Skip to main content
Log in

Physiology-Based Simulations of a Pathological Condition

Prediction of Pharmacokinetics in Patients with Liver Cirrhosis

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background: Liver cirrhosis is a progressive disease characterized by loss of functional hepatocytes with concomitant connective tissue and nodule formation in the liver. The morphological and physiological changes associated with the disease substantially affect drug pharmacokinetics. Whole-body physiologically based pharmacokinetic (WB-PBPK) modelling is a predictive technique that quantitatively relates the pharmacokinetic parameters of a drug to such (patho-)physiological conditions.

Objective: To extend an existing WB-PBPK model, based on the physiological changes associated with liver cirrhosis, which allows for prediction of drug pharmacokinetics in patients with liver cirrhosis.

Methods: The literature was searched for quantitative measures of the physiological changes associated with the presence of Child-Pugh class A through C liver cirrhosis. The parameters that were included were the organ blood flows, cardiac index, plasma binding protein concentrations, haematocrit, functional liver volume, hepatic enzymatic activity and glomerular filtration rate. Predictions of pharmacokinetic profiles and parameters were compared with literature data for the model compounds alfentanil, lidocaine (lignocaine), theophylline and levetiracetam.

Results: The predicted versus observed plasma concentration-time profiles for alfentanil and lidocaine were similar, such that the pharmacokinetic changes associated with Child-Pugh class A, B and C liver cirrhosis were adequately described. The theophylline elimination half-life was greatly increased in Child-Pugh class B and C patients compared with controls, as predicted by the model. Levetiracetam urinary excretion was consistently reduced with disease progression and very closely resembled observed values.

Conclusion: Consideration of the physiological differences between healthy individuals and patients with liver cirrhosis was important for the simulation of drug pharmacokinetics in this compromised group. The WB-PBPK model was altered to incorporate these physiological differences with the result of adequate simulation of drug pharmacokinetics. The information provided in this study will allow other researchers to further validate this liver cirrhosis model within a WB-PBPK model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II
Table III
Fig. 1
Fig. 2
Table IV
Fig. 3
Fig. 4

Similar content being viewed by others

References:

  1. Bosch J, Garcia-Pagan JC. Complications of cirrhosis: I. Portal hypertension. J Hepatol 2000; 32 (1 Suppl.): 141–56

    Article  PubMed  CAS  Google Scholar 

  2. Schuppan D, Afdhal NH. Liver cirrhosis. Lancet 2008; 371(9615): 838–51

    Article  PubMed  CAS  Google Scholar 

  3. Dincer D, Besisk F, Demirkol O, et al. Relationships between hemodynamic alterations and Child-Pugh score in patients with cirrhosis. Hepatogastroenterology 2005; 52(65): 1521–5

    PubMed  Google Scholar 

  4. Andersen ME. Toxicokinetic modeling and its applications in chemical risk assessment. Toxicol Lett 2003; 138(1-2): 9–27

    Article  PubMed  CAS  Google Scholar 

  5. Edginton AN, Schmitt W, Willmann S. Development and evaluation of a generic physiologically based pharmacokinetic model for children. Clin Pharmacokinet 2006; 45(10): 1013–34

    Article  PubMed  CAS  Google Scholar 

  6. Bjorkman S, Wada DR, Berling BM, et al. Prediction of the disposition of midazolam in surgical patients by a physiologically based pharmacokinetic model. J Pharm Sci 2001; 90(9): 1226–41

    Article  PubMed  CAS  Google Scholar 

  7. Lupfert C, Reichel A. Development and application of physiologically based pharmacokinetic-modeling tools to support drug discovery. Chem Biodivers 2005; 2(11): 1462–86

    Article  PubMed  Google Scholar 

  8. Willmann S, Schmitt W, Keldenich J, et al. A physiological model for the estimation of the fraction dose absorbed in humans. J Med Chem 2004; 47(15): 4022–31

    Article  PubMed  CAS  Google Scholar 

  9. International Commission on Radiological Protection (ICRP). Basic anatomical and physiological data for use in radiological protection: reference values. ICRP publication no. 89. Amsterdam: Elsevier Science, 2002

    Google Scholar 

  10. Bjorkman S. Prediction of drug disposition in infants and children by means of physiologically based pharmacokinetic (PBPK) modelling: theophylline and midazolam as model drugs. Br J Clin Pharmacol 2005; 59(6): 691–704

    Article  PubMed  Google Scholar 

  11. Annet L, Materne R, Danse E, et al. Hepatic flow parameters measured with MR imaging and Doppler US: correlations with degree of cirrhosis and portal hypertension. Radiology 2003; 229(2): 409–14

    Article  PubMed  Google Scholar 

  12. Yamamoto M, Iwasa M, Matsumura K, et al. Improvement of regional cerebral blood flow after oral intake of branched-chain amino acids in patients with cirrhosis. World J Gastroenterol 2005; 11(43): 6792–9

    PubMed  CAS  Google Scholar 

  13. Chawla Y, Santa N, Dhiman RK, et al. Portal hemodynamics by duplex Doppler sonography in different grades of cirrhosis. Dig Dis Sci 1998; 43(2): 354–7

    Article  PubMed  CAS  Google Scholar 

  14. Froomes PR, Morgan DJ, Smallwood RA, et al. Comparative effects of oxygen supplementation on theophylline and acetaminophen clearance in human cirrhosis. Gastroenterology 1999; 116(4): 915–20

    Article  PubMed  CAS  Google Scholar 

  15. Woitas RP, Stoffel-Wagner B, Flommersfeld S, et al. Correlation of serum concentrations of cystatin C and creatinine to inulin clearance in liver cirrhosis. Clin Chem 2000; 46(5): 712–5

    PubMed  CAS  Google Scholar 

  16. Barry M, Keeling PW, Weir D, et al. Severity of cirrhosis and the relationship of alpha 1-acid glycoprotein concentration to plasma protein binding of lidocaine. Clin Pharmacol Ther 1990; 47(3): 366–70

    Article  PubMed  CAS  Google Scholar 

  17. Wong F, Girgrah N, Graba J, et al. The cardiac response to exercise in cirrhosis. Gut 2001; 49(2): 268–75

    Article  PubMed  CAS  Google Scholar 

  18. Sansoe G, Ferrari A, Castellana CN, et al. Cimetidine administration and tubular creatinine secretion in patients with compensated cirrhosis. Clin Sci (Lond) 2002; 102(1): 91–8

    Article  CAS  Google Scholar 

  19. Proulx NL, Akbari A, Garg AX, et al. Measured creatinine clearance from timed urine collections substantially overestimates glomerular filtration rate in patients with liver cirrhosis: a systematic review and individual patient meta-analysis. Nephrol Dial Transplant 2005; 20(8): 1617–22

    Article  PubMed  CAS  Google Scholar 

  20. Willmann S, Lippert J, Schmitt W. From physicochemistry to absorption and distribution: predictive mechanistic modelling and computational tools. Expert Opin Drug Meta Toxicol 2005; 1(1): 159–68

    Article  CAS  Google Scholar 

  21. Virgolini I, Muller C, Angelberger P, et al. Functional liver imaging with 99Tcm-galactosyl-neoglycoalbumin (NGA) in alcoholic liver cirrhosis and liver fibrosis. Nucl Med Commun 1991; 12(6): 507–17

    Article  PubMed  CAS  Google Scholar 

  22. George J, Murray M, Byth K, et al. Differential alterations of cytochrome P450 proteins in livers from patients with severe chronic liver disease. Hepatology 1995; 21(1): 120–8

    PubMed  CAS  Google Scholar 

  23. Hardman JG, Limbird LE, Gilman A. Goodman and Gilman’s: the pharmacological basis of therapeutics. 10th ed. New York: McGraw Hill, 2001

    Google Scholar 

  24. Brockmöller J, Thomsen T, Wittstock M, et al. Pharmacokinetics of levetiracetam in patients with moderate to severe liver cirrhosis (Child-Pugh classes A, B, and C): characterization by dynamic liver function tests. Clin Pharmacol Ther 2005; 77(6): 529–41

    Article  PubMed  Google Scholar 

  25. Coupez R, Nicolas JM, Browne TR. Levetiracetam, a new antiepileptic agent: lack of in vitro and in vivo pharmacokinetic interaction with valproic acid. Epilepsia 2003; 44(2): 171–8

    Article  PubMed  CAS  Google Scholar 

  26. Willmann S, Lippert J, Sevestre M, et al. PK-Sim®: a physiologically based pharmacokinetic ‘whole-body’ model. Biosilico 2003; 1(4): 121–4

    Article  CAS  Google Scholar 

  27. Willmann S, Hohn K, Edginton A, et al. Development of a physiology-based whole-body population model for assessing the influence of individual variability on the pharmacokinetics of drugs. J Pharmacokinet Pharmacodyn 2007; 34(3): 401–31

    Article  PubMed  Google Scholar 

  28. US National Center for Health Statistics. Third National Health and Nutrition Examination Survey (NHANES III). Hyattsville (MD): National Center for Health Statistics Hyattsville, 1997 [online]. Available from URL: http://www.cdc.gov/nchs/datawh/nchsdefs/bmi.htm [Accessed 2008 Aug 19]

    Google Scholar 

  29. Sheiner LB, Beal SL. Some suggestions for measuring predictive performance. J Pharmacokinet Biopharma 1981; 9(4): 503–12

    CAS  Google Scholar 

  30. Roure P, Jean N, Leclerc AC, et al. Pharmacokinetics of alfentanil in children undergoing surgery. Br J Anaesth 1987; 59(11): 1437–40

    Article  PubMed  CAS  Google Scholar 

  31. Macfie AG, Magides AD, Reilly CS. Disposition of alfentanil in burns patients. Br J Anaesth 1992; 69(5): 447–50

    Article  PubMed  CAS  Google Scholar 

  32. Chauvin M, Bonnet F, Montembault C, et al. The influence of hepatic plasma flow on alfentanil plasma concentration plateaus achieved with an infusion model in humans: measurement of alfentanil hepatic extraction coefficient. Anesth Analg 1986; 65(10): 999–1003

    Article  PubMed  CAS  Google Scholar 

  33. Kharasch ED, Russell M, Mautz D, et al. The role of cytochrome P450 3A4 in alfentanil clearance: implications for interindividual variability in disposition and perioperative drug interactions. Anesthesiology 1997; 87(1): 36–50

    Article  PubMed  CAS  Google Scholar 

  34. Mazoit JX, Dalens BJ. Pharmacokinetics of local anaesthetics in infants and children. Clin Pharmacokinet 2004; 43(1): 17–32

    Article  PubMed  CAS  Google Scholar 

  35. Bailey DN, Briggs JR. The binding of selected therapeutic drugs to human serum [alpha]-1 acid glycoprotein and to human serum albumin in vitro. Ther Drug Monit 2004; 26(1): 40–3

    Article  PubMed  CAS  Google Scholar 

  36. Bertz RJ, Granneman GR. Use of in vitro and in vivo data to estimate the likelihood of metabolic pharmacokinetic interactions. Clin Pharmacokinet 1997; 32(3): 210–58

    Article  PubMed  CAS  Google Scholar 

  37. Mihaly GW, Moore G, Thomas J, et al. The pharmacokinetics and metabolism of the anilide local anaesthetics in neonates. Eur J Clin Pharmacol 1978; 13(2): 143–52

    Article  PubMed  CAS  Google Scholar 

  38. Orlando R, Piccoli P, De Martin S, et al. Cytochrome P450 1A2 is a major determinant of lidocaine metabolism in vivo: effects of liver function. Clin Pharmacol Ther 2004; 75(1): 80–8

    Article  PubMed  CAS  Google Scholar 

  39. Valko K, Nunhuck S, Bevan C, et al. Fast gradient HPLC method to determine compounds binding to human serum albumin: relationships with octanol/water and immobilized artificial membrane lipophilicity. J Pharm Sci 2003; 92(11): 2236–48

    Article  PubMed  CAS  Google Scholar 

  40. Dorne JL, Walton K, Renwick AG. Uncertainty factors for chemical risk assessment: human variability in the pharmacokinetics of CYP1A2 probe substrates. Food Chem Toxicol 2001; 39(7): 681–96

    Article  PubMed  CAS  Google Scholar 

  41. DrugBank. Levetiracetam [online]. Available from URL: http://redpoll.pharmacy.ualberta.ca/drugbank/cgi-bin/getCard.cgi?CARD=APRD01068.txt [Accessed 2007 Dec 1]

  42. Nicolas JM, Collart P, Gerin B, et al. In vitro evaluation of potential drug interactions with levetiracetam, a new antiepileptic agent. Drug Metab Dispos 1999; 27(2): 250–4

    PubMed  CAS  Google Scholar 

  43. Ferrier C, Marty J, Bouffard Y, et al. Alfentanil pharmacokinetics in patients with cirrhosis. Anesthesiology 1985; 62(4): 480–4

    Article  PubMed  CAS  Google Scholar 

  44. Kim WR, Poterucha JJ, Wiesner RH, et al. The relative role of the Child-Pugh classification and the Mayo natural history model in the assessment of survival in patients with primary sclerosing cholangitis. Hepatology 1999; 29(6): 1643–8

    Article  PubMed  CAS  Google Scholar 

  45. Orlando R, Piccoli P, De MS, et al. Effect of the CYP3A4 inhibitor erythromycin on the pharmacokinetics of lignocaine and its pharmacologically active metabolites in subjects with normal and impaired liver function. Br J Clin Pharmacol 2003; 55(1): 86–93

    Article  PubMed  CAS  Google Scholar 

  46. Shi BM, Wang XY, Mu QL, et al. Value of portal hemodynamics and hypersplenism in cirrhosis staging. World J Gastroenterol 2005; 11(5): 708–11

    PubMed  Google Scholar 

  47. Denys A, Menu Y. Portal and splanchnic blood flow measurements in vivo: US Doppler or MR angiography? J Hepatol 1997; 26(2): 437–8

    Article  PubMed  CAS  Google Scholar 

  48. Lautt WW. Mechanism and role of intrinsic regulation of hepatic arterial blood flow: hepatic arterial buffer response. Am J Physiol 1985; 249 (5 Pt 1): G549–56

    PubMed  CAS  Google Scholar 

  49. Braillon A, Cales P, Valla D, et al. Influence of the degree of liver failure on systemic and splanchnic haemodynamics and on response to propranolol in patients with cirrhosis. Gut 1986; 27(10): 1204–9

    Article  PubMed  CAS  Google Scholar 

  50. Carrella M, Hunter JO, Fazio S, et al. Capillary blood flow to the skin of forearm in cirrhosis. Angiology 1992; 43(12): 969–74

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No specific funding was received for this study. The authors are employed by Bayer Technology Services GmbH (Leverkusen, Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea N. Edginton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edginton, A.N., Willmann, S. Physiology-Based Simulations of a Pathological Condition. Clin Pharmacokinet 47, 743–752 (2008). https://doi.org/10.2165/00003088-200847110-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200847110-00005

Keywords

Navigation