYP3A4-dependent oxidation of mexazolam in vitro. Drug Metab Dispos 2001; 29: 282–8

    PubMed  CAS  Google Scholar 

  185. Riley RJ, Parker AJ, Trigg S, et al. Development of a generalized, quantitative physicochemical model of CYP3A4 inhibition for use in early drug discovery. Pharm Res 2001; 18: 652–5

    Article  PubMed  CAS  Google Scholar 

  186. Szklarz GD, Halpert JR. Molecular modeling of cytochrome P450 3A4. J Comput-Aided Mol Des 1997; 11: 265–72

    Article  PubMed  CAS  Google Scholar 

  187. Harlow GR, Halpert JR. Alanine-scanning mutagenesis of a putative substrate recognition site in human cytochrome P450 3A4: role of residues 210 and 211 in flavonoid activation and substrate specificity. J Biol Chem 1997; 272: 5396–402

    Article  PubMed  CAS  Google Scholar 

  188. Shou M, Grogan J, Mancewicz JA, et al. Activation of CYP3A4: evidence for the simultaneous binding of two substrates in a cytochrome P450 active site. Biochemistry 1994; 33(21): 6450–5

    Article  PubMed  CAS  Google Scholar 

  189. Korzekwa KR, Krishnamachary N, Shou M, et al. Evaluation of atypical cytochrome P450 kinetics with two-substrate models: evidence that multiple substrates can simultaneously bind to cytochrome P450 active sites. Biochemistry 1998; 37: 4137–47

    Article  PubMed  CAS  Google Scholar 

  190. Schrag ML, Wienkers LC. Covalent alteration of the CYP3A4 active site: evidence for multiple substrate binding domains. Arch Biochem Biophys 2001; 391(1): 49–55

    Article  PubMed  CAS  Google Scholar 

  191. Ekins S, Stresser DM, Williams JA. In vitro and pharmacophore insights into CYP3A enzymes. Trends Pharmacol Sci 2003; 24(4): 161–6

    Article  PubMed  CAS  Google Scholar 

  192. Domanski TL, Halpert JR. Analysis of mammalian cytochrome P450 structure and function using site-directed mutagenesis. Curr Drug Metab 2001; 2(4): 117–37

    Article  PubMed  CAS  Google Scholar 

  193. Harlow GR, Halpert JR. Analysis of human cytochrome P450 3A4 cooperativity: construction and characterization of a site-directed mutant that displays hyperbolic steroid hydroxylation kinetics. Proc Natl Acad Sci U S A 1998; 95: 6636–41

    Article  PubMed  CAS  Google Scholar 

  194. Ueng Y-F, Kuwabara T, Chun Y-J, et al. Cooperativity in oxidations catalyzed by cytochrome P450 3A4. Biochemistry 1997; 36: 370–81

    Article  PubMed  CAS  Google Scholar 

  195. Schrag ML, Wienkers LC. Topological alteration of the CYP3A4 active site by the divalent cation Mg (2+). Drug Metab Dispos 2000; 28(10): 1198–201

    PubMed  CAS  Google Scholar 

  196. Ghosal A, Satoh H, Thomas PE, et al. Inhibition and kinetics of cytochrome P4503A activity in microsomes from rat, human, and cDNA-expressed human cytochrome P450. Drug Metab Dispos 1996; 24(9): 940–7

    PubMed  CAS  Google Scholar 

  197. Hosea NA, Miller GH, Guengerich FP. Elucidation of distinct ligand binding sites for cytochrome P450 3A4. Biochemistry 2000; 39: 5929–39

    Article  PubMed  CAS  Google Scholar 

  198. Lin JH, Lu AYH. Inhibition and induction of cytochrome P450 and the clinical implications. Clin Pharmacokinet 1998; 35: 361–90

    Article  PubMed  CAS  Google Scholar 

  199. Osawa Y, Pohl LR. Covalent bonding of the prosthetic heme to protein: a potential mechanism for suicide inactivation or activation of hemoproteins. Chem Res Toxicol 1989; 2(3): 131–41

    Article  PubMed  CAS  Google Scholar 

  200. Ortiz de Montellano PR, Correia MA. Inhibition of cytochrome P450. In: Ortiz de Montellano PR, editor. Cytochrome P450: structure, mechanism and biochemistry. New York: Plenum Press, 1995: 305–66

    Google Scholar 

  201. He K, He YA, Szklarz GD, et al. Secobarbital-mediated inactivation of cytochrome P450 2B1 and its active site mutants: partitioning between heme and protein alkylation and epoxidation. J Biol Chem 1996; 271(42): 25864–72

    Article  PubMed  CAS  Google Scholar 

  202. Labbe G, Descatoire V, Beaune P, et al. Suicide inactivation of cytochrome P-450 by methoxsalen: evidence for the covalent binding of a reactive intermediate to the protein moiety. J Pharmacol Exp Ther 1989; 250(3): 1034–42

    PubMed  CAS  Google Scholar 

  203. Mays DC, Hilliard JB, Wong DD, et al. Bioactivation of 8-methoxypsoralen and irreversible inactivation of cytochrome P-450 in mouse liver microsomes: modification by monoclonal antibodies, inhibition of drug metabolism and distribution of covalent adducts. J Pharmacol Exp Ther 1990; 254(2): 720–31

    PubMed  CAS  Google Scholar 

  204. Gan LS, Acebo AL, Alworth WL. 1-Ethynylpyrene, a suicide inhibitor of cytochrome P-450 dependent benzo[a]pyrene hydroxylase activity in liver microsomes. Biochemistry 1984; 23: 3827–36

    Article  PubMed  CAS  Google Scholar 

  205. Roberts P, Kitteringham NR, Park BK. Elucidation of the structural requirements for the bioactivation of mianserin in-vitro. J Pharm Pharmacol 1993; 45(7): 663–5

    Article  PubMed  CAS  Google Scholar 

  206. Yun CH, Hammons GJ, Jones G, et al. Modification of cytochrome P450 1A2 enzymes by the mechanism-based inactivator 2-ethynylnaphthalene and the photoaffinity label 4-azidobiphenyl. Biochemistry 1992; 31(43): 10556–63

    Article  PubMed  CAS  Google Scholar 

  207. Cai Y, Baer-Dubowska W, Ashwood-Smith MJ, et al. Mechanism-based inactivation of hepatic ethoxyresorufin O-dealkylation activity by naturally occurring coumarins. Chem Res Toxicol 1996; 9(4): 729–36

    Article  PubMed  CAS  Google Scholar 

  208. Halpert J, Hammond D, Neal RA. Inactivation of purified rat liver cytochrome P-450 during the metabolism of parathion (diethyl p-nitrophenyl phosphorothionate). J Biol Chem 1980; 255: 1080–9

    PubMed  CAS  Google Scholar 

  209. Halpert J. Further studies of the suicide inactivation of purified rat liver cytochrome P450 by chloramphenicol. Mol Pharmacol 1982; 21: 166–72

    PubMed  CAS  Google Scholar 

  210. Franklin MR. Cytochrome P450 metabolic intermediate complexes from macrolide antibiotics and related compounds. Methods Enzymol 1991; 206: 559–73

    Article  PubMed  CAS  Google Scholar 

  211. Kent UM, Aviram M, Rosenblat M, et al. The licorice root derived isoflavan glabridin inhibits the activities of human cytochrome P450S 3A4, 2B6, and 2C9. Drug Metab Dispos 2002; 30(6): 709–15

    Article  PubMed  CAS  Google Scholar 

  212. Ortiz de Montellano PR, Komives EA. Branchpoint for heme alkylation and metabolite formation in the oxidation of arylacetylenes by cytochrome P450. J Biol Chem 1985; 260: 3330–6

    PubMed  CAS  Google Scholar 

  213. Guengerich FP. Covalent binding to apoprotein is a major fate of heme in a variety of reactions in which cytochrome P450 is destroyed. Biochem Biophys Res Commun 1986; 138: 193–8

    Article  PubMed  CAS  Google Scholar 

  214. Correia MA, Decker C, Sugiyama K, et al. Degradation of rat hepatic cytochrome P450 heme by 3,5-dicarbethoxy-2,6-dimethyl-4-ethyl-1,4-dihydropyridine to irreversibly bound protein adducts. Arch Biochem Biophys 1987; 258: 436–45

    Article  PubMed  CAS  Google Scholar 

  215. Yao K, Falick AM, Patel N, et al. Cumene hydroperoxide-mediated inactivation of cytochrome P450 2B1: identification of an active site heme-modified peptide. J Biol Chem 1993; 268: 59–65

    PubMed  CAS  Google Scholar 

  216. Kent UM, Mills DE, Rajnarayanan RV, et al. Effect of 17-alpha-ethynylestradiol on activities of cytochrome P450 2B (P450 2B) enzymes: characterization of inactivation of P450s 2B1 and 2B6 and identification of metabolites. J Pharmacol Exp Ther 2002; 300(2): 549–58

    Article  PubMed  CAS  Google Scholar 

  217. Tudela J, Garcia Canovas F, Varon R, et al. Transient-phase kinetics of enzyme inactivation induced by suicide substrates. Biochim Biophys Acta 1987; 912(3): 408–16

    Article  PubMed  CAS  Google Scholar 

  218. Yeo KR, Yeo WW. Inhibitory effects of verapamil and diltiazem on simvastatin metabolism in human liver microsomes. Br J Clin Pharmacol 2001; 51(5): 461–70

    Article  PubMed  CAS  Google Scholar 

  219. Prueksaritanont T, Ma B, Tang C, et al. Metabolic interactions between mibefradil and HMG-CoA reductase inhibitors: an in vitro investigation with human liver preparations. Br J Clin Pharmacol 1999; 47(3): 291–8

    Article  PubMed  CAS  Google Scholar 

  220. Pichard L, Fabre I, Fabre G, et al. Cyclosporin A drug interactions: screening for inducers and inhibitors of cytochrome P-450 (cyclosporin A oxidase) in primary cultures of human hepatocytes and in liver microsomes. Drug Metab Dispos 1990; 18(5): 595–606

    PubMed  CAS  Google Scholar 

  221. Stresser DM, Blanchard AP, Turner SD, et al. Substrate-dependent modulation of CYP3A4 catalytic activity: analysis of 27 test compounds with four fluorometric substrates. Drug Metab Dispos 2000; 28(12): 1440–8

    PubMed  CAS  Google Scholar 

  222. Wrighton SA, Ring BJ. Inhibition of human CYP3A catalyzed 1′-hydroxy midazolam formation by ketoconazole, nifedipine, erythromycin, cimetidine and nizatidine. Pharm Res 1994; 11: 921–4

    Article  PubMed  CAS  Google Scholar 

  223. Schmiedlin-Ren P, Edwards DJ, Fitzsimmons ME, et al. Mechanisms of enhanced oral availability of CYP3A4 substrates by grapefruit constituents: decreased enterocyte CYP3A4 concentration and mechanism-based inactivation by furanocoumarins. Drug Metab Dispos 1997; 25(11): 1228–33

    PubMed  CAS  Google Scholar 

  224. Le Goff-Klein N, Koffel JC, Jung L, et al. In vitro inhibition of simvastatin metabolism, a HMG-CoA reductase inhibitor in human and rat liver by bergamottin, a component of grapefruit juice. Eur J Pharm Sci 2003; 18(1): 31–5

    Article  PubMed  Google Scholar 

  225. Guo LQ, Fukuda K, Ohta T, et al. Role of furanocoumarin derivatives on grapefruit juice-mediated inhibition of human CYP3A activity. Drug Metab Dispos 2000; 28(7): 766–71

    PubMed  CAS  Google Scholar 

  226. Voorman RL, Payne NA, Wienkers LC, et al. Interaction of delavirdine with human liver microsomal cytochrome P450: inhibition of CYP2C9, CYP2C19, and CYP2D6. Drug Metab Dispos 2001; 29(1): 41–7

    PubMed  CAS  Google Scholar 

  227. von Moltke LL, Greenblatt DJ, Granda BW, et al. Inhibition of human cytochrome P450 isoforms by nonnucleoside reverse transcriptase inhibitors. J Clin Pharmacol 2001; 41(1): 85–91

    Article  Google Scholar 

  228. Sutton D, Butler AM, Nadin L, et al. Role of CYP3A4 in human hepatic diltiazem N-demethylation: inhibition of CYP3A4 activity by oxidized diltiazem metabolites. J Pharmacol Exp Ther 1997; 282(1): 294–300

    PubMed  CAS  Google Scholar 

  229. Yamano K, Yamamoto K, Katashima M, et al. Prediction of midazolam-CYP3A inhibitors interaction in the human liver from in vivo/in vitro absorption, distribution, and metabolism data. Drug Metab Dispos 2001; 29 (4 Pt 1): 443–52

    Google Scholar 

  230. Haaz MC, Rivory L, Riche C, et al. Metabolism of irinotecan (CPT-11) by human hepatic microsomes: participation of cytochrome P-450 3A and drug interactions. Cancer Res 1998; 58(3): 468–72

    PubMed  CAS  Google Scholar 

  231. Desta Z, Soukhova NV, Flockhart DA. Inhibition of cytochrome P450 (CYP450) isoforms by isoniazid: potent inhibition of CYP2C19 and CYP3A. Antimicrob Agents Chemother 2001; 45(2): 382–92

    Article  PubMed  CAS  Google Scholar 

  232. Sahali-Sahly Y, Balani SK, Lin JH, et al. In vitro studies on the metabolic activation of the furanopyridine L-754,394, a highly potent and selective mechanism-based inhibitor of cytochrome P450 3A4. Chem Res Toxicol 1996; 9(6): 1007–12

    Article  PubMed  CAS  Google Scholar 

  233. Wandel C, Kim RB, Guengerich FP, et al. Mibefradil is a P-glycoprotein substrate and a potent inhibitor of both P-glycoprotein and CYP3A in vitro. Drug Metab Dispos 2000; 28(8): 895–8

    PubMed  CAS  Google Scholar 

  234. Jang GR, Wrighton SA, Benet LZ. Identification of CYP3A4 as the principal enzyme catalyzing mifepristone (RU 486) oxidation in human liver microsomes. Biochem Pharmacol 1996; 52(5): 753–61

    Article  PubMed  CAS  Google Scholar 

  235. Stupans I, Murray M, Kirlich A, et al. Inactivation of cytochrome P450 by the food-derived complex phenol oleuropein. Food Chem Toxicol 2001; 39(11): 1119–24

    Article  PubMed  CAS  Google Scholar 

  236. Tran TH, Von Moltke LL, Venkatakrishnan K, et al. Microsomal protein concentration modifies the apparent inhibitory potency of CYP3A inhibitors. Drug Metab Dispos 2002; 30(12): 1441–5

    Article  PubMed  CAS  Google Scholar 

  237. Zdravkovic M, Olsen AK, Christiansen T, et al. A clinical study investigating the pharmacokinetic interaction between NN703 (tabimorelin), a potential inhibitor of CYP3A4 activity, and midazolam, a CYP3A4 substrate. Eur J Clin Pharmacol 2003; 58(10): 683–8

    PubMed  CAS  Google Scholar 

  238. Williams JA, Ring BJ, Cantrell VE, et al. Comparative metabolic capabilities of CYP3A4, CYP3A5, and CYP3A7. Drug Metab Dispos 2002; 30(8): 883–91

    Article  PubMed  CAS  Google Scholar 

  239. Kroemer HK, Echizen H, Heidemann H, et al. Predictability of the in vivo metabolism of verapamil from in vitro data: contribution of individual metabolic pathways and stereoselective aspects. J Pharmacol Exp Ther 1992; 260(3): 1052–7

    PubMed  CAS  Google Scholar 

  240. Brodie MJ, Macphee GJA. Carbamazepine neurotoxicity precipitated by diltiazem. BMJ (Clin Red Ed) 1986; 292: 1170–1

    Article  CAS  Google Scholar 

  241. Sadrieh N, Thomas PE. Characterization of rat cytochrome P450 isozymes involved in the covalent binding of cyclosporin A to microsomal proteins. Toxicol Appl Pharmacol 1994; 127(2): 222–32

    Article  PubMed  CAS  Google Scholar 

  242. Brockmöller J, Neumayer H-H, Wagner K, et al. Pharmacokinetic interaction between cyclosporin and diltiazem. Eur J Clin Pharmacol 1990; 38(3): 237–42

    Article  PubMed  Google Scholar 

  243. Laganière S, Davies RF, Carignan G, et al. Pharmacokinetic and pharmacodynamic interactions between diltiazem and quinidine. Clin Pharmacol Ther 1996; 60(3): 255–64

    Article  PubMed  Google Scholar 

  244. Backman JT, Olkkola KT, Aranko K, et al. Dose of midazolam should be reduced during diltiazem and verapamil treatments. Br J Clin Pharmacol 1994; 37(3): 221–5

    Article  PubMed  CAS  Google Scholar 

  245. Toyosaki N, Toyo-Oka T, Natsume T, et al. Combination therapy with diltiazem and nifedipine in patients with effort angina pectoris. Circulation 1988; 77: 1370–5

    Article  PubMed  CAS  Google Scholar 

  246. Azie NE, Brater DC, Becker PA, et al. The interaction of diltiazem with lovastatin and pravastatin. Clin Pharmacol Ther 1998; 64(4): 369–77

    Article  PubMed  CAS  Google Scholar 

  247. Cato III A, Cavanaugh J, Shi H, et al. The effect of multiple doses of ritonavir on the pharmacokinetics of rifabutin. Clin Pharmacol Ther 1998; 63(4): 414–21

    Article  PubMed  CAS  Google Scholar 

  248. Ouellet D, Hsu A, Granneman GR, et al. Pharmacokinetic interaction between ritonavir and clarithromycin. Clin Pharmacol Ther 1998; 64(4): 355–62

    Article  PubMed  CAS  Google Scholar 

  249. Hsu A, Granneman GR, Cao G, et al. Pharmacokinetic interactions between two human immunodeficiency virus protease inhibitors, ritonavir and saquinavir. Clin Pharmacol Ther 1998; 63(4): 453–64

    Article  PubMed  CAS  Google Scholar 

  250. Sadler BM, Piliero PJ, Preston SL, et al. Pharmacokinetics and safety of amprenavir and ritonavir following multiple-dose, co-administration to healthy volunteers. AIDS 2001; 15(8): 1009–18

    Article  PubMed  CAS  Google Scholar 

  251. Goujard C, Vincent I, Meynard JL, et al. Steady-state pharmacokinetics of amprenavir coadministered with ritonavir in human immunodeficiency virus type 1-infected patients. Antimicrob Agents Chemother 2003; 47(1): 118–23

    Article  PubMed  CAS  Google Scholar 

  252. Kurowski M, Kaeser B, Sawyer A, et al. Low-dose ritonavir moderately enhances nelfinavir exposure. Clin Pharmacol Ther 2002; 72(2): 123–32

    Article  PubMed  CAS  Google Scholar 

  253. Sham HL, Kempf DJ, Molla A, et al. ABT-378, a highly potent inhibitor of the human immunodeficiency virus protease. Antimicrob Agents Chemother 1998; 42(12): 3218–24

    PubMed  CAS  Google Scholar 

  254. Hsu A, Granneman GR, Cao G, et al. Pharmacokinetic interaction between ritonavir and indinavir in healthy volunteers. Antimicrob Agents Chemother 1998; 42(11): 2784–91

    PubMed  CAS  Google Scholar 

  255. Yasui N, Otani K, Kaneko S, et al. Carbamazepine toxicity induced by clarithromycin coadministration in psychiatric patients. Int Clin Psychopharmacol 1997; 12(4): 225–9

    Article  PubMed  CAS  Google Scholar 

  256. van Haarst AD, van’t Klooster GA, van Gerven JM, et al. The influence of cisapride and clarithromycin on QT intervals in healthy volunteers. Clin Pharmacol Ther 1998; 64(5): 542–6

    Article  PubMed  Google Scholar 

  257. Sadaba B, Lopez de Ocariz A, Azanza JR, et al. Concurrent clarithromycin and cyclosporin A treatment. J Antimicrob Chemother 1998; 42(3): 393–5

    Article  PubMed  CAS  Google Scholar 

  258. Boruchoff SE, Sturgill MG, Grasing KW, et al. The steady-state disposition of indinavir is not altered by the concomitant administration of clarithromycin. Clin Pharmacol Ther 2000; 67(4): 351–9

    Article  PubMed  CAS  Google Scholar 

  259. Ushiama H, Echizen H, Nachi S, et al. Dose-dependent inhibition of CYP3A activity by clarithromycin during Helicobacter pylori eradication therapy assessed by changes in plasma lansoprazole levels and partial cortisol clearance to 6beta-hydroxycortisol. Clin Pharmacol Ther 2002; 72(1): 33–43

    Article  PubMed  CAS  Google Scholar 

  260. Fost DA, Leung DY, Martin RJ, et al. Inhibition of methyl-prednisolone elimination in the presence of clarithromycin therapy. J Allergy Clin Immunol 1999; 103(6): 1031–5

    Article  PubMed  CAS  Google Scholar 

  261. Hafner R, Bethel J, Power M, et al. Tolerance and pharmacokinetic interactions of rifabutin and clarithromycin in human immunodeficiency virus-infected volunteers. Antimicrob Agents Chemother 1998; 42(3): 631–9

    PubMed  CAS  Google Scholar 

  262. Luurila H, Olkkola KT, Neuvonen PJ. Interaction between erythromycin and the benzodiazepines diazepam and flunitrazepam. Pharmacol Toxicol 1996; 78(2): 117–22

    Article  PubMed  CAS  Google Scholar 

  263. Kantola T, Kivisto KT, Neuvonen PJ. Erythromycin and verapamil considerably increase serum simvastatin and simvastatin acid concentrations. Clin Pharmacol Ther 1998; 64(2): 177–82

    Article  PubMed  CAS  Google Scholar 

  264. Isohanni MH, Neuvonen PJ, Palkama VJ, et al. Effect of erythromycin and itraconazole on the pharmacokinetics of intravenous lignocaine. Eur J Clin Pharmacol 1998; 54(7): 561–5

    Article  PubMed  CAS  Google Scholar 

  265. Olkkola KT, Aranko K, Luurila H, et al. A potentially hazardous interaction between erythromycin and midazolam. Clin Pharmacol Ther 1993; 53(3): 298–305

    Article  PubMed  CAS  Google Scholar 

  266. Luurila H, Olkkola KT, Neuvonen PJ. Interaction between erythromycin and nitrazepam in healthy volunteers. Pharmacol Toxicol 1995; 76(4): 255–8

    Article  PubMed  CAS  Google Scholar 

  267. Lamberg TS, Kivistö KT, Neuvonen PJ. Effects of verapamil and diltiazem on the pharmacokinetics and pharmacodynamics of buspirone. Clin Pharmacol Ther 1998; 63(6): 640–5

    Article  PubMed  CAS  Google Scholar 

  268. Booker BM, Magee MH, Blum RA, et al. Pharmacokinetic and pharmacodynamic interactions between diltiazem and methyl-prednisolone in healthy volunteers. Clin Pharmacol Ther 2002; 72(4): 370–82

    Article  PubMed  CAS  Google Scholar 

  269. Dresser GK, Spence JD, Bailey DG. Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition. Clin Pharmacokinet 2000; 38(1): 41–57

    Article  PubMed  CAS  Google Scholar 

  270. Spinler SA, Cheng JW, Kindwall KE, et al. Possible inhibition of hepatic metabolism of quinidine by erythromycin. Clin Pharmacol Ther 1995; 57(1): 89–94

    Article  PubMed  CAS  Google Scholar 

  271. Michalets EL, Williams CR. Drug interactions with cisapride: clinical implications. Clin Pharmacokinet 2000; 39(1): 49–75

    Article  PubMed  CAS  Google Scholar 

  272. Honig PK, Woosley RL, Zamani K, et al. Changes in the pharmacokinetics and electrocardiographic pharmacodynamics of terfenadine with concomitant administration of erythromycin. Clin Pharmacol Ther 1992; 52(3): 231–8

    Article  PubMed  CAS  Google Scholar 

  273. Honig PK, Wortham DC, Zamani K, et al. Terfenadine-ketoconazole interaction: pharmacokinetic and electrocardiographic consequences. JAMA 1993; 269: 1513–8

    Article  PubMed  CAS  Google Scholar 

  274. Williams D, Feely J. Pharmacokinetic-pharmacodynamic drug interactions with HMG-CoA reductase inhibitors. Clin Pharmacokinet 2002; 41(5): 343–70

    Article  PubMed  CAS  Google Scholar 

  275. Anderson JR, Nawarskas JJ. Cardiovascular drug-drug interactions. Cardiol Clin 2001; 19(2): 215–34

    Article  PubMed  CAS  Google Scholar 

  276. Simonsen U. Interactions between drugs for erectile dysfunction and drugs for cardiovascular disease. Int J Impot Res 2002; 14(3): 178–88

    Article  PubMed  CAS  Google Scholar 

  277. Patsalos PN, Froscher W, Pisani F, et al. The importance of drug interactions in epilepsy therapy. Epilepsia 2002; 43(4): 365–85

    Article  PubMed  CAS  Google Scholar 

  278. Spina E, Pisani F, Perucca E. Clinically significant pharmacokinetic drug interactions with carbamazepine: an update. Clin Pharmacokinet 1996; 31(3): 198–214

    Article  PubMed  CAS  Google Scholar 

  279. Rathbun RC, Rossi DR. Low-dose ritonavir for protease inhibitor pharmacokinetic enhancement. Ann Pharmacother 2002; 36(4): 702–6

    Article  PubMed  CAS  Google Scholar 

  280. Kempf DJ, Marsh KC, Kumar G, et al. Pharmacokinetic enhancement of inhibitors of the human immunodeficiency virus protease by coadministration with ritonavir. Antimicrob Agents Chemother 1997; 41(3): 654–60

    PubMed  CAS  Google Scholar 

  281. Chitturi S, George J. Hepatotoxicity of commonly used drugs: nonsteroidal anti-inflammatory drugs, antihypertensives, antidiabetic agents, anticonvulsants, lipid-lowering agents, psychotropic drugs. Semin Liver Dis 2002; 22(2): 169–83

    Article  PubMed  CAS  Google Scholar 

  282. Pumford NR, Halmes NC. Protein targets of xenobiotic reactive intermediates. Annu Rev Pharmacol Toxicol 1997; 37: 91–117

    Article  PubMed  CAS  Google Scholar 

  283. Tornqvist M, Fred C, Haglund J, et al. Protein adducts: quantitative and qualitative aspects of their formation, analysis and applications. J Chromatogr B Analyt Technol Biomed Life Sci 2002 Oct 5; 778(1–2): 279–308

    PubMed  CAS  Google Scholar 

  284. Cohen SD, Pumford NR, Khairallah EA, et al. Selective protein covalent binding and target organ toxicity. Toxicol Appl Pharmacol 1997; 143(1): 1–12

    Article  PubMed  CAS  Google Scholar 

  285. Houston JB. Utility of in vitro drug metabolism data in predicting in vivo metabolic clearance. Biochem Pharmacol 1994; 47: 1469–79

    Article  PubMed  CAS  Google Scholar 

  286. Houston JB, Carlile DJ. Incorporation of in vitro drug metabolism data into physiologically-based pharmacokinetic models. Toxicol In Vitro 1997; 11: 473–8

    Article  PubMed  CAS  Google Scholar 

  287. von Moltke LL, Greenblatt DJ, Schmider J, et al. In vitro approaches to predicting drug interactions in vivo. Biochem Pharmacol 1998; 55: 113–22

    Article  Google Scholar 

  288. Lave T, Coassolo P, Reigner B. Prediction of hepatic metabolic clearance based on interspecies allometric scaling techniques and in vitro in vivo correlations. Clin Pharmacokinet 1999; 36(3): 211–31

    Article  PubMed  CAS  Google Scholar 

  289. Tsao S-C, Dickinson TH, Abernethy DR. Metabolite inhibition of parent drug biotransformation: studies of diltiazem. Drug Metab Dispos 1990; 18: 180–2

    PubMed  CAS  Google Scholar 

  290. Mullins ME, Horowitz Z, Linden DHJ, et al. Life-threatening interaction of mibefradil and β-blockers with dihydropyridine calcium channel blockers. JAMA 1998; 280(2): 157–8

    Article  PubMed  CAS  Google Scholar 

  291. Ito K, Iwatsubo T, Kanamitsu S, et al. Quantitative prediction of in vivo drug clearance and drug interactions from in vitro data on metabolism, together with binding and transport. Annu Rev Pharmacol Toxicol 1998; 38: 461–99

    Article  PubMed  CAS  Google Scholar 

  292. Waley SG. Kinetics of suicide substrates. Biochem J 1980; 185: 771–3

    PubMed  CAS  Google Scholar 

  293. Waley SG. Kinetics of suicide substrates. Practical procedures for determining parameters. Biochem J 1985; 227: 843–9

    PubMed  CAS  Google Scholar 

  294. Tatsunami S, Yago N, Hosoe M. Kinetics of suicide substrates: steady-state treatments and computer-aided exact solutions. Biochim Biophys Acta 1981; 662(2): 226–35

    Article  PubMed  CAS  Google Scholar 

  295. Ring BJ, Binkley SN, Roskos L, et al. Effect of fluoxetine, norfluoxetine, sertraline and desmethyl sertraline on human CYP3A catalyzed 1′-hydroxy midazolam formation in vitro. J Pharmacol Exp Ther 1995; 275(3): 1131–5

    PubMed  CAS  Google Scholar 

  296. Sugiyama Y, Kato Y, Chu X. Multiplicity of biliary excretion mechanisms for the camptothecin derivative irinotecan (CPT-11), its metabolite SN-38, and its glucuronide: role of canalicular multispecific organic anion transporter and P-glycoprotein. Cancer Chemother Pharmacol 1998; 42 Suppl.: S44–9

    Article  PubMed  CAS  Google Scholar 

  297. Chu XY, Suzuki H, Ueda K, et al. Active efflux of CPT-11 and its metabolites in human KB-derived cell lines. J Pharmacol Exp Ther 1999; 288(2): 735–41

    PubMed  CAS  Google Scholar 

  298. Chu XY, Kato Y, Ueda K, et al. Biliary excretion mechanism of CPT-11 and its metabolites in humans: involvement of primary active transporters. Cancer Res 1998; 58(22): 5137–43

    PubMed  CAS  Google Scholar 

  299. Chu XY, Kato Y, Niinuma K, et al. Multispecific organic anion transporter is responsible for the biliary excretion of the camptothecin derivative irinotecan and its metabolites in rats. J Pharmacol Exp Ther 1997; 281(1): 304–14

    PubMed  CAS  Google Scholar 

  300. Olson DP, Scadden DT, D’Aquila RT, et al. The protease inhibitor ritonavir inhibits the functional activity of the multidrug resistance related-protein 1 (MRP-1). AIDS 2002; 16(13): 1743–7

    Article  PubMed  CAS  Google Scholar 

  301. Gruol DJ, Zee MC, Trotter J, et al. Reversal of multidrug resistance by RU486. Cancer Res 1994; 54: 3088–91

    PubMed  CAS  Google Scholar 

  302. Ambudkar SV, Dey S, Hrycyna CA, et al. Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu Rev Pharmacol Toxicol 1999; 39: 361–98

    Article  PubMed  CAS  Google Scholar 

  303. Lin JH, Yamazaki M. Role of P-glycoprotein in pharmacokinetics: clinical implications. Clin Pharmacokinet 2003; 41(1): 59–98

    Article  Google Scholar 

  304. Lecureur V, Fardel O, Guilouzo A. The antiprogestin drug RU486 potentiates doxorubicin cytotoxicity in multidrug resistant cells through inhibition of P-glycoprotein function. FEBS Lett 1994; 355(2): 187–91

    Article  PubMed  CAS  Google Scholar 

  305. Huang LY, Wring S, Woolley JL, et al. Induction of P-glycoprotein and cytochrome P450 3A by HIV protease inhibitors. Drug Metab Dispos 2001; 29(5): 754–60

    PubMed  CAS  Google Scholar 

  306. Wacher VJ, Wu C-Y, Benet LZ. Overlapping substrate specificities and tissue distribution of cytochrome P450 3A and P-glycoprotein: implications for drug delivery and activity in cancer chemotherapy. Mol Carcinog 1995; 13: 129–34

    Article  PubMed  CAS  Google Scholar 

  307. Schuetz EG, Beck WT, Schuetz JD. Modulators and substrates of P-glycoprotein and cytochrome P4503A coordinately upregulate these proteins in human colon carcinoma cells. Mol Pharmacol 1996; 49: 311–8

    PubMed  CAS  Google Scholar 

  308. Watkins PB. Noninvasive tests of CYP3A enzymes. Pharmacogenetics 1994; 4(4): 171–84

    Article  PubMed  CAS  Google Scholar 

  309. Pascussi JM, Gerbal-Chaloin S, Pichard-Garcia L, et al. Interleukin-6 negatively regulates the expression of pregnane X receptor and constitutively activated receptor in primary human hepatocytes. Biochem Biophys Res Commun 2000; 274(3): 707–13

    Article  PubMed  CAS  Google Scholar 

  310. Hunt CM, Westerkam WR, Stave GM. Effect of age and gender on the activity of human hepatic CYP3A. Biochem Pharmacol 1992; 44(2): 275–83

    Article  PubMed  CAS  Google Scholar 

  311. Schmucker DL. Liver function and phase I drug metabolism in the elderly: a paradox. Drugs Aging 2001; 18(11): 837–51

    Article  PubMed  CAS  Google Scholar 

  312. Meibohm B, Beierle I, Derendorf H. How important are gender differences in pharmacokinetics? Clin Pharmacokinet 2002; 41(5): 329–42

    Article  PubMed  CAS  Google Scholar 

  313. Hartmann G, Cheung AK, Piquette-Miller M. Inflammatory cytokines, but not bile acids, regulate expression of murine hepatic anion transporters in endotoxemia. J Pharmacol Exp Ther 2002; 303(1): 273–81

    Article  PubMed  CAS  Google Scholar 

  314. Chen YZ, Ung CY. Prediction of potential toxicity and side effect protein targets of a small molecule by a ligand-protein inverse docking approach. J Mol Graph Model 2001; 20(3): 199–218

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate support by the National University of Singapore Academic Research Funds. The authors have no potential conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shufeng Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, S., Chan, S.Y., Goh, B.C. et al. Mechanism-Based Inhibition of Cytochrome P450 3A4 by Therapeutic Drugs. Clin Pharmacokinet 44, 279–304 (2005). https://doi.org/10.2165/00003088-200544030-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200544030-00005

Keywords

Navigation