Skip to main content
Log in

Clinical Pharmacokinetics and Pharmacodynamics of Mycophenolate in Solid Organ Transplant Recipients

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

This review aims to provide an extensive overview of the literature on the clinical pharmacokinetics of mycophenolate in solid organ transplantation and a briefer summary of current pharmacodynamic information. Strategies are suggested for further optimisation of mycophenolate therapy and areas where additional research is warranted are highlighted. Mycophenolate has gained widespread acceptance as the antimetabolite immunosuppressant of choice in organ transplant regimens. Mycophenolic acid (MPA) is the active drug moiety.

Currently, two mycophenolate compounds are available, mycophenolate mofetil and enteric-coated (EC) mycophenolate sodium. MPA is a potent, selective and reversible inhibitor of inosine monophosphate dehydrogenase (IMPDH), leading to eventual arrest of T- and B-lymphocyte proliferation. Mycophenolate mofetil and EC-mycophenolate sodium are essentially completely hydrolysed to MPA by esterases in the gut wall, blood, liver and tissue. Oral bioavailability of MPA, subsequent to mycophenolate mofetil administration, ranges from 80.7% to 94%. EC-mycophenolate sodium has an absolute bioavailability of MPA of approximately 72%.

MPA binds 97–99% to serum albumin in patients with normal renal and liver function. It is metabolised in the liver, gastrointestinal tract and kidney by uridine diphosphate gluconosyltransferases (UGTs). 7-O-MPA-glucuronide (MPAG) is the major metabolite of MPA. MPAG is usually present in the plasma at 20- to 100-fold higher concentrations than MPA, but it is not pharmacologically active. At least three minor metabolites are also formed, of which an acyl-glucuronide has pharmacological potency comparable to MPA. MPAG is excreted into the urine via active tubular secretion and into the bile by multi-drug resistance protein 2 (MRP-2). MPAG is de-conjugated back to MPA by gut bacteria and then reabsorbed in the colon.

Mycophenolate mofetil and EC-mycophenolate sodium display linear pharmacokinetics. Following mycophenolate mofetil administration, MPA maximum concentration usually occurs in 1–2 hours. EC-mycophenolate sodium exhibits a median lag time in absorption of MPA from 0.25 to 1.25 hours. A secondary peak in the concentration-time profile of MPA, due to enterohepatic recirculation, often appears 6–12 hours after dosing. This contributes approximately 40% to the area under the plasma concentration-time curve (AUC). The mean elimination half-life of MPA ranges from 9 to 17 hours.

MPA displays large between- and within-subject pharmacokinetic variability. Dose-normalised MPA AUC can vary more than 10-fold. Total MPA concentrations should be interpreted with caution in patients with severe renal impairment, liver disease and hypoalbuminaemia. In such individuals, MPA and MPAG plasma protein binding may be altered, changing the fraction of free MPA available. Apparent oral clearance (CL/F) of total MPA appears to increase in proportion to the increased free fraction, with a reduction in total MPA AUC. However, there may be little change in the MPA free concentration. Ciclosporin inhibits biliary excretion of MPAG by MRP-2, reducing enterohepatic recirculation of MPA. Exposure to MPA when mycophenolate mofetil is given in combination with ciclosporin is approximately 30–40% lower than when given alone or with tacrolimus or sirolimus. High dosages of corticosteroids may induce expression of UGT, reducing exposure to MPA. Other co-medications can interfere with the absorption, enterohepatic recycling and metabolism of mycophenolate. Most pharmacokinetic investigations of MPA have involved mycophenolate mofetil rather than EC-mycophenolate sodium therapy.

In population pharmacokinetic studies, MPA CL/F in adults ranges from 14.1 to 34.9 L/h (ciclosporin co-therapy) and from 11.9 to 25.4 L/h (tacrolimus co-therapy). Patient bodyweight, serum albumin concentration and immunosuppressant co-therapy have a significant influence on CL/F.

The majority of pharmacodynamic data on MPA have been obtained in patients receiving mycophenolate mofetil therapy in the first year after kidney transplantation. Low MPA AUC is associated with increased incidence of biopsy-proven acute rejection. Gastrointestinal adverse events may be dose related. Leukopenia and anaemia have been associated with high MPA AUC, trough concentration and metabolite concentrations in some, but not all, studies. High free MPA exposure has been identified as a risk factor for leukopenia in some investigations. Targeting a total MPA AUC from 0 to 12 hours (AUC12) of 30–60 mg ∙ hr/L is likely to minimise the risk of acute rejection and may reduce toxicity.

IMPDH monitoring is in the early experimental stage. Individualisation of mycophenolate therapy should lead to improved patient outcomes. MPA AUC12 appears to be the most useful exposure measure for such individualisation. Limited sampling strategies and Bayesian forecasting are practical means of estimating MPA AUC12 without full concentration-time profiling. Target concentration intervention may be particularly useful in the first few months post-transplant and prior to major changes in anti-rejection therapy. In patients with impaired renal or hepatic function or hypoalbuminaemia, free drug measurement could be valuable in further interpretation of MPA exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II
Table III
Fig. 1
Table IV
Table V
Table VI
Table VII
Table VIII

Similar content being viewed by others

Notes

  1. The use of trade names is for product identification purposes only and does not imply endorsement.

References

  1. Kaufman DB, Shapiro R, Lucey MR, et al. Immunosuppression: practice and trends. Am J Transplant 2004; 4 Suppl. 9: 38–53

    Article  PubMed  Google Scholar 

  2. Shaw LM, Nawrocki A, Korecka M, et al. Using established immunosuppressant therapy effectively: lessons from the measurement of mycophenolic acid plasma concentrations. Ther Drug Monit 2004; 26(4): 347–51

    Article  PubMed  CAS  Google Scholar 

  3. Roche Pharmaceuticals. CellCept®: complete product information [online]. Available from URL: http://www.rocheusa.com/products/cellcept [Accessed 2006 Dec 7]

  4. European Mycophenolate Mofetil Cooperative Study Group. Placebo-controlled study of mycophenolate mofetil combined with cyclosporin and corticosteroids for prevention of acute rejection. European Mycophenolate Mofetil Cooperative Study Group. Lancet 1995; 345(8961): 1321–5

    Google Scholar 

  5. The Tricontinental Mycophenolate Mofetil Renal Transplantation Study Group. A blinded, randomized clinical trial of mycophenolate mofetil for the prevention of acute rejection in cadaveric renal transplantation. The Tricontinental Mycophenolate Mofetil Renal Transplantation Study Group. Transplantation 1996; 61(7): 1029–37

    Article  Google Scholar 

  6. Sollinger HW, for the US Renal Transplant Mycophenolate Mofetil Study Group. Mycophenolate mofetil for the prevention of acute rejection in primary cadaveric renal allograft recipients. Transplantation 1995; 60(3): 225–32

    Article  PubMed  CAS  Google Scholar 

  7. Novartis Pharmaceuticals Corporation. Myfortic®: prescribing information [online]. Available from URL: http://www.pharma.us.novartis.com/product/pi/pdf/myfortic.pdf [Accessed 2006 Dec 7]

  8. Granger DK. Enteric-coated mycophenolate sodium: results of two pivotal global multicenter trials. Transplant Proc 2001; 33(7–8): 3241–4

    Article  PubMed  CAS  Google Scholar 

  9. Salvadori M, Holzer H, de Mattos A, et al. Enteric-coated mycophenolate sodium is therapeutically equivalent to mycophenolate mofetil in de novo renal transplant patients. Am J Transplant 2004; 4(2): 231–6

    Article  PubMed  CAS  Google Scholar 

  10. Allison AC. Mechanisms of action of mycophenolate mofetil. Lupus 2005; 14 Suppl. 1: s2–8

    Article  PubMed  CAS  Google Scholar 

  11. Halloran P, Mathew T, Tomlanovich S, et al. Mycophenolate mofetil in renal allograft recipients: a pooled efficacy analysis of three randomized, double-blind, clinical studies in prevention of rejection. The International Mycophenolate Mofetil Renal Transplant Study Groups. Transplantation 1997; 63(1): 39–47

    Article  PubMed  CAS  Google Scholar 

  12. Lee WA, Gu L, Miksztal AR, et al. Bioavailability improvement of mycophenolic acid through amino ester derivatization. Pharm Res 1990; 7(2): 161–6

    Article  PubMed  CAS  Google Scholar 

  13. Bullingham R, Monroe S, Nicholls A, et al. Pharmacokinetics and bioavailability of mycophenolate mofetil in healthy subjects after single-dose oral and intravenous administration. J Clin Pharmacol 1996; 36(4): 315–24

    PubMed  CAS  Google Scholar 

  14. Armstrong VW, Tenderich G, Shipkova M, et al. Pharmacokinetics and bioavailability of mycophenolic acid after intravenous administration and oral administration of mycophenolate mofetil to heart transplant recipients. Ther Drug Monit 2005; 27(3): 315–21

    Article  PubMed  CAS  Google Scholar 

  15. Bullingham RE, Nicholls AJ, Kamm BR. Clinical pharmacokinetics of mycophenolate mofetil. Clin Pharmacokinet 1998; 34(6): 429–55

    Article  PubMed  CAS  Google Scholar 

  16. Arns W, Breuer S, Choudhury S, et al. Enteric-coated mycophenolate sodium delivers bioequivalent MPA exposure compared with mycophenolate mofetil. Clin Transplant 2005; 19(2): 199–206

    Article  PubMed  Google Scholar 

  17. Pescovitz MD, Conti D, Dunn J, et al. Intravenous mycophenolate mofetil: safety, tolerability, and pharmacokinetics. Clin Transplant 2000; 14(3): 179–88

    Article  PubMed  CAS  Google Scholar 

  18. Braun KP, Glander P, Hambach P, et al. Pharmacokinetics and pharmacodynamics of mycophenolate mofetil under oral and intravenous therapy. Transplant Proc 2002; 34(5): 1745–7

    Article  PubMed  CAS  Google Scholar 

  19. Nowak I, Shaw LM. Mycophenolic acid binding to human serum albumin: characterization and relation to pharmacodynamics. Clin Chem 1995; 41(7): 1011–7

    PubMed  CAS  Google Scholar 

  20. Langman LJ, LeGatt DF, Yatscoff RW. Blood distribution of mycophenolic acid. Ther Drug Monit 1994; 16(6): 602–7

    Article  PubMed  CAS  Google Scholar 

  21. Bullingham RE, Nicholls A, Hale M. Pharmacokinetics of mycophenolate mofetil (RS61443): a short review. Transplant Proc 1996; 28(2): 925–9

    PubMed  CAS  Google Scholar 

  22. Weber LT, Shipkova M, Lamersdorf T, et al. Pharmacokinetics of mycophenolic acid (MPA) and determinants of MPA free fraction in pediatric and adult renal transplant recipients. German Study group on Mycophenolate Mofetil Therapy in Pediatric Renal Transplant Recipients. J Am Soc Nephrol 1998; 9(8): 1511–20

    PubMed  CAS  Google Scholar 

  23. Ensom MH, Partovi N, Decarie D, et al. Pharmacokinetics and protein binding of mycophenolic acid in stable lung transplant recipients. Ther Drug Monit 2002; 24(2): 310–4

    Article  PubMed  CAS  Google Scholar 

  24. Nowak I, Shaw LM. Effect of mycophenolic acid glucuronide on inosine monophosphate dehydrogenase activity. Ther Drug Monit 1997; 19(3): 358–60

    Article  PubMed  CAS  Google Scholar 

  25. Atcheson BA, Taylor PJ, Kirkpatrick CM, et al. Free mycophenolic acid should be monitored in renal transplant recipients with hypoalbuminemia. Ther Drug Monit 2004; 26(3): 284–6

    Article  PubMed  CAS  Google Scholar 

  26. Kaplan B, Meier-Kriesche HU, Friedman G, et al. The effect of renal insufficiency on mycophenolic acid protein binding. J Clin Pharmacol 1999; 39(7): 715–20

    Article  PubMed  CAS  Google Scholar 

  27. Shaw LM, Mick R, Nowak I, et al. Pharmacokinetics of mycophenolic acid in renal transplant patients with delayed graft function. J Clin Pharmacol 1998; 38(3): 268–75

    PubMed  CAS  Google Scholar 

  28. Meier-Kriesche HU, Shaw LM, Korecka M, et al. Pharmacokinetics of mycophenolic acid in renal insufficiency. Ther Drug Monit 2000; 22(1): 27–30

    Article  PubMed  CAS  Google Scholar 

  29. Shaw LM, Holt DW, Oellerich M, et al. Current issues in therapeutic drug monitoring of mycophenolic acid: report of a roundtable discussion. Ther Drug Monit 2001; 23(4): 305–15

    Article  PubMed  CAS  Google Scholar 

  30. Shaw LM, Korecka M, DeNofrio D, et al. Pharmacokinetic, pharmacodynamic, and outcome investigations as the basis for mycophenolic acid therapeutic drug monitoring in renal and heart transplant patients. Clin Biochem 2001; 34(1): 17–22

    Article  PubMed  CAS  Google Scholar 

  31. Venkataramanan R, Ou J, Pisupati J, et al. Does plasma protein binding of mycophenolic acid affect its clearance? Fifth Congress of the International Liver Transplantation Society; 1999 Aug 26-29; Pittsburgh (PA)

    Google Scholar 

  32. Atcheson BA, Taylor PJ, Mudge DW, et al. Mycophenolic acid pharmacokinetics and related outcomes early after renal transplant. Br J Clin Pharmacol 2005; 59(3): 271–80

    Article  PubMed  CAS  Google Scholar 

  33. Picard N, Ratanasavanh D, Premaud A, et al. Identification of the UDP-glucuronosyltransferase isoforms involved in mycophenolic acid phase II metabolism. Drug Metab Dispos 2005; 33(1): 139–46

    Article  PubMed  CAS  Google Scholar 

  34. Bowalgaha K, Miners JO. The glucuronidation of mycophenolic acid by human liver, kidney and jejunum microsomes. Br J Clin Pharmacol 2001; 52(5): 605–9

    Article  PubMed  CAS  Google Scholar 

  35. Shipkova M, Armstrong VW, Wieland E, et al. Identification of glucoside and carboxyl-linked glucuronide conjugates of mycophenolic acid in plasma of transplant recipients treated with mycophenolate mofetil. Br J Pharmacol 1999; 126(5): 1075–82

    Article  PubMed  CAS  Google Scholar 

  36. Schutz E, Shipkova M, Armstrong VW, et al. Identification of a pharmacologically active metabolite of mycophenolic acid in plasma of transplant recipients treated with mycophenolate mofetil. Clin Chem 1999; 45(3): 419–22

    PubMed  CAS  Google Scholar 

  37. Shipkova M, Strassburg CP, Braun F, et al. Glucuronide and glucoside conjugation of mycophenolic acid by human liver, kidney and intestinal microsomes. Br J Pharmacol 2001; 132(5): 1027–34

    Article  PubMed  CAS  Google Scholar 

  38. Shipkova M, Schutz E, Armstrong VW, et al. Determination of the acyl glucuronide metabolite of mycophenolic acid in human plasma by HPLC and Emit. Clin Chem 2000; 46(3): 365–72

    PubMed  CAS  Google Scholar 

  39. Shipkova M, Armstrong VW, Oellerich M, et al. Acyl glucuronide drug metabolites: toxicological and analytical implications. Ther Drug Monit 2003; 25(1): 1–16

    Article  PubMed  CAS  Google Scholar 

  40. Wieland E, Shipkora M, Schutz E, et al. The acyl gluronide of the immunosuppressant mycophenolic acid induces release of proinflammatory cytockines and TNF-alpha mRNA expression [abstract]. Clin Clem 1999; 45 Suppl. 6: A127

    Google Scholar 

  41. Wieland E, Shipkova M, Schellhaas U, et al. Induction of cytokine release by the acyl glucuronide of mycophenolic acid: a link to side effects? Clin Biochem 2000; 33(2): 107–13

    Article  PubMed  CAS  Google Scholar 

  42. Maes BD, Dalle I, Geboes K, et al. Erosive enterocolitis in mycophenolate mofetil-treated renal-transplant recipients with persistent afebrile diarrhea. Transplantation 2003; 75(5): 665–72

    Article  PubMed  CAS  Google Scholar 

  43. Basu NK, Kole L, Kubota S, et al. Human UDP-glucuronosyl-transferases show atypical metabolism of mycophenolic acid and inhibition by curcumin. Drug Metab Dispos 2004; 32(7): 768–73

    Article  PubMed  CAS  Google Scholar 

  44. Bernard O, Guillemette C. The main role of UGT1A9 in the hepatic metabolism of mycophenolic acid and the effects of naturally occurring variants. Drug Metab Dispos 2004; 32(8): 775–8

    Article  PubMed  CAS  Google Scholar 

  45. Picard N, Cresteil T, Premaud A, et al. Characterization of a phase 1 metabolite of mycophenolic acid produced by CYP3A4/5. Ther Drug Monit 2004; 26(6): 600–8

    Article  PubMed  CAS  Google Scholar 

  46. Kuypers DR, Naesens M, Vermeire S, et al. The impact of uridine diphosphate-glucuronosyltransferase 1A9 (UGT1A9) gene promoter region single-nucleotide polymorphisms T-275A and C-2152T on early mycophenolic acid dose-interval exposure in de novo renal allograft recipients. Clin Pharmacol Ther 2005; 78(4): 351–61

    Article  PubMed  CAS  Google Scholar 

  47. Hesselink DA, van Gelder T. Genetic and nongenetic determinants of between-patient variability in the pharmacokinetics of mycophenolic acid. Clin Pharmacol Ther 2005; 78(4): 317–21

    Article  PubMed  CAS  Google Scholar 

  48. Kobayashi M, Saitoh H, Tadano K, et al. Cyclosporin A, but not tacrolimus, inhibits the biliary excretion of mycophenolic acid glucuronide possibly mediated by multidrug resistance-associated protein 2 in rats. J Pharmacol Exp Ther 2004; 309(3): 1029–35

    Article  PubMed  CAS  Google Scholar 

  49. Naderer OJ, Dupuis RE, Heinzen EL, et al. The influence of norfloxacin and metronidazole on the disposition of mycophenolate mofetil. J Clin Pharmacol 2005; 45(2): 219–26

    Article  PubMed  CAS  Google Scholar 

  50. Wollenberg K, Krumme B, Pisarski P, et al. Pharmacokinetics of mycophenolic acid in the early period after kidney transplantation. Transplant Proc 1998; 30(8): 4090–1

    Article  PubMed  CAS  Google Scholar 

  51. Wollenberg K, Krumme B, Schollmeyer P, et al. Pharmacokinetics of mycophenolic acid after renal transplantation. Transplant Proc 1998; 30(5): 2237–9

    Article  PubMed  CAS  Google Scholar 

  52. Liang MZ, Lu YP, Nan F, et al. Pharmacokinetics of mycophenolic acid after a single and multiple oral doses of mycophenolate mofetil in Chinese renal transplant recipients. Transplant Proc 2004; 36(7): 2065–7

    Article  PubMed  CAS  Google Scholar 

  53. Jirasiritham S, Sumethkul V, Mavichak V, et al. The pharmacokinetics of mycophenolate mofetil in Thai kidney transplant recipients. Transplant Proc 2004; 36(7): 2076–8

    Article  PubMed  CAS  Google Scholar 

  54. Undre NA, van Hooff J, Christiaans M, et al. Pharmacokinetics of FK 506 and mycophenolic acid after the administration of a FK 506-based regimen in combination with mycophenolate mofetil in kidney transplantation. Transplant Proc 1998; 30(4): 1299–302

    Article  PubMed  CAS  Google Scholar 

  55. Yeung S, Tong KL, Tsang WK, et al. Pharmacokinetic study of mycophenolate mofetil in Asian renal transplant recipients. Transplant Proc 2000; 32(7): 1753–4

    Article  PubMed  CAS  Google Scholar 

  56. Cho EK, Han DJ, Kim SC, et al. Pharmacokinetic study of mycophenolic acid in Korean kidney transplant patients. J Clin Pharmacol 2004; 44(7): 743–50

    Article  PubMed  CAS  Google Scholar 

  57. Engelbertink R, Smak Gregoor P, Hesse C, et al. High mycophenolic acid area under-the-curve values in renal transplant recipients on long-term mycophenolate mofetil treatment. Transplant Proc 2002; 34(7): 2983–4

    Article  PubMed  CAS  Google Scholar 

  58. Brunet M, Martorell J, Oppenheimer F, et al. Pharmacokinetics and pharmacodynamics of mycophenolic acid in stable renal transplant recipients treated with low doses of mycophenolate mofetil. Transpl Int 2000; 13 Suppl. 1: S301–5

    PubMed  Google Scholar 

  59. Neumann I, Haidinger M, Jager H, et al. Pharmacokinetics of mycophenolate mofetil in patients with autoimmune diseases compared renal transplant recipients. J Am Soc Nephrol 2003; 14(3): 721–7

    Article  PubMed  CAS  Google Scholar 

  60. Mourad M, Malaise J, Chaib Eddour D, et al. Correlation of mycophenolic acid pharmacokinetic parameters with side effects in kidney transplant patients treated with mycophenolate mofetil. Clin Chem 2001; 47(1): 88–94

    PubMed  CAS  Google Scholar 

  61. Kuypers DR, Vanrenterghem Y, Squifflet JP, et al. Twelvemonth evaluation of the clinical pharmacokinetics of total and free mycophenolic acid and its glucuronide metabolites in renal allograft recipients on low dose tacrolimus in combination with mycophenolate mofetil. Ther Drug Monit 2003; 25(5): 609–22

    Article  PubMed  CAS  Google Scholar 

  62. Satoh S, Tada H, Murakami M, et al. The influence of mycophenolate mofetil versus azathioprine and mycophenolic acid pharmacokinetics on the incidence of acute rejection and infectious complications after renal transplantation. Transplant Proc 2005; 37(4): 1751–3

    Article  PubMed  CAS  Google Scholar 

  63. Johnson AG, Rigby RJ, Taylor PJ, et al. The kinetics of mycophenolic acid and its glucuronide metabolite in adult kidney transplant recipients. Clin Pharmacol Ther 1999; 66(5): 492–500

    Article  PubMed  CAS  Google Scholar 

  64. Tedesco-Silva H, Bastien MC, Choi L, et al. Mycophenolic acid metabolite profile in renal transplant patients receiving enteric-coated mycophenolate sodium or mycophenolate mofetil. Transplant Proc 2005; 37(2): 852–5

    Article  PubMed  CAS  Google Scholar 

  65. Budde K, Glander P, Hahn U, et al. Pharmacokinetics and pharmacodynamic comparison of mycophenolate mofetil and enteric-coated mycophenolate sodium in maintenance renal transplant patients [abstract no. 1036]. Am J Transplant 2002; 2002 (2 Suppl. 3): 399

    Google Scholar 

  66. Sumethkul V, Na-Bangchang K, Kantachuvesiri S, et al. Standard dose enteric-coated mycophenolate sodium (myfortic) delivers rapid therapeutic mycophenolic acid exposure in kidney transplant recipients. Transplant Proc 2005; 37(2): 861–3

    Article  PubMed  CAS  Google Scholar 

  67. Gabardi S, Tran JL, Clarkson MR. Enteric-coated mycophenolate sodium. Ann Pharmacother 2003; 37(11): 1685–93

    Article  PubMed  CAS  Google Scholar 

  68. Pisupati J, Jain A, Burckart G, et al. Intraindividual and inter-individual variations in the pharmacokinetics of mycophenolic acid in liver transplant patients. J Clin Pharmacol 2005; 45(1): 34–41

    Article  PubMed  CAS  Google Scholar 

  69. Jain A, Venkataramanan R, Hamad IS, et al. Pharmacokinetics of mycophenolic acid after mycophenolate mofetil administration in liver transplant patients treated with tacrolimus. J Clin Pharmacol 2001; 41(3): 268–76

    Article  PubMed  CAS  Google Scholar 

  70. DeNofrio D, Loh E, Kao A, et al. Mycophenolic acid concentrations are associated with cardiac allograft rejection. J Heart Lung Transplant 2000; 19(11): 1071–6

    Article  PubMed  CAS  Google Scholar 

  71. Ensom MH, Partovi N, Decarie D, et al. Mycophenolate pharmacokinetics in early period following lung or heart transplantation. Ann Pharmacother 2003; 37(12): 1761–7

    Article  PubMed  CAS  Google Scholar 

  72. Jacqz-Aigrain E, Khan Shaghaghi E, Baudouin V, et al. Pharmacokinetics and tolerance of mycophenolate mofetil in renal transplant children. Pediatr Nephrol 2000; 14(2): 95–9

    Article  PubMed  CAS  Google Scholar 

  73. Sherbotie J, Bunchman T, Navarra P. Mycophenolate mofetil (MMF) oral suspension in pediatric renal transplantation [abstract; online]. American Society of Transplantation 18th Annual Meeting; 1999 May 15-19; Chicago (IL). Available from URL: http://www.a-s-t.org/library/abstracts99/473.htm [Accessed 2006 Dec 14]

    Google Scholar 

  74. Weber LT, Lamersdorf T, Shipkova M, et al. Area under the plasma concentration-time curve for total, but not for free, mycophenolic acid increases in the stable phase after renal transplantation: a longitudinal study in pediatric patients. German Study Group on Mycophenolate Mofetil Therapy in Pediatric Renal Transplant Recipients. Ther Drug Monit 1999; 21(5): 498–506

    Article  PubMed  CAS  Google Scholar 

  75. Filler G, Lampe D, Mai I, et al. Dosing of MMF in combination with tacrolimus for steroid-resistant vascular rejection in pediatric renal allografts. Transpl Int 1998; 11 Suppl. 1: S82–5

    PubMed  Google Scholar 

  76. Weber LT, Schutz E, Lamersdorf T, et al. Pharmacokinetics of mycophenolic acid (MPA) and free MPA in paediatric renal transplant recipients: a multicentre study. The German Study Group on Mycophenolate Mofetil (MMF) Therapy. Nephrol Dial Transplant 1999; 14 Suppl. 4: 33–4

    Article  PubMed  Google Scholar 

  77. Filler G, Lepage N, Delisle B, et al. Effect of cyclosporine on mycophenolic acid area under the concentration-time curve in pediatric kidney transplant recipients. Ther Drug Monit 2001; 23(5): 514–9

    Article  PubMed  CAS  Google Scholar 

  78. Armstrong VW, Shipkova M, Schutz E, et al. Monitoring of mycophenolic acid in pediatric renal transplant recipients. Transplant Proc 2001; 33(1-2): 1040–3

    Article  PubMed  CAS  Google Scholar 

  79. Ghio L, Ferraresso M, Vigano SM, et al. Mycophenolate mofetil pharmacokinetic monitoring in pediatric kidney transplant recipients. Transplant Proc 2005; 37(2): 856–8

    Article  PubMed  CAS  Google Scholar 

  80. Weber LT, Shipkova M, Armstrong VW, et al. The pharmacokinetic-pharmacodynamic relationship for total and free mycophenolic acid in pediatric renal transplant recipients: a report of the German Study Group on Mycophenolate Mofetil Therapy. J Am Soc Nephrol 2002; 13(3): 759–68

    PubMed  Google Scholar 

  81. Aigrain EJ, Shaghaghi EK, Baudouin V, et al. Pharmacokinetics of mycophenolate mofetil in eight pediatric renal transplant patients. Transplant Proc 2000; 32(2): 388–90

    Article  PubMed  CAS  Google Scholar 

  82. Shipkova M, Armstrong VW, Weber L, et al. Pharmacokinetics and protein adduct formation of the pharmacologically active acyl glucuronide metabolite of mycophenolic acid in pediatric renal transplant recipients. Ther Drug Monit 2002; 24(3): 390–9

    Article  PubMed  CAS  Google Scholar 

  83. Bunchman T, Navarro M, Broyer M, et al. The use of mycophenolate mofetil suspension in paediatric renal allograft recipients. Pediatric Nephrol 2001; 16: 978–84

    Article  CAS  Google Scholar 

  84. Pescovitz MD, Bumgardner G, Gaston RS, et al. Pharmacokinetics of daclizumab and mycophenolate mofetil with cyclosporine and steroids in renal transplantation. Clin Transplant 2003; 17(6): 511–7

    Article  PubMed  Google Scholar 

  85. Brown NW, Aw MM, Mieli-Vergani G, et al. Mycophenolic acid and mycophenolic acid glucuronide pharmacokinetics in pediatric liver transplant recipients: effect of cyclosporine and tacrolimus comedication. Ther Drug Monit 2002; 24(5): 598–606

    Article  PubMed  CAS  Google Scholar 

  86. Sollinger HW, Deierhoi MH, Belzer FO, et al. RS-61443: a phase I clinical trial and pilot rescue study. Transplantation 1992; 53(2): 428–32

    Article  PubMed  CAS  Google Scholar 

  87. Behrend M, Braun F. Enteric-coated mycophenolate sodium: tolerability profile compared with mycophenolate mofetil. Drugs 2005; 65(8): 1037–50

    Article  PubMed  CAS  Google Scholar 

  88. Ettenger R, Bartosh S, Choi L, et al. Pharmacokinetics of enteric-coated mycophenolate sodium in stable pediatric renal transplant recipients. Pediatr Transplant 2005; 9(6): 780–7

    Article  PubMed  CAS  Google Scholar 

  89. Holt DW. Monitoring mycophenolic acid. Ann Clin Biochem 2002; 39(Pt 3): 173–83

    Article  PubMed  CAS  Google Scholar 

  90. Shum B, Duffull SB, Taylor PJ, et al. Population pharmacokinetic analysis of mycophenolic acid in renal transplant recipients following oral administration of mycophenolate mofetil. Br J Clin Pharmacol 2003; 56(2): 188–97

    Article  PubMed  CAS  Google Scholar 

  91. Shaw LM, Korecka M, van Breeman R, et al. Analysis, pharmacokinetics and therapeutic drug monitoring of mycophenolic acid. Clin Biochem 1998; 31(5): 323–8

    Article  PubMed  CAS  Google Scholar 

  92. Shaw LM, Kaplan B, DeNofrio D, et al. Pharmacokinetics and concentration-control investigations of mycophenolic acid in adults after transplantation. Ther Drug Monit 2000; 22(1): 14–9

    Article  PubMed  CAS  Google Scholar 

  93. Staatz CE, Duffull SB, Kiberd B, et al. Population pharmacokinetics of mycophenolic acid during the first week after renal transplantation. Eur J Clin Pharmacol 2005; 61(7): 507–16

    Article  PubMed  CAS  Google Scholar 

  94. Johnson HJ, Swan SK, Heim-Duthoy KL, et al. The pharmacokinetics of a single oral dose of mycophenolate mofetil in patients with varying degrees of renal function. Clin Pharmacol Ther 1998; 63(5): 512–8

    Article  PubMed  CAS  Google Scholar 

  95. Shaw LM, Korecka M, Aradhye S, et al. Mycophenolic acid area under the curve values in African American and Caucasian renal transplant patients are comparable. J Clin Pharmacol 2000; 40(6): 624–33

    Article  PubMed  CAS  Google Scholar 

  96. Mudge DW, Atcheson BA, Taylor PJ, et al. Severe toxicity associated with a markedly elevated mycophenolic acid free fraction in a renal transplant recipient. Ther Drug Monit 2004; 26(4): 453–5

    Article  PubMed  Google Scholar 

  97. Parker G, Bullingham R, Kamm B, et al. Pharmacokinetics of oral mycophenolate mofetil in volunteer subjects with varying degrees of hepatic oxidative impairment. J Clin Pharmacol 1996; 36(4): 332–44

    PubMed  CAS  Google Scholar 

  98. Jain AB, Hamad I, Zuckerman S, et al. Effect of t-tube clamping on the pharmacokinetics of mycophenolic acid in liver transplant patients on oral therapy of mycophenolate mofetil. Liver Transpl Surg 1999; 5(2): 101–6

    Article  PubMed  CAS  Google Scholar 

  99. Bullingham R, Shah J, Goldblum R, et al. Effects of food and antacid on the pharmacokinetics of single doses of mycophenolate mofetil in rheumatoid arthritis patients. Br J Clin Pharmacol 1996; 41(6): 513–6

    Article  PubMed  CAS  Google Scholar 

  100. Morgera S, Budde K, Lampe D, et al. Mycophenolate mofetil pharmacokinetics in renal transplant recipients on peritoneal dialysis. Transpl Int 1998; 11(1): 53–7

    Article  PubMed  CAS  Google Scholar 

  101. Neylan JF. Immunosuppressive therapy in high-risk transplant patients: dose-dependent efficacy of mycophenolate mofetil in African-American renal allograft recipients. US Renal Transplant Mycophenolate Mofetil Study Group. Transplantation 1997; 64(9): 1277–82

    Article  PubMed  Google Scholar 

  102. Schweitzer EJ, Yoon S, Fink J, et al. Mycophenolate mofetil reduces the risk of acute rejection less in African-American than in Caucasian kidney recipients. Transplantation 1998; 65(2): 242–8

    Article  PubMed  CAS  Google Scholar 

  103. Pescovitz MD, Guasch A, Gaston R, et al. Equivalent pharmacokinetics of mycophenolate mofetil in African-American and Caucasian male and female stable renal allograft recipients. Am J Transplant 2003; 3(12): 1581–6

    Article  PubMed  CAS  Google Scholar 

  104. Le Guellec C, Bourgoin H, Buchler M, et al. Population pharmacokinetics and Bayesian estimation of mycophenolic acid concentrations in stable renal transplant patients. Clin Pharmacokinet 2004; 43(4): 253–66

    Article  PubMed  Google Scholar 

  105. van Hest RM, van Gelder T, Vulto AG, et al. Population pharmacokinetics of mycophenolic acid in renal transplant recipients. Clin Pharmacokinet 2005; 44(10): 1083–96

    Article  PubMed  Google Scholar 

  106. Morissette P, Albert C, Busque S, et al. In vivo higher glucuronidation of mycophenolic acid in male than in female recipients of a cadaveric kidney allograft and under immunosuppressive therapy with mycophenolate mofetil. Ther Drug Monit 2001; 23(5): 520–5

    Article  PubMed  CAS  Google Scholar 

  107. Gerbase MW, Fathi M, Spiliopoulos A, et al. Pharmacokinetics of mycophenolic acid associated with calcineurin inhibitors: long-term monitoring in stable lung recipients with and without cystic fibrosis. J Heart Lung Transplant 2003; 22(5): 587–90

    Article  PubMed  Google Scholar 

  108. van Hest RM, Mathot RA, Vulto AG, et al. Mycophenolic acid in diabetic renal transplant recipients: pharmacokinetics and application of a limited sampling strategy. Ther Drug Monit 2004; 26(6): 620–5

    Article  PubMed  Google Scholar 

  109. Hale MD, Nicholls AJ, Bullingham RE, et al. The pharmacokinetic-pharmacodynamic relationship for mycophenolate mofetil in renal transplantation. Clin Pharmacol Ther 1998; 64(6): 672–83

    Article  PubMed  CAS  Google Scholar 

  110. Oellerich M, Shipkova M, Schutz E, et al. Pharmacokinetic and metabolic investigations of mycophenolic acid in pediatric patients after renal transplantation: implications for therapeutic drug monitoring. German Study Group on Mycophenolate Mofetil Therapy in Pediatric Renal Transplant Recipients. Ther Drug Monit 2000; 22(1): 20–6

    Article  PubMed  CAS  Google Scholar 

  111. Kuypers DR, Claes K, Evenepoel P, et al. Long-term changes in mycophenolic acid exposure in combination with tacrolimus and corticosteroids are dose dependent and not reflected by trough plasma concentration: a prospective study in 100 de novo renal allograft recipients. J Clin Pharmacol 2003; 43(8): 866–80

    Article  PubMed  CAS  Google Scholar 

  112. Buchler M, Lebranchu Y, Beneton M, et al. Higher exposure to mycophenolic acid with sirolimus than with cyclosporine co-treatment. Clin Pharmacol Ther 2005; 78(1): 34–42

    Article  PubMed  CAS  Google Scholar 

  113. van Gelder T, Klupp J, Barten MJ, et al. Comparison of the effects of tacrolimus and cyclosporine on the pharmacokinetics of mycophenolic acid. Ther Drug Monit 2001; 23(2): 119–28

    Article  PubMed  Google Scholar 

  114. Pou L, Brunet M, Cantarell C, et al. Mycophenolic acid plasma concentrations: influence of comedication. Ther Drug Monit 2001; 23(1): 35–8

    Article  PubMed  CAS  Google Scholar 

  115. Filler G, Zimmering M, Mai I. Pharmacokinetics of mycophenolate mofetil are influenced by concomitant immunosuppression. Pediatr Nephrol 2000; 14(2): 100–4

    Article  PubMed  CAS  Google Scholar 

  116. Picard N, Premaud A, Rousseau A, et al. A comparison of the effect of cyclosporin and sirolimus on the pharmokinetics of mycophenolate in renal transplant patients. Br J Clin Pharmacol 2006 Oct; 62(4): 477–84

    Article  PubMed  CAS  Google Scholar 

  117. Deters M, Kirchner G, Koal T, et al. Influence of cyclosporine on the serum concentration and biliary excretion of mycophenolic acid and 7-O-mycophenolic acid glucuronide. Ther Drug Monit 2005; 27(2): 132–8

    Article  PubMed  CAS  Google Scholar 

  118. El Haggan W, Ficheux M, Debruyne D, et al. Pharmacokinetics of mycophenolic acid in kidney transplant patients receiving sirolimus versus cyclosporine. Transplant Proc 2005; 37(2): 864–6

    Article  PubMed  CAS  Google Scholar 

  119. Gregoor PJ, de Sevaux RG, Hene RJ, et al. Effect of cyclosporine on mycophenolic acid trough levels in kidney transplant recipients. Transplantation 1999; 68(10): 1603–6

    Article  PubMed  CAS  Google Scholar 

  120. Hohage H, Zeh M, Heck M, et al. Differential effects of cyclosporine and tacrolimus on mycophenolate pharmacokinetics in patients with impaired kidney function. Transplant Proc 2005; 37(4): 1748–50

    Article  PubMed  CAS  Google Scholar 

  121. Hubner GI, Eismann R, Sziegoleit W. Drug interaction between mycophenolate mofetil and tacrolimus detectable within therapeutic mycophenolic acid monitoring in renal transplant patients. Ther Drug Monit 1999; 21(5): 536–9

    Article  PubMed  CAS  Google Scholar 

  122. Kaplan B, Meier-Kriesche HU, Minnick P, et al. Randomized calcineurin inhibitor cross over study to measure the pharmacokinetics of co-administered enteric-coated mycophenolate sodium. Clin Transplant 2005; 19(4): 551–8

    Article  PubMed  Google Scholar 

  123. Shipkova M, Armstrong VW, Kuypers D, et al. Effect of cyclosporine withdrawal on mycophenolic acid pharmacokinetics in kidney transplant recipients with deteriorating renal function: preliminary report. Ther Drug Monit 2001; 23(6): 717–21

    Article  PubMed  CAS  Google Scholar 

  124. Smak Gregoor PJ, van Gelder T, Hesse CJ, et al. Mycophenolic acid plasma concentrations in kidney allograft recipients with or without cyclosporin: a cross-sectional study. Nephrol Dial Transplant 1999; 14(3): 706–8

    Article  PubMed  CAS  Google Scholar 

  125. Kiberd BA, Puthenparumpil JJ, Fraser A, et al. Impact of mycophenolate mofetil loading on drug exposure in the early posttransplant period. Transplant Proc 2005; 37(5): 2320–3

    Article  PubMed  CAS  Google Scholar 

  126. Kuriata-Kordek M, Boratynska M, Falkiewicz K, et al. The influence of calcineurin inhibitors on mycophenolic acid pharmacokinetics. Transplant Proc 2003; 35(6): 2369–71

    Article  PubMed  CAS  Google Scholar 

  127. Zucker K, Rosen A, Tsaroucha A, et al. Unexpected augmentation of mycophenolic acid pharmacokinetics in renal transplant patients receiving tacrolimus and mycophenolate mofetil in combination therapy, and analogous in vitro findings. Transpl Immunol 1997; 5(3): 225–32

    Article  PubMed  CAS  Google Scholar 

  128. Cremers S, Schoemaker R, Scholten E, et al. Characterizing the role of enterohepatic recycling in the interactions between mycophenolate mofetil and calcineurin inhibitors in renal transplant patients by pharmacokinetic modelling. Br J Clin Pharmacol 2005; 60(3): 249–56

    Article  PubMed  CAS  Google Scholar 

  129. Cattaneo D, Perico N, Gaspari F, et al. Glucocorticoids interfere with mycophenolate mofetil bioavailability in kidney transplantation. Kidney Int 2002; 62(3): 1060–7

    Article  PubMed  CAS  Google Scholar 

  130. Mudge DW, Atcheson B, Taylor PJ, et al. The effect of oral iron administration on mycophenolate mofetil absorption in renal transplant recipients: a randomized, controlled trial. Transplantation 2004; 77(2): 206–9

    Article  PubMed  CAS  Google Scholar 

  131. Lorenz M, Wolzt M, Weigel G, et al. Ferrous sulfate does not affect mycophenolic acid pharmacokinetics in kidney transplant patients. Am J Kidney Dis 2004; 43(6): 1098–103

    Article  PubMed  CAS  Google Scholar 

  132. Mai I, Stormer E, Bauer S, et al. Impact of St John’s wort treatment on the pharmacokinetics of tacrolimus and mycophenolic acid in renal transplant patients. Nephrol Dial Transplant 2003; 18(4): 819–22

    Article  PubMed  CAS  Google Scholar 

  133. Lu XY, Huang HF, Sheng-Tu JZ, et al. Pharmacokinetics of mycophenolic acid in Chinese kidney transplant patients. J Zhejiang Univ Sci B 2005; 6(9): 885–91

    PubMed  Google Scholar 

  134. Kuypers DR, Verleden G, Naesens M, et al. Drug interaction between mycophenolate mofetil and rifampin: possible induction of uridine diphosphate-glucuronosyltransferase. Clin Pharmacol Ther 2005; 78(1): 81–8

    Article  PubMed  CAS  Google Scholar 

  135. Pieper AK, Buhle F, Bauer S, et al. The effect of sevelamer on the pharmacokinetics of cyclosporin A and mycophenolate mofetil after renal transplantation. Nephrol Dial Transplant 2004; 19(10): 2630–3

    Article  PubMed  CAS  Google Scholar 

  136. Zucker K, Tsaroucha A, Olson L, et al. Evidence that tacrolimus augments the bioavailability of mycophenolate mofetil through the inhibition of mycophenolic acid glucuronidation. Ther Drug Monit 1999; 21(1): 35–43

    Article  PubMed  CAS  Google Scholar 

  137. Hesselink DA, van Hest RM, Mathot RA, et al. Cyclosporine interacts with mycophenolic Acid by inhibiting the multidrug resistance-associated protein 2. Am J Transplant 2005; 5(5): 987–94

    Article  PubMed  CAS  Google Scholar 

  138. Vidal E, Cantarell C, Capdevila L, et al. Mycophenolate mofetil pharmacokinetics in transplant patients receiving cyclosporine or tacrolimus in combination therapy. Pharmacol Toxicol 2000; 87(4): 182–4

    Article  PubMed  CAS  Google Scholar 

  139. Meiser BM, Groetzner J, Kaczmarek I, et al. Tacrolimus or cyclosporine: which is the better partner for mycophenolate mofetil in heart transplant recipients? Transplantation 2004; 78(4): 591–8

    Article  PubMed  CAS  Google Scholar 

  140. Smak Gregoor PJ, de Sevaux RG, Hene RJ, et al. Effect of cyclosporine on mycophenolic acid trough levels in kidney transplant recipients. Transplantation 1999; 68(10): 1603–6

    Article  Google Scholar 

  141. Kato R, Ooi K, Ikura-Mori M, et al. Impairment of mycophenolate mofetil absorption by calcium polycarbophil. J Clin Pharmacol 2002; 42(11): 1275–80

    Article  PubMed  CAS  Google Scholar 

  142. Morii M, Ueno K, Ogawa A, et al. Impairment of mycophenolate mofetil absorption by iron ion. Clin Pharmacol Ther 2000; 68(6): 613–6

    Article  PubMed  CAS  Google Scholar 

  143. Gimenez F, Foeillet E, Bourdon O, et al. Evaluation of pharmacokinetic interactions after oral administration of mycophenolate mofetil and valaciclovir or aciclovir to healthy subjects. Clin Pharmacokinet 2004; 43(10): 685–92

    Article  PubMed  CAS  Google Scholar 

  144. Wolfe EJ, Mathur V, Tomlanovich S, et al. Pharmacokinetics of mycophenolate mofetil and intravenous ganciclovir alone and in combination in renal transplant recipients. Pharmacotherapy 1997; 17(3): 591–8

    PubMed  CAS  Google Scholar 

  145. Schmidt LE, Rasmussen A, Norrelykke MR, et al. The effect of selective bowel decontamination on the pharmacokinetics of mycophenolate mofetil in liver transplant recipients. Liver Transpl 2001; 7(8): 739–42

    Article  PubMed  CAS  Google Scholar 

  146. Girard H, Court MH, Bernard O, et al. Identification of common polymorphisms in the promoter of the UGT1A9 gene: evidence that UGT1A9 protein and activity levels are strongly genetically controlled in the liver. Pharmacogenetics 2004; 14(8): 501–15

    Article  PubMed  CAS  Google Scholar 

  147. Cattaneo D, Perico N, Remuzzi G. From pharmacokinetics to pharmacogenomics: a new approach to tailor immunosuppressive therapy. Am J Transplant 2004; 4(3): 299–310

    Article  PubMed  CAS  Google Scholar 

  148. Del Tacca M. Prospects for personalized immunosuppression: pharmacologic tools: a review. Transplant Proc 2004; 36(3): 687–9

    Article  PubMed  CAS  Google Scholar 

  149. Fisher MB, Paine MF, Strelevitz TJ, et al. The role of hepatic and extrahepatic UDP-glucuronosyltransferases in human drug metabolism. Drug Metab Rev 2001; 33(3-4): 273–97

    Article  PubMed  CAS  Google Scholar 

  150. Villeneuve L, Girard H, Fortier LC, et al. Novel functional polymorphisms in the UGT1A7 and UGT1A9 glucuronidating enzymes in Caucasian and African-American subjects and their impact on the metabolism of 7-ethyl-10-hydroxy-camptothecin and flavopiridol anticancer drugs. J Pharmacol Exp Ther 2003; 307(1): 117–28

    Article  PubMed  CAS  Google Scholar 

  151. Jinno H, Saeki M, Saito Y, et al. Functional characterization of human UDP-glucuronosyltransferase 1A9 variant, D256N, found in Japanese cancer patients. J Pharmacol Exp Ther 2003; 306(2): 688–93

    Article  PubMed  CAS  Google Scholar 

  152. Beal JL, Jones CE, Taylor PJ, et al. Evaluation of an immunoassay (EMIT) for mycophenolic acid in plasma from renal transplant recipients compared with a high-performance liquid chromatography assay. Ther Drug Monit 1998; 20(6): 685–90

    Article  PubMed  CAS  Google Scholar 

  153. Premaud A, Debord J, Rousseau A, et al. A double absorptionphase model adequately describes mycophenolic acid plasma profiles in de novo renal transplant recipients given oral mycophenolate mofetil. Clin Pharmacokinet 2005; 44(8): 837–47

    Article  PubMed  CAS  Google Scholar 

  154. Payen S, Zhang D, Maisin A, et al. Population pharmacokinetics of mycophenolic acid in kidney transplant pediatric and adolescent patients. Ther Drug Monit 2005; 27(3): 378–88

    Article  PubMed  CAS  Google Scholar 

  155. Tredger JM, Brown NW, Adams J, et al. Monitoring mycophenolate in liver transplant recipients: toward a therapeutic range. Liver Transpl 2004; 10(4): 492–502

    Article  PubMed  Google Scholar 

  156. Kuypers DR, Claes K, Evenepoel P, et al. Clinical efficacy and toxicity profile of tacrolimus and mycophenolic acid in relation to combined long-term pharmacokinetics in de novo renal allograft recipients. Clin Pharmacol Ther 2004; 75(5): 434–47

    Article  PubMed  CAS  Google Scholar 

  157. Pillans PI, Rigby RJ, Kubler P, et al. A retrospective analysis of mycophenolic acid and cyclosporin concentrations with acute rejection in renal transplant recipients. Clin Biochem 2001; 34(1): 77–81

    Article  PubMed  CAS  Google Scholar 

  158. Okamoto M, Wakabayashi Y, Higuchi A, et al. Therapeutic drug monitoring of mycophenolic acid in renal transplant recipients. Transplant Proc 2005; 37(2): 859–60

    Article  PubMed  CAS  Google Scholar 

  159. Lu YP, Lin B, Liang MZ, et al. Correlation of mycophenolic acid pharmacokinetic parameters with side effects in Chinese kidney transplant recipients treated with mycophenolate mofetil. Transplant Proc 2004; 36(7): 2079–81

    Article  PubMed  CAS  Google Scholar 

  160. Kuriata-Kordek M, Boratynska M, Klinger M, et al. The efficacy of mycophenolate mofetil treatment in the prevention of acute renal rejection is related to plasma level of mycophenolic acid. Transplant Proc 2002; 34(7): 2985–7

    Article  PubMed  CAS  Google Scholar 

  161. van Gelder T, Hilbrands LB, Vanrenterghem Y, et al. A randomized double-blind, multicenter plasma concentration controlled study of the safety and efficacy of oral mycophenolate mofetil for the prevention of acute rejection after kidney transplantation. Transplantation 1999; 68(2): 261–6

    Article  PubMed  Google Scholar 

  162. Takahashi K, Ochiai T, Uchida K, et al. Pilot study of mycophenolate mofetil (RS-61443) in the prevention of acute rejection following renal transplantation in Japanese patients. RS-61443 Investigation Committee — Japan. Transplant Proc 1995; 27(1): 1421–4

    PubMed  CAS  Google Scholar 

  163. Smak Gregoor PJ, van Gelder T, van Besouw NM, et al. Mycophenolic acid trough levels after kidney transplantation in a cyclosporine-free protocol. Transpl Int 2000; 13 Suppl. 1: S333–5

    PubMed  Google Scholar 

  164. Krumme B, Wollenberg K, Kirste G, et al. Drug monitoring of mycophenolic acid in the early period after renal transplantation. Transplant Proc 1998; 30(5): 1773–4

    Article  PubMed  CAS  Google Scholar 

  165. Hesse CJ, Vantrimpont P, van Riemsdijk-van Overbeeke IC, et al. The value of routine monitoring of mycophenolic acid plasma levels after clinical heart transplantation. Transplant Proc 2001; 33(3): 2163–4

    Article  PubMed  CAS  Google Scholar 

  166. Meiser BM, Pfeiffer M, Schmidt D, et al. Combination therapy with tacrolimus and mycophenolate mofetil following cardiac transplantation: importance of mycophenolic acid therapeutic drug monitoring. J Heart Lung Transplant 1999; 18(2): 143–9

    Article  PubMed  CAS  Google Scholar 

  167. Yamani MH, Starling RC, Goormastic M, et al. The impact of routine mycophenolate mofetil drug monitoring on the treatment of cardiac allograft rejection. Transplantation 2000; 69(11): 2326–30

    Article  PubMed  CAS  Google Scholar 

  168. Gajarski RJ, Crowley DC, Zamberlan MC, et al. Lack of correlation between MMF dose and MPA level in pediatric and young adult cardiac transplant patients: does the MPA level matter? Am J Transplant 2004; 4(9): 1495–500

    Article  PubMed  CAS  Google Scholar 

  169. Weber LT, Schutz E, Lamersdorf T, et al. Therapeutic drug monitoring of total and free mycophenolic acid (MPA) and limited sampling strategy for determination of MPA-AUC in paediatric renal transplant recipients. The German Study Group on Mycophenolate Mofetil (MMF) Therapy. Nephrol Dial Transplant 1999; 14 Suppl. 4: 34–5

    Article  PubMed  Google Scholar 

  170. Cox VC, Ensom MH. Mycophenolate mofetil for solid organ transplantation: does the evidence support the need for clinical pharmacokinetic monitoring? Ther Drug Monit 2003; 25(2): 137–57

    Article  PubMed  CAS  Google Scholar 

  171. Smak Gregoor PJ, Hesse CJ, van Gelder T, et al. Relation of mycophenolic acid trough levels and adverse events in kidney allograft recipients. Transplant Proc 1998; 30(4): 1192–3

    Article  PubMed  CAS  Google Scholar 

  172. Cattaneo D, Gaspari F, Ferrari S, et al. Pharmacokinetics help optimizing mycophenolate mofetil dosing in kidney transplant patients. Clin Transplant 2001; 15(6): 402–9

    Article  PubMed  CAS  Google Scholar 

  173. Mourad M, Malaise J, Chaib Eddour D, et al. Pharmacokinetic basis for the efficient and safe use of low-dose mycophenolate mofetil in combination with tacrolimus in kidney transplantation. Clin Chem 2001; 47(7): 1241–8

    PubMed  CAS  Google Scholar 

  174. Hubner GI, Eismann R, Sziegoleit W. Relationship between mycophenolate mofetil side effects and mycophenolic acid plasma trough levels in renal transplant patients. Arzneimittel Forschung 2000; 50(10): 936–40

    PubMed  CAS  Google Scholar 

  175. Kaplan B, Gruber SA, Nallamathou R, et al. Decreased protein binding of mycophenolic acid associated with leukopenia in a pancreas transplant recipient with renal failure. Transplantation 1998; 65(8): 1127–9

    Article  PubMed  CAS  Google Scholar 

  176. Behrend M. Adverse gastrointestinal effects of mycophenolate mofetil: aetiology, incidence and management. Drug Saf 2001; 24(9): 645–63

    Article  PubMed  CAS  Google Scholar 

  177. Shaw LM, Sollinger HW, Halloran P, et al. Mycophenolate mofetil: a report of the consensus panel. Ther Drug Monit 1995; 17(6): 690–9

    Article  PubMed  CAS  Google Scholar 

  178. Shaw LM, Nicholls A, Hale M, et al. Therapeutic monitoring of mycophenolic acid: a consensus panel report. Clin Biochem 1998; 31(5): 317–22

    Article  PubMed  CAS  Google Scholar 

  179. Shaw LM, Korecka M, Venkataramanan R, et al. Mycophenolic acid pharmacodynamics and pharmacokinetics provide a basis for rational monitoring strategies. Am J Transplant 2003; 3(5): 534–42

    Article  PubMed  CAS  Google Scholar 

  180. Nicholls AJ. Opportunities for therapeutic monitoring of mycophenolate mofetil dose in renal transplantation suggested by the pharmacokinetic/pharmacodynamic relationship for mycophenolic acid and suppression of rejection. Clin Biochem 1998; 31(5): 329–33

    Article  PubMed  CAS  Google Scholar 

  181. Willis C, Taylor PJ, Salm P, et al. Quantification of free mycophenolic acid by high-performance liquid chromatography-atmospheric pressure chemical ionisation tandem mass spectrometry. J Chromatogr B Biomed Sci Appl 2000; 748(1): 151–6

    Article  PubMed  CAS  Google Scholar 

  182. Jones CE, Taylor PJ, Johnson AG. High-performance liquid chromatography determination of mycophenolic acid and its glucuronide metabolite in human plasma. J Chromatogr B Biomed Sci Appl 1998; 708(1-2): 229–34

    Article  PubMed  CAS  Google Scholar 

  183. Teshima D, Otsubo K, Kitagawa N, et al. High-performance liquid chromatographic method for mycophenolic acid and its glucuronide in serum and urine. J Clin Pharm Ther 2003; 28(1): 17–22

    Article  PubMed  CAS  Google Scholar 

  184. Streit F, Shipkova M, Armstrong VW, et al. Validation of a rapid and sensitive liquid chromatography-tandem mass spectrometry method for free and total mycophenolic acid. Clin Chem 2004; 50(1): 152–9

    Article  PubMed  CAS  Google Scholar 

  185. Atcheson B, Taylor PJ, Mudge DW, et al. Quantification of free mycophenolic acid and its glucuronide metabolite in human plasma by liquid-chromatography using mass spectrometric and ultraviolet absorbance detection. J Chromatogr B Analyt Technol Biomed Life Sci 2004; 799(1): 157–63

    Article  PubMed  CAS  Google Scholar 

  186. Premaud A, Rousseau A, Le Meur Y, et al. Comparison of liquid chromatography-tandem mass spectrometry with a commercial enzyme-multiplied immunoassay for the determination of plasma MPA in renal transplant recipients and consequences for therapeutic drug monitoring. Ther Drug Monit 2004; 26(6): 609–19

    Article  PubMed  CAS  Google Scholar 

  187. Schutz E, Shipkova M, Armstrong VW, et al. Therapeutic drug monitoring of mycophenolic acid: comparison of HPLC and immunoassay reveals new MPA metabolites. Transplant Proc 1998; 30(4): 1185–7

    Article  PubMed  CAS  Google Scholar 

  188. Shipkova M, Schutz E, Armstrong VW, et al. Overestimation of mycophenolic acid by EMIT correlates with MPA metabolite. Transplant Proc 1999; 31(1-2): 1135–7

    Article  PubMed  CAS  Google Scholar 

  189. Filler G, Mai I. Limited sampling strategy for mycophenolic acid area under the curve. Ther Drug Monit 2000; 22(2): 169–73

    Article  PubMed  CAS  Google Scholar 

  190. Willis C, Taylor PJ, Salm P, et al. Evaluation of limited sampling strategies for estimation of 12-hour mycophenolic acid area under the plasma concentration-time curve in adult renal transplant patients. Ther Drug Monit 2000; 22(5): 549–54

    Article  PubMed  CAS  Google Scholar 

  191. Yeung S, Tong KL, Tsang WK, et al. Determination of mycophenolate area under the curve by limited sampling strategy. Transplant Proc 2001; 33(1–2): 1052–3

    Article  PubMed  CAS  Google Scholar 

  192. Pawinski T, Hale M, Korecka M, et al. Limited sampling strategy for the estimation of mycophenolic acid area under the curve in adult renal transplant patients treated with concomitant tacrolimus. Clin Chem 2002; 48(9): 1497–504

    PubMed  CAS  Google Scholar 

  193. Schutz E, Armstrong VW, Shipkova M, et al. Limited sampling strategy for the determination of mycophenolic acid area under the curve in pediatric kidney recipients. German Study Group on MMF Therapy in Pediatric Renal Transplant Recipients. Transplant Proc 1998; 30(4): 1182–4

    Article  PubMed  CAS  Google Scholar 

  194. Premaud A, Le Meur Y, Debord J, et al. Maximum a posteriori bayesian estimation of mycophenolic acid pharmacokinetics in renal transplant recipients at different postgrafting periods. Ther Drug Monit 2005; 27(3): 354–61

    Article  PubMed  CAS  Google Scholar 

  195. Budde K, Glander P, Bauer S, et al. Pharmacodynamic monitoring of mycophenolate mofetil. Clin Chem Lab Med 2000; 38(11): 1213–6

    Article  PubMed  CAS  Google Scholar 

  196. van Gelder T. Mycophenolate mofetil: how to further improve using an already successful drug? Am J Transplant 2005; 5(2): 199–200

    Article  PubMed  Google Scholar 

  197. Weigel G, Griesmacher A, Karimi A, et al. Effect of mycophenolate mofetil therapy on lymphocyte activation in heart trans plant recipients. J Heart Lung Transplant 2002; 21(10): 1074–9

    Article  PubMed  Google Scholar 

  198. Sanquer S, Breil M, Baron C, et al. Induction of inosine monophosphate dehydrogenase activity after long-term treatment with mycophenolate mofetil. Clin Pharmacol Ther 1999; 65(6): 640–8

    Article  PubMed  CAS  Google Scholar 

  199. Goldsmith D, Carrey EA, Edbury S, et al. Mycophenolate mofetil, an inhibitor of inosine monophosphate dehydrogenase, causes a paradoxical elevation of GTP in erythrocytes of renal transplant patients. Clin Sci (Lond) 2004; 107(1): 63–8

    Article  CAS  Google Scholar 

  200. Glander P, Hambach P, Braun KP, et al. Effect of mycophenolate mofetil on IMP dehydrogenase after the first dose and after long-term treatment in renal transplant recipients. Int J Clin Pharmacol Ther 2003; 41(10): 470–6

    PubMed  CAS  Google Scholar 

  201. Jagodzinski P, Lizakowski S, Smolenski RT, et al. Mycophenolate mofetil treatment following renal transplantation decreases GTP concentrations in mononuclear leucocytes. Clin Sci (Lond) 2004; 107(1): 69–74

    Article  CAS  Google Scholar 

  202. Glander P, Braun KP, Hambach P, et al. Non-radioactive determination of inosine 5′-monophosphate dehydro-genase (IMPDH) in peripheral mononuclear cells. Clin Biochem 2001; 34(7): 543–9

    Article  PubMed  CAS  Google Scholar 

  203. Glander P, Hambach P, Braun KP, et al. Pre-transplant inosine monophosphate dehydrogenase activity is associated with clinical outcome after renal transplantation. Am J Transplant 2004; 4(12): 2045–51

    Article  PubMed  CAS  Google Scholar 

  204. Vannozzi F, Filipponi F, Di Paolo A, et al. An exploratory study on pharmacogenetics of inosine-monophosphate dehydrogenase II in peripheral mononuclear cells from liver-transplant recipients. Transplant Proc 2004; 36(9): 2787–90

    Article  PubMed  CAS  Google Scholar 

  205. Kuypers DR. Immunosuppressive drug monitoring: what to use in clinical practice today to improve renal graft outcome. Transpl Int 2005; 18(2): 140–50

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Dr Staatz would like to acknowledge financial support from an Australian National Health and Medical Research Council Neil Hamilton Fairley Fellowship. The authors have no pharmaceutical industry affiliation and have no pecuniary interests (personal or professional), grants or other potential conflicts of interest with any pharmaceutical company that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine E. Staatz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Staatz, C.E., Tett, S.E. Clinical Pharmacokinetics and Pharmacodynamics of Mycophenolate in Solid Organ Transplant Recipients. Clin Pharmacokinet 46, 13–58 (2007). https://doi.org/10.2165/00003088-200746010-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200746010-00002

Keywords

Navigation