Skip to main content
Log in

Defining the Role of Macrophages in Local Moxifloxacin Tissue Concentrations using Biopsy Data and Whole-Body Physiologically Based Pharmacokinetic Modelling

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Objective: This study used a whole-body physiologically based pharmacokinetic (WB-PBPK) model for moxifloxacin, plus in vitro and in vivo literature data on its interaction with macrophages, to interpret biopsy results generated from patients undergoing primarily colorectal surgery.

Methods: A WB-PBPK model was developed using PK-Sim® software and refined using observed plasma profiles. The model was assessed by comparing predictions of unbound interstitial concentrations with in vivo data from a microdialysis study.

Results: Incorporating in vitro data on the percentage volume of macrophages in a colorectal resection (8.1%) plus the in vivo kinetic and accumulation potential of moxifloxacin in macrophages into the WB-PBPK model, biopsy concentrations and kinetics were predicted and compared with observed data. The WB-PBPK model accurately described adipose and muscle interstitial unbound concentrations. The predicted biopsy concentrations (including interstitial, intracellular, vascular space and macrophages) were slightly greater than the observed values, although the kinetic (i.e. observed biopsy half-life = 21 hours) was similar to that of moxifloxacin in macrophages (20.8 hours) and thus similar to the predicted biopsy half-life. A reduction in the predicted biopsy concentrations to match the observed data required a decrease in the volume fraction of macrophages from 8.1% to 3.6%.

Conclusion: When plasma concentrations are known, WB-PBPK is a method to determine interstitial and intracellular concentrations. In this study, integration of biopsy data with WB-PBPK allowed for generation and testing of hypotheses to determine the reason for the observed biopsy kinetics. This type of translational modelling may lead to a better understanding of the anti-infective pharmacokinetic/pharmacodynamic relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Table I
Fig. 2
Fig. 3

Similar content being viewed by others

References:

  1. Liu P, Muller M, Grant M, et al. Tissue penetration of cefpodoxime and cefixime in healthy subjects. J Clin Pharmacol 2005; 45(5): 564–9

    Article  PubMed  CAS  Google Scholar 

  2. Gattringer R, Urbauer E, Traunmuller F, et al. Pharmacokinetics of telithromycin in plasma and soft tissues after single-dose administration to healthy volunteers. Antimicrob Agents Chemother 2004; 48(12): 4650–3

    Article  PubMed  CAS  Google Scholar 

  3. Skhirtladze K, Hutschala D, Fleck T, et al. Impaired target site penetration of vancomycin in diabetic patients following cardiac surgery. Antimicrob Agents Chemother 2006; 50(4): 1372–5

    Article  PubMed  CAS  Google Scholar 

  4. Ludbrook GL, Visco E, Lam AM. Propofol: relation between brain concentrations, electroencephalogram, middle cerebral artery blood flow velocity, and cerebral oxygen extraction during induction of anesthesia. Anesthesiology 2002; 97(6): 1363–70

    Article  PubMed  CAS  Google Scholar 

  5. Sauermann R, le-Karth G, Marsik C, et al. Pharmacokinetics and pharmacodynamics of cefpirome in subcutaneous adipose tissue of septic patients. Antimicrob Agents Chemother 2005; 49(2): 650–5

    Article  PubMed  CAS  Google Scholar 

  6. Bellmann R, Kuchling G, Dehghanyar P, et al. Tissue pharmacokinetics of levofloxacin in human soft tissue infections. Br J Clin Pharmacol 2004; 57(5): 563–8

    Article  PubMed  CAS  Google Scholar 

  7. Joukhadar C, Frossard M, Mayer BX, et al. Impaired target site penetration of beta-lactams may account for therapeutic failure in patients with septic shock. Crit Care Med 2001; 29(2): 385–91

    Article  PubMed  CAS  Google Scholar 

  8. Joukhadar C, Muller M. Microdialysis: current applications in clinical pharmacokinetic studies and its potential role in the future. Clin Pharmacokinet 2005; 44(9): 895–913

    Article  PubMed  CAS  Google Scholar 

  9. Muller M. Microdialysis in clinical drug delivery studies. Adv Drug Deliv Rev 2000; 45(2–3): 255–69

    Article  PubMed  CAS  Google Scholar 

  10. Stass H, Kubitza D, Moller JG, et al. Influence of activated charcoal on the pharmacokinetics of moxifloxacin following intravenous and oral administration of a 400 mg single dose to healthy males. Br J Clin Pharmacol 2005; 59(5): 536–41

    Article  PubMed  CAS  Google Scholar 

  11. Stass H. Distribution and tissue distribution of moxifloxacin. Drugs 1999; 58 Suppl. 2: 229–30

    Article  CAS  Google Scholar 

  12. Pascual A, Garcia I, Ballesta S, et al. Uptake and intracellular activity of moxifloxacin in human neutrophils and tissue-cultured epithelial cells. Antimicrob Agents Chemother 1999; 43(1): 12–5

    PubMed  CAS  Google Scholar 

  13. Soman A, Honeybourne D, Andrews J, et al. Concentrations of moxifloxacin in serum and pulmonary compartments following a single 400 mg oral dose in patients undergoing fibre-optic bronchoscopy. J Antimicrob Chemother 1999; 44(6): 835–8

    Article  PubMed  CAS  Google Scholar 

  14. Seral C, Barcia-Macay M, Mingeot-Leclercq MP, et al. Comparative activity of quinolones (ciprofloxacin, levofloxacin, moxifloxacin and garenoxacin) against extracellular and intracellular infection by Listeria monocytogenes and Staphylococcus aureus in J774 macrophages. J Antimicrob Chemother 2005; 55(4): 511–7

    Article  PubMed  CAS  Google Scholar 

  15. Mandell GL, Coleman E. Uptake, transport, and delivery of antimicrobial agents by human polymorphonuclear neutrophils. Antimicrob Agents Chemother 2001; 45(6): 1794–8

    Article  PubMed  CAS  Google Scholar 

  16. Wirtz M, Kleeff J, Swoboda S, et al. Moxifloxacin penetration into human gastrointestinal tissues. J Antimicrob Chemother 2006; 53: 875–7

    Article  Google Scholar 

  17. Edginton AN, Willmann S, Schmitt W. Development and evaluation of a generic physiology-based pharmacokinetic (PBPK) model for children. Clin Pharmacokinet 2006; 45(10): 1013–34

    Article  PubMed  CAS  Google Scholar 

  18. Willmann S, Lippert J, Schmitt W. From physicochemistry to absorption and distribution: predictive mechanistic modelling and computational tools. Expert Opin Drug Meta Toxicol 2005; 1(1): 159–68

    Article  CAS  Google Scholar 

  19. Poulin P, Theil FP. Prediction of pharmacokinetics prior to in vivo studies: 1. Mechanism-based prediction of volume of distribution. J Pharm Sci 2001; 91(1): 129–56

    Article  Google Scholar 

  20. DeJongh J, Verhaar HJ, Hermens JL. A quantitative property-property relationship (QPPR) approach to estimate in vitro tissue-blood partition coefficients of organic chemicals in rats and humans. Arch Toxicol 1997; 72(1): 17–25

    Article  PubMed  CAS  Google Scholar 

  21. International Commission on Radiological Protection (ICRP). Basic anatomical and physiological data for use in radiological protection: reference values. ICRP publication no. 89. Amsterdam: Elsevier Science, 2002

    Google Scholar 

  22. von Kleist M, Huisinga W. Physiologically based pharmacokinetic modelling: a sub-compartmentalized model of tissue distribution. J Pharmacokinet Pharmacodyn 2007; 34(6): 789–806

    Article  Google Scholar 

  23. Muller M, Stass H, Brunner M, et al. Penetration of moxifloxacin into peripheral compartments in humans. Antimicrob Agents Chemother 1999; 43(10): 2345–9

    PubMed  CAS  Google Scholar 

  24. Joukhadar C, Stass H, Muller-Zellenberg U, et al. Penetration of moxifloxacin into healthy and inflamed subcutaneous adipose tissues in humans. Antimicrob Agents Chemother 2003; 47(10): 3099–103

    Article  PubMed  CAS  Google Scholar 

  25. Willmann S, Lippert J, Sevestre M, et al. PK-Sim®: a physiologically based pharmacokinetic ‘whole-body’ model. Biosilico 2003; 1(4): 121–4

    Article  CAS  Google Scholar 

  26. Willmann S, Hohn K, Edginton A, et al. Development of a physiology-based whole-body population model for assessing the influence of individual variability on the pharmacokinetics of drugs. J Pharmacokinet Pharmacodyn 2007; 34(3): 401–31

    Article  PubMed  Google Scholar 

  27. Sheiner LB, Beal SL. Some suggestions for measuring predictive performance. J Pharmacokinet Biopharm 1981; 9(4): 503–12

    PubMed  CAS  Google Scholar 

  28. Etoh T, Shibuta K, Barnard GF, et al. Angiogenin expression in human colorectal cancer: the role of focal macrophage infiltration. Clin Cancer Res 2000; 6(9): 3545–51

    PubMed  CAS  Google Scholar 

  29. Garraffo R, Jambou D, Chichmanian RM, et al. In vitro and in vivo ciprofloxacin pharmacokinetics in human neutrophils. Antimicrob Agents Chemother 1991; 35(11): 2215–8

    Article  PubMed  CAS  Google Scholar 

  30. Isbel NM, Nikolic-Paterson DJ, Hill PA, et al. Local macrophage proliferation correlates with increased renal M-CSF expression in human glomerulonephritis. Nephrol Dial Transplant 2001; 16(8): 1638–47

    Article  PubMed  CAS  Google Scholar 

  31. Barcia-Macay M, Seral C, Mingeot-Leclercq MP, et al. Pharmacodynamic evaluation of the intracellular activities of antibiotics against Staphylococcus aureus in a model of THP-1 macrophages. Antimicrob Agents Chemother 2006; 50(3): 841–51

    Article  PubMed  CAS  Google Scholar 

  32. Nguyen HA, Grellet J, Paillard D, et al. Factors influencing the intracellular activity of fluoroquinolones: a study using levofloxacin in a Staphylococcus aureus THP-1 monocyte model. J Antimicrob Chemother 2006; 57(5): 883–90

    Article  PubMed  CAS  Google Scholar 

  33. Michot JM, Heremans MF, Caceres NE, et al. Cellular accumulation and activity of quinolones in ciprofloxacin-resistant J774 macrophages. Antimicrob Agents Chemother 2006; 50(5): 1689–95

    Article  PubMed  CAS  Google Scholar 

  34. Garraffo R, Roptin C, Boudjadja A. Impact of neutropenia of tissue penetration of moxifloxacin and sparfloxacin in infected mice. Drugs 1999; 68 Suppl. 2: 242–5

    Article  Google Scholar 

  35. Maschmeyer G, Haralambie E, Gaus W, et al. Ciprofloxacin and norfloxacin for selective decontamination in patients with severe granulocytopenia. Infection 1988; 16(2): 98–104

    Article  PubMed  CAS  Google Scholar 

  36. Wilms EB, Touw DJ, Heijerman HGM. Pharmacokinetics of azithromycin in plasma, blood, polymorphonuclear neutrophils and sputum during long-term therapy in patients with cystic fibrosis. Ther Drug Monitor 2006; 28(2): 219–25

    Article  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this study. Heino Stass and Gertrud Ahr are employees of Bayer Schering Pharma AG (Wuppertal, Germany), Stefan Willmann is an employee of Bayer Technology Services GmbH (Leverkusen, Germany) and Andrea Edginton is a former employee of Bayer Technology Services GmbH (Leverkusen, Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea N. Edginton PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edginton, A.N., Ahr, G., Willmann, S. et al. Defining the Role of Macrophages in Local Moxifloxacin Tissue Concentrations using Biopsy Data and Whole-Body Physiologically Based Pharmacokinetic Modelling. Clin Pharmacokinet 48, 181–187 (2009). https://doi.org/10.2165/00003088-200948030-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200948030-00004

Keywords

Navigation